// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // http://code.google.com/p/protobuf/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // Author: kenton@google.com (Kenton Varda) and others // // Contains basic types and utilities used by the rest of the library. #ifndef GOOGLE_PROTOBUF_COMMON_H__ #define GOOGLE_PROTOBUF_COMMON_H__ #include <assert.h> #include <stdlib.h> #include <cstddef> #include <string> #include <string.h> #if defined(__osf__) // Tru64 lacks stdint.h, but has inttypes.h which defines a superset of // what stdint.h would define. #include <inttypes.h> #elif !defined(_MSC_VER) #include <stdint.h> #endif #ifndef PROTOBUF_USE_EXCEPTIONS #if defined(_MSC_VER) && defined(_CPPUNWIND) #define PROTOBUF_USE_EXCEPTIONS 1 #elif defined(__EXCEPTIONS) #define PROTOBUF_USE_EXCEPTIONS 1 #else #define PROTOBUF_USE_EXCEPTIONS 0 #endif #endif #if PROTOBUF_USE_EXCEPTIONS #include <exception> #endif #if defined(_WIN32) && defined(GetMessage) // Allow GetMessage to be used as a valid method name in protobuf classes. // windows.h defines GetMessage() as a macro. Let's re-define it as an inline // function. The inline function should be equivalent for C++ users. inline BOOL GetMessage_Win32( LPMSG lpMsg, HWND hWnd, UINT wMsgFilterMin, UINT wMsgFilterMax) { return GetMessage(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax); } #undef GetMessage inline BOOL GetMessage( LPMSG lpMsg, HWND hWnd, UINT wMsgFilterMin, UINT wMsgFilterMax) { return GetMessage_Win32(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax); } #endif namespace std {} namespace google { namespace protobuf { #undef GOOGLE_DISALLOW_EVIL_CONSTRUCTORS #define GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(TypeName) \ TypeName(const TypeName&); \ void operator=(const TypeName&) #if defined(_MSC_VER) && defined(PROTOBUF_USE_DLLS) #ifdef LIBPROTOBUF_EXPORTS #define LIBPROTOBUF_EXPORT __declspec(dllexport) #else #define LIBPROTOBUF_EXPORT __declspec(dllimport) #endif #ifdef LIBPROTOC_EXPORTS #define LIBPROTOC_EXPORT __declspec(dllexport) #else #define LIBPROTOC_EXPORT __declspec(dllimport) #endif #else #define LIBPROTOBUF_EXPORT #define LIBPROTOC_EXPORT #endif namespace internal { // Some of these constants are macros rather than const ints so that they can // be used in #if directives. // The current version, represented as a single integer to make comparison // easier: major * 10^6 + minor * 10^3 + micro #define GOOGLE_PROTOBUF_VERSION 2005000 // The minimum library version which works with the current version of the // headers. #define GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION 2005000 // The minimum header version which works with the current version of // the library. This constant should only be used by protoc's C++ code // generator. static const int kMinHeaderVersionForLibrary = 2005000; // The minimum protoc version which works with the current version of the // headers. #define GOOGLE_PROTOBUF_MIN_PROTOC_VERSION 2005000 // The minimum header version which works with the current version of // protoc. This constant should only be used in VerifyVersion(). static const int kMinHeaderVersionForProtoc = 2005000; // Verifies that the headers and libraries are compatible. Use the macro // below to call this. void LIBPROTOBUF_EXPORT VerifyVersion(int headerVersion, int minLibraryVersion, const char* filename); // Converts a numeric version number to a string. std::string LIBPROTOBUF_EXPORT VersionString(int version); } // namespace internal // Place this macro in your main() function (or somewhere before you attempt // to use the protobuf library) to verify that the version you link against // matches the headers you compiled against. If a version mismatch is // detected, the process will abort. #define GOOGLE_PROTOBUF_VERIFY_VERSION \ ::google::protobuf::internal::VerifyVersion( \ GOOGLE_PROTOBUF_VERSION, GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION, \ __FILE__) // =================================================================== // from google3/base/port.h typedef unsigned int uint; #ifdef _MSC_VER typedef __int8 int8; typedef __int16 int16; typedef __int32 int32; typedef __int64 int64; typedef unsigned __int8 uint8; typedef unsigned __int16 uint16; typedef unsigned __int32 uint32; typedef unsigned __int64 uint64; #else typedef int8_t int8; typedef int16_t int16; typedef int32_t int32; typedef int64_t int64; typedef uint8_t uint8; typedef uint16_t uint16; typedef uint32_t uint32; typedef uint64_t uint64; #endif // long long macros to be used because gcc and vc++ use different suffixes, // and different size specifiers in format strings #undef GOOGLE_LONGLONG #undef GOOGLE_ULONGLONG #undef GOOGLE_LL_FORMAT #ifdef _MSC_VER #define GOOGLE_LONGLONG(x) x##I64 #define GOOGLE_ULONGLONG(x) x##UI64 #define GOOGLE_LL_FORMAT "I64" // As in printf("%I64d", ...) #else #define GOOGLE_LONGLONG(x) x##LL #define GOOGLE_ULONGLONG(x) x##ULL #define GOOGLE_LL_FORMAT "ll" // As in "%lld". Note that "q" is poor form also. #endif static const int32 kint32max = 0x7FFFFFFF; static const int32 kint32min = -kint32max - 1; static const int64 kint64max = GOOGLE_LONGLONG(0x7FFFFFFFFFFFFFFF); static const int64 kint64min = -kint64max - 1; static const uint32 kuint32max = 0xFFFFFFFFu; static const uint64 kuint64max = GOOGLE_ULONGLONG(0xFFFFFFFFFFFFFFFF); // ------------------------------------------------------------------- // Annotations: Some parts of the code have been annotated in ways that might // be useful to some compilers or tools, but are not supported universally. // You can #define these annotations yourself if the default implementation // is not right for you. #ifndef GOOGLE_ATTRIBUTE_ALWAYS_INLINE #if defined(__GNUC__) && (__GNUC__ > 3 ||(__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) // For functions we want to force inline. // Introduced in gcc 3.1. #define GOOGLE_ATTRIBUTE_ALWAYS_INLINE __attribute__ ((always_inline)) #else // Other compilers will have to figure it out for themselves. #define GOOGLE_ATTRIBUTE_ALWAYS_INLINE #endif #endif #ifndef GOOGLE_ATTRIBUTE_DEPRECATED #ifdef __GNUC__ // If the method/variable/type is used anywhere, produce a warning. #define GOOGLE_ATTRIBUTE_DEPRECATED __attribute__((deprecated)) #else #define GOOGLE_ATTRIBUTE_DEPRECATED #endif #endif #ifndef GOOGLE_PREDICT_TRUE #ifdef __GNUC__ // Provided at least since GCC 3.0. #define GOOGLE_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1)) #else #define GOOGLE_PREDICT_TRUE #endif #endif // Delimits a block of code which may write to memory which is simultaneously // written by other threads, but which has been determined to be thread-safe // (e.g. because it is an idempotent write). #ifndef GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN #define GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN() #endif #ifndef GOOGLE_SAFE_CONCURRENT_WRITES_END #define GOOGLE_SAFE_CONCURRENT_WRITES_END() #endif // =================================================================== // from google3/base/basictypes.h // The GOOGLE_ARRAYSIZE(arr) macro returns the # of elements in an array arr. // The expression is a compile-time constant, and therefore can be // used in defining new arrays, for example. // // GOOGLE_ARRAYSIZE catches a few type errors. If you see a compiler error // // "warning: division by zero in ..." // // when using GOOGLE_ARRAYSIZE, you are (wrongfully) giving it a pointer. // You should only use GOOGLE_ARRAYSIZE on statically allocated arrays. // // The following comments are on the implementation details, and can // be ignored by the users. // // ARRAYSIZE(arr) works by inspecting sizeof(arr) (the # of bytes in // the array) and sizeof(*(arr)) (the # of bytes in one array // element). If the former is divisible by the latter, perhaps arr is // indeed an array, in which case the division result is the # of // elements in the array. Otherwise, arr cannot possibly be an array, // and we generate a compiler error to prevent the code from // compiling. // // Since the size of bool is implementation-defined, we need to cast // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final // result has type size_t. // // This macro is not perfect as it wrongfully accepts certain // pointers, namely where the pointer size is divisible by the pointee // size. Since all our code has to go through a 32-bit compiler, // where a pointer is 4 bytes, this means all pointers to a type whose // size is 3 or greater than 4 will be (righteously) rejected. // // Kudos to Jorg Brown for this simple and elegant implementation. #undef GOOGLE_ARRAYSIZE #define GOOGLE_ARRAYSIZE(a) \ ((sizeof(a) / sizeof(*(a))) / \ static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) namespace internal { // Use implicit_cast as a safe version of static_cast or const_cast // for upcasting in the type hierarchy (i.e. casting a pointer to Foo // to a pointer to SuperclassOfFoo or casting a pointer to Foo to // a const pointer to Foo). // When you use implicit_cast, the compiler checks that the cast is safe. // Such explicit implicit_casts are necessary in surprisingly many // situations where C++ demands an exact type match instead of an // argument type convertable to a target type. // // The From type can be inferred, so the preferred syntax for using // implicit_cast is the same as for static_cast etc.: // // implicit_cast<ToType>(expr) // // implicit_cast would have been part of the C++ standard library, // but the proposal was submitted too late. It will probably make // its way into the language in the future. template<typename To, typename From> inline To implicit_cast(From const &f) { return f; } // When you upcast (that is, cast a pointer from type Foo to type // SuperclassOfFoo), it's fine to use implicit_cast<>, since upcasts // always succeed. When you downcast (that is, cast a pointer from // type Foo to type SubclassOfFoo), static_cast<> isn't safe, because // how do you know the pointer is really of type SubclassOfFoo? It // could be a bare Foo, or of type DifferentSubclassOfFoo. Thus, // when you downcast, you should use this macro. In debug mode, we // use dynamic_cast<> to double-check the downcast is legal (we die // if it's not). In normal mode, we do the efficient static_cast<> // instead. Thus, it's important to test in debug mode to make sure // the cast is legal! // This is the only place in the code we should use dynamic_cast<>. // In particular, you SHOULDN'T be using dynamic_cast<> in order to // do RTTI (eg code like this: // if (dynamic_cast<Subclass1>(foo)) HandleASubclass1Object(foo); // if (dynamic_cast<Subclass2>(foo)) HandleASubclass2Object(foo); // You should design the code some other way not to need this. template<typename To, typename From> // use like this: down_cast<T*>(foo); inline To down_cast(From* f) { // so we only accept pointers // Ensures that To is a sub-type of From *. This test is here only // for compile-time type checking, and has no overhead in an // optimized build at run-time, as it will be optimized away // completely. if (false) { implicit_cast<From*, To>(0); } #if !defined(NDEBUG) && !defined(GOOGLE_PROTOBUF_NO_RTTI) assert(f == NULL || dynamic_cast<To>(f) != NULL); // RTTI: debug mode only! #endif return static_cast<To>(f); } } // namespace internal // We made these internal so that they would show up as such in the docs, // but we don't want to stick "internal::" in front of them everywhere. using internal::implicit_cast; using internal::down_cast; // The COMPILE_ASSERT macro can be used to verify that a compile time // expression is true. For example, you could use it to verify the // size of a static array: // // COMPILE_ASSERT(ARRAYSIZE(content_type_names) == CONTENT_NUM_TYPES, // content_type_names_incorrect_size); // // or to make sure a struct is smaller than a certain size: // // COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large); // // The second argument to the macro is the name of the variable. If // the expression is false, most compilers will issue a warning/error // containing the name of the variable. namespace internal { template <bool> struct CompileAssert { }; } // namespace internal #undef GOOGLE_COMPILE_ASSERT #define GOOGLE_COMPILE_ASSERT(expr, msg) \ typedef ::google::protobuf::internal::CompileAssert<(bool(expr))> \ msg[bool(expr) ? 1 : -1] // Implementation details of COMPILE_ASSERT: // // - COMPILE_ASSERT works by defining an array type that has -1 // elements (and thus is invalid) when the expression is false. // // - The simpler definition // // #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1] // // does not work, as gcc supports variable-length arrays whose sizes // are determined at run-time (this is gcc's extension and not part // of the C++ standard). As a result, gcc fails to reject the // following code with the simple definition: // // int foo; // COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is // // not a compile-time constant. // // - By using the type CompileAssert<(bool(expr))>, we ensures that // expr is a compile-time constant. (Template arguments must be // determined at compile-time.) // // - The outter parentheses in CompileAssert<(bool(expr))> are necessary // to work around a bug in gcc 3.4.4 and 4.0.1. If we had written // // CompileAssert<bool(expr)> // // instead, these compilers will refuse to compile // // COMPILE_ASSERT(5 > 0, some_message); // // (They seem to think the ">" in "5 > 0" marks the end of the // template argument list.) // // - The array size is (bool(expr) ? 1 : -1), instead of simply // // ((expr) ? 1 : -1). // // This is to avoid running into a bug in MS VC 7.1, which // causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1. // =================================================================== // from google3/base/scoped_ptr.h namespace internal { // This is an implementation designed to match the anticipated future TR2 // implementation of the scoped_ptr class, and its closely-related brethren, // scoped_array, scoped_ptr_malloc, and make_scoped_ptr. template <class C> class scoped_ptr; template <class C> class scoped_array; // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> // automatically deletes the pointer it holds (if any). // That is, scoped_ptr<T> owns the T object that it points to. // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. // // The size of a scoped_ptr is small: // sizeof(scoped_ptr<C>) == sizeof(C*) template <class C> class scoped_ptr { public: // The element type typedef C element_type; // Constructor. Defaults to intializing with NULL. // There is no way to create an uninitialized scoped_ptr. // The input parameter must be allocated with new. explicit scoped_ptr(C* p = NULL) : ptr_(p) { } // Destructor. If there is a C object, delete it. // We don't need to test ptr_ == NULL because C++ does that for us. ~scoped_ptr() { enum { type_must_be_complete = sizeof(C) }; delete ptr_; } // Reset. Deletes the current owned object, if any. // Then takes ownership of a new object, if given. // this->reset(this->get()) works. void reset(C* p = NULL) { if (p != ptr_) { enum { type_must_be_complete = sizeof(C) }; delete ptr_; ptr_ = p; } } // Accessors to get the owned object. // operator* and operator-> will assert() if there is no current object. C& operator*() const { assert(ptr_ != NULL); return *ptr_; } C* operator->() const { assert(ptr_ != NULL); return ptr_; } C* get() const { return ptr_; } // Comparison operators. // These return whether two scoped_ptr refer to the same object, not just to // two different but equal objects. bool operator==(C* p) const { return ptr_ == p; } bool operator!=(C* p) const { return ptr_ != p; } // Swap two scoped pointers. void swap(scoped_ptr& p2) { C* tmp = ptr_; ptr_ = p2.ptr_; p2.ptr_ = tmp; } // Release a pointer. // The return value is the current pointer held by this object. // If this object holds a NULL pointer, the return value is NULL. // After this operation, this object will hold a NULL pointer, // and will not own the object any more. C* release() { C* retVal = ptr_; ptr_ = NULL; return retVal; } private: C* ptr_; // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't // make sense, and if C2 == C, it still doesn't make sense because you should // never have the same object owned by two different scoped_ptrs. template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; // Disallow evil constructors scoped_ptr(const scoped_ptr&); void operator=(const scoped_ptr&); }; // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate // with new [] and the destructor deletes objects with delete []. // // As with scoped_ptr<C>, a scoped_array<C> either points to an object // or is NULL. A scoped_array<C> owns the object that it points to. // // Size: sizeof(scoped_array<C>) == sizeof(C*) template <class C> class scoped_array { public: // The element type typedef C element_type; // Constructor. Defaults to intializing with NULL. // There is no way to create an uninitialized scoped_array. // The input parameter must be allocated with new []. explicit scoped_array(C* p = NULL) : array_(p) { } // Destructor. If there is a C object, delete it. // We don't need to test ptr_ == NULL because C++ does that for us. ~scoped_array() { enum { type_must_be_complete = sizeof(C) }; delete[] array_; } // Reset. Deletes the current owned object, if any. // Then takes ownership of a new object, if given. // this->reset(this->get()) works. void reset(C* p = NULL) { if (p != array_) { enum { type_must_be_complete = sizeof(C) }; delete[] array_; array_ = p; } } // Get one element of the current object. // Will assert() if there is no current object, or index i is negative. C& operator[](std::ptrdiff_t i) const { assert(i >= 0); assert(array_ != NULL); return array_[i]; } // Get a pointer to the zeroth element of the current object. // If there is no current object, return NULL. C* get() const { return array_; } // Comparison operators. // These return whether two scoped_array refer to the same object, not just to // two different but equal objects. bool operator==(C* p) const { return array_ == p; } bool operator!=(C* p) const { return array_ != p; } // Swap two scoped arrays. void swap(scoped_array& p2) { C* tmp = array_; array_ = p2.array_; p2.array_ = tmp; } // Release an array. // The return value is the current pointer held by this object. // If this object holds a NULL pointer, the return value is NULL. // After this operation, this object will hold a NULL pointer, // and will not own the object any more. C* release() { C* retVal = array_; array_ = NULL; return retVal; } private: C* array_; // Forbid comparison of different scoped_array types. template <class C2> bool operator==(scoped_array<C2> const& p2) const; template <class C2> bool operator!=(scoped_array<C2> const& p2) const; // Disallow evil constructors scoped_array(const scoped_array&); void operator=(const scoped_array&); }; } // namespace internal // We made these internal so that they would show up as such in the docs, // but we don't want to stick "internal::" in front of them everywhere. using internal::scoped_ptr; using internal::scoped_array; // =================================================================== // emulates google3/base/logging.h enum LogLevel { LOGLEVEL_INFO, // Informational. This is never actually used by // libprotobuf. LOGLEVEL_WARNING, // Warns about issues that, although not technically a // problem now, could cause problems in the future. For // example, a // warning will be printed when parsing a // message that is near the message size limit. LOGLEVEL_ERROR, // An error occurred which should never happen during // normal use. LOGLEVEL_FATAL, // An error occurred from which the library cannot // recover. This usually indicates a programming error // in the code which calls the library, especially when // compiled in debug mode. #ifdef NDEBUG LOGLEVEL_DFATAL = LOGLEVEL_ERROR #else LOGLEVEL_DFATAL = LOGLEVEL_FATAL #endif }; namespace internal { class LogFinisher; class LIBPROTOBUF_EXPORT LogMessage { public: LogMessage(LogLevel level, const char* filename, int line); ~LogMessage(); LogMessage& operator<<(const std::string& value); LogMessage& operator<<(const char* value); LogMessage& operator<<(char value); LogMessage& operator<<(int value); LogMessage& operator<<(uint value); LogMessage& operator<<(long value); LogMessage& operator<<(unsigned long value); LogMessage& operator<<(double value); private: friend class LogFinisher; void Finish(); LogLevel level_; const char* filename_; int line_; std::string message_; }; // Used to make the entire "LOG(BLAH) << etc." expression have a void return // type and print a newline after each message. class LIBPROTOBUF_EXPORT LogFinisher { public: void operator=(LogMessage& other); }; } // namespace internal // Undef everything in case we're being mixed with some other Google library // which already defined them itself. Presumably all Google libraries will // support the same syntax for these so it should not be a big deal if they // end up using our definitions instead. #undef GOOGLE_LOG #undef GOOGLE_LOG_IF #undef GOOGLE_CHECK #undef GOOGLE_CHECK_EQ #undef GOOGLE_CHECK_NE #undef GOOGLE_CHECK_LT #undef GOOGLE_CHECK_LE #undef GOOGLE_CHECK_GT #undef GOOGLE_CHECK_GE #undef GOOGLE_CHECK_NOTNULL #undef GOOGLE_DLOG #undef GOOGLE_DCHECK #undef GOOGLE_DCHECK_EQ #undef GOOGLE_DCHECK_NE #undef GOOGLE_DCHECK_LT #undef GOOGLE_DCHECK_LE #undef GOOGLE_DCHECK_GT #undef GOOGLE_DCHECK_GE #define GOOGLE_LOG(LEVEL) \ ::google::protobuf::internal::LogFinisher() = \ ::google::protobuf::internal::LogMessage( \ ::google::protobuf::LOGLEVEL_##LEVEL, __FILE__, __LINE__) #define GOOGLE_LOG_IF(LEVEL, CONDITION) \ !(CONDITION) ? (void)0 : GOOGLE_LOG(LEVEL) #define GOOGLE_CHECK(EXPRESSION) \ GOOGLE_LOG_IF(FATAL, !(EXPRESSION)) << "CHECK failed: " #EXPRESSION ": " #define GOOGLE_CHECK_EQ(A, B) GOOGLE_CHECK((A) == (B)) #define GOOGLE_CHECK_NE(A, B) GOOGLE_CHECK((A) != (B)) #define GOOGLE_CHECK_LT(A, B) GOOGLE_CHECK((A) < (B)) #define GOOGLE_CHECK_LE(A, B) GOOGLE_CHECK((A) <= (B)) #define GOOGLE_CHECK_GT(A, B) GOOGLE_CHECK((A) > (B)) #define GOOGLE_CHECK_GE(A, B) GOOGLE_CHECK((A) >= (B)) namespace internal { template<typename T> T* CheckNotNull(const char *file, int line, const char *name, T* val) { if (val == NULL) { GOOGLE_LOG(FATAL) << name; } return val; } } // namespace internal #define GOOGLE_CHECK_NOTNULL(A) \ internal::CheckNotNull(__FILE__, __LINE__, "'" #A "' must not be NULL", (A)) #ifdef NDEBUG #define GOOGLE_DLOG GOOGLE_LOG_IF(INFO, false) #define GOOGLE_DCHECK(EXPRESSION) while(false) GOOGLE_CHECK(EXPRESSION) #define GOOGLE_DCHECK_EQ(A, B) GOOGLE_DCHECK((A) == (B)) #define GOOGLE_DCHECK_NE(A, B) GOOGLE_DCHECK((A) != (B)) #define GOOGLE_DCHECK_LT(A, B) GOOGLE_DCHECK((A) < (B)) #define GOOGLE_DCHECK_LE(A, B) GOOGLE_DCHECK((A) <= (B)) #define GOOGLE_DCHECK_GT(A, B) GOOGLE_DCHECK((A) > (B)) #define GOOGLE_DCHECK_GE(A, B) GOOGLE_DCHECK((A) >= (B)) #else // NDEBUG #define GOOGLE_DLOG GOOGLE_LOG #define GOOGLE_DCHECK GOOGLE_CHECK #define GOOGLE_DCHECK_EQ GOOGLE_CHECK_EQ #define GOOGLE_DCHECK_NE GOOGLE_CHECK_NE #define GOOGLE_DCHECK_LT GOOGLE_CHECK_LT #define GOOGLE_DCHECK_LE GOOGLE_CHECK_LE #define GOOGLE_DCHECK_GT GOOGLE_CHECK_GT #define GOOGLE_DCHECK_GE GOOGLE_CHECK_GE #endif // !NDEBUG typedef void LogHandler(LogLevel level, const char* filename, int line, const std::string& message); // The protobuf library sometimes writes warning and error messages to // stderr. These messages are primarily useful for developers, but may // also help end users figure out a problem. If you would prefer that // these messages be sent somewhere other than stderr, call SetLogHandler() // to set your own handler. This returns the old handler. Set the handler // to NULL to ignore log messages (but see also LogSilencer, below). // // Obviously, SetLogHandler is not thread-safe. You should only call it // at initialization time, and probably not from library code. If you // simply want to suppress log messages temporarily (e.g. because you // have some code that tends to trigger them frequently and you know // the warnings are not important to you), use the LogSilencer class // below. LIBPROTOBUF_EXPORT LogHandler* SetLogHandler(LogHandler* new_func); // Create a LogSilencer if you want to temporarily suppress all log // messages. As long as any LogSilencer objects exist, non-fatal // log messages will be discarded (the current LogHandler will *not* // be called). Constructing a LogSilencer is thread-safe. You may // accidentally suppress log messages occurring in another thread, but // since messages are generally for debugging purposes only, this isn't // a big deal. If you want to intercept log messages, use SetLogHandler(). class LIBPROTOBUF_EXPORT LogSilencer { public: LogSilencer(); ~LogSilencer(); }; // =================================================================== // emulates google3/base/callback.h // Abstract interface for a callback. When calling an RPC, you must provide // a Closure to call when the procedure completes. See the Service interface // in service.h. // // To automatically construct a Closure which calls a particular function or // method with a particular set of parameters, use the NewCallback() function. // Example: // void FooDone(const FooResponse* response) { // ... // } // // void CallFoo() { // ... // // When done, call FooDone() and pass it a pointer to the response. // Closure* callback = NewCallback(&FooDone, response); // // Make the call. // service->Foo(controller, request, response, callback); // } // // Example that calls a method: // class Handler { // public: // ... // // void FooDone(const FooResponse* response) { // ... // } // // void CallFoo() { // ... // // When done, call FooDone() and pass it a pointer to the response. // Closure* callback = NewCallback(this, &Handler::FooDone, response); // // Make the call. // service->Foo(controller, request, response, callback); // } // }; // // Currently NewCallback() supports binding zero, one, or two arguments. // // Callbacks created with NewCallback() automatically delete themselves when // executed. They should be used when a callback is to be called exactly // once (usually the case with RPC callbacks). If a callback may be called // a different number of times (including zero), create it with // NewPermanentCallback() instead. You are then responsible for deleting the // callback (using the "delete" keyword as normal). // // Note that NewCallback() is a bit touchy regarding argument types. Generally, // the values you provide for the parameter bindings must exactly match the // types accepted by the callback function. For example: // void Foo(string s); // NewCallback(&Foo, "foo"); // WON'T WORK: const char* != string // NewCallback(&Foo, string("foo")); // WORKS // Also note that the arguments cannot be references: // void Foo(const string& s); // string my_str; // NewCallback(&Foo, my_str); // WON'T WORK: Can't use referecnes. // However, correctly-typed pointers will work just fine. class LIBPROTOBUF_EXPORT Closure { public: Closure() {} virtual ~Closure(); virtual void Run() = 0; private: GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Closure); }; namespace internal { class LIBPROTOBUF_EXPORT FunctionClosure0 : public Closure { public: typedef void (*FunctionType)(); FunctionClosure0(FunctionType function, bool self_deleting) : function_(function), self_deleting_(self_deleting) {} ~FunctionClosure0(); void Run() { bool needs_delete = self_deleting_; // read in case callback deletes function_(); if (needs_delete) delete this; } private: FunctionType function_; bool self_deleting_; }; template <typename Class> class MethodClosure0 : public Closure { public: typedef void (Class::*MethodType)(); MethodClosure0(Class* object, MethodType method, bool self_deleting) : object_(object), method_(method), self_deleting_(self_deleting) {} ~MethodClosure0() {} void Run() { bool needs_delete = self_deleting_; // read in case callback deletes (object_->*method_)(); if (needs_delete) delete this; } private: Class* object_; MethodType method_; bool self_deleting_; }; template <typename Arg1> class FunctionClosure1 : public Closure { public: typedef void (*FunctionType)(Arg1 arg1); FunctionClosure1(FunctionType function, bool self_deleting, Arg1 arg1) : function_(function), self_deleting_(self_deleting), arg1_(arg1) {} ~FunctionClosure1() {} void Run() { bool needs_delete = self_deleting_; // read in case callback deletes function_(arg1_); if (needs_delete) delete this; } private: FunctionType function_; bool self_deleting_; Arg1 arg1_; }; template <typename Class, typename Arg1> class MethodClosure1 : public Closure { public: typedef void (Class::*MethodType)(Arg1 arg1); MethodClosure1(Class* object, MethodType method, bool self_deleting, Arg1 arg1) : object_(object), method_(method), self_deleting_(self_deleting), arg1_(arg1) {} ~MethodClosure1() {} void Run() { bool needs_delete = self_deleting_; // read in case callback deletes (object_->*method_)(arg1_); if (needs_delete) delete this; } private: Class* object_; MethodType method_; bool self_deleting_; Arg1 arg1_; }; template <typename Arg1, typename Arg2> class FunctionClosure2 : public Closure { public: typedef void (*FunctionType)(Arg1 arg1, Arg2 arg2); FunctionClosure2(FunctionType function, bool self_deleting, Arg1 arg1, Arg2 arg2) : function_(function), self_deleting_(self_deleting), arg1_(arg1), arg2_(arg2) {} ~FunctionClosure2() {} void Run() { bool needs_delete = self_deleting_; // read in case callback deletes function_(arg1_, arg2_); if (needs_delete) delete this; } private: FunctionType function_; bool self_deleting_; Arg1 arg1_; Arg2 arg2_; }; template <typename Class, typename Arg1, typename Arg2> class MethodClosure2 : public Closure { public: typedef void (Class::*MethodType)(Arg1 arg1, Arg2 arg2); MethodClosure2(Class* object, MethodType method, bool self_deleting, Arg1 arg1, Arg2 arg2) : object_(object), method_(method), self_deleting_(self_deleting), arg1_(arg1), arg2_(arg2) {} ~MethodClosure2() {} void Run() { bool needs_delete = self_deleting_; // read in case callback deletes (object_->*method_)(arg1_, arg2_); if (needs_delete) delete this; } private: Class* object_; MethodType method_; bool self_deleting_; Arg1 arg1_; Arg2 arg2_; }; } // namespace internal // See Closure. inline Closure* NewCallback(void (*function)()) { return new internal::FunctionClosure0(function, true); } // See Closure. inline Closure* NewPermanentCallback(void (*function)()) { return new internal::FunctionClosure0(function, false); } // See Closure. template <typename Class> inline Closure* NewCallback(Class* object, void (Class::*method)()) { return new internal::MethodClosure0<Class>(object, method, true); } // See Closure. template <typename Class> inline Closure* NewPermanentCallback(Class* object, void (Class::*method)()) { return new internal::MethodClosure0<Class>(object, method, false); } // See Closure. template <typename Arg1> inline Closure* NewCallback(void (*function)(Arg1), Arg1 arg1) { return new internal::FunctionClosure1<Arg1>(function, true, arg1); } // See Closure. template <typename Arg1> inline Closure* NewPermanentCallback(void (*function)(Arg1), Arg1 arg1) { return new internal::FunctionClosure1<Arg1>(function, false, arg1); } // See Closure. template <typename Class, typename Arg1> inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1), Arg1 arg1) { return new internal::MethodClosure1<Class, Arg1>(object, method, true, arg1); } // See Closure. template <typename Class, typename Arg1> inline Closure* NewPermanentCallback(Class* object, void (Class::*method)(Arg1), Arg1 arg1) { return new internal::MethodClosure1<Class, Arg1>(object, method, false, arg1); } // See Closure. template <typename Arg1, typename Arg2> inline Closure* NewCallback(void (*function)(Arg1, Arg2), Arg1 arg1, Arg2 arg2) { return new internal::FunctionClosure2<Arg1, Arg2>( function, true, arg1, arg2); } // See Closure. template <typename Arg1, typename Arg2> inline Closure* NewPermanentCallback(void (*function)(Arg1, Arg2), Arg1 arg1, Arg2 arg2) { return new internal::FunctionClosure2<Arg1, Arg2>( function, false, arg1, arg2); } // See Closure. template <typename Class, typename Arg1, typename Arg2> inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1, Arg2), Arg1 arg1, Arg2 arg2) { return new internal::MethodClosure2<Class, Arg1, Arg2>( object, method, true, arg1, arg2); } // See Closure. template <typename Class, typename Arg1, typename Arg2> inline Closure* NewPermanentCallback( Class* object, void (Class::*method)(Arg1, Arg2), Arg1 arg1, Arg2 arg2) { return new internal::MethodClosure2<Class, Arg1, Arg2>( object, method, false, arg1, arg2); } // A function which does nothing. Useful for creating no-op callbacks, e.g.: // Closure* nothing = NewCallback(&DoNothing); void LIBPROTOBUF_EXPORT DoNothing(); // =================================================================== // emulates google3/base/mutex.h namespace internal { // A Mutex is a non-reentrant (aka non-recursive) mutex. At most one thread T // may hold a mutex at a given time. If T attempts to Lock() the same Mutex // while holding it, T will deadlock. class LIBPROTOBUF_EXPORT Mutex { public: // Create a Mutex that is not held by anybody. Mutex(); // Destructor ~Mutex(); // Block if necessary until this Mutex is free, then acquire it exclusively. void Lock(); // Release this Mutex. Caller must hold it exclusively. void Unlock(); // Crash if this Mutex is not held exclusively by this thread. // May fail to crash when it should; will never crash when it should not. void AssertHeld(); private: struct Internal; Internal* mInternal; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Mutex); }; // MutexLock(mu) acquires mu when constructed and releases it when destroyed. class LIBPROTOBUF_EXPORT MutexLock { public: explicit MutexLock(Mutex *mu) : mu_(mu) { this->mu_->Lock(); } ~MutexLock() { this->mu_->Unlock(); } private: Mutex *const mu_; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLock); }; // TODO(kenton): Implement these? Hard to implement portably. typedef MutexLock ReaderMutexLock; typedef MutexLock WriterMutexLock; // MutexLockMaybe is like MutexLock, but is a no-op when mu is NULL. class LIBPROTOBUF_EXPORT MutexLockMaybe { public: explicit MutexLockMaybe(Mutex *mu) : mu_(mu) { if (this->mu_ != NULL) { this->mu_->Lock(); } } ~MutexLockMaybe() { if (this->mu_ != NULL) { this->mu_->Unlock(); } } private: Mutex *const mu_; GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLockMaybe); }; } // namespace internal // We made these internal so that they would show up as such in the docs, // but we don't want to stick "internal::" in front of them everywhere. using internal::Mutex; using internal::MutexLock; using internal::ReaderMutexLock; using internal::WriterMutexLock; using internal::MutexLockMaybe; // =================================================================== // from google3/util/utf8/public/unilib.h namespace internal { // Checks if the buffer contains structurally-valid UTF-8. Implemented in // structurally_valid.cc. LIBPROTOBUF_EXPORT bool IsStructurallyValidUTF8(const char* buf, int len); } // namespace internal // =================================================================== // from google3/util/endian/endian.h LIBPROTOBUF_EXPORT uint32 ghtonl(uint32 x); // =================================================================== // Shutdown support. // Shut down the entire protocol buffers library, deleting all static-duration // objects allocated by the library or by generated .pb.cc files. // // There are two reasons you might want to call this: // * You use a draconian definition of "memory leak" in which you expect // every single malloc() to have a corresponding free(), even for objects // which live until program exit. // * You are writing a dynamically-loaded library which needs to clean up // after itself when the library is unloaded. // // It is safe to call this multiple times. However, it is not safe to use // any other part of the protocol buffers library after // ShutdownProtobufLibrary() has been called. LIBPROTOBUF_EXPORT void ShutdownProtobufLibrary(); namespace internal { // Register a function to be called when ShutdownProtocolBuffers() is called. LIBPROTOBUF_EXPORT void OnShutdown(void (*func)()); } // namespace internal #if PROTOBUF_USE_EXCEPTIONS class FatalException : public std::exception { public: FatalException(const char* filename, int line, const std::string& message) : filename_(filename), line_(line), message_(message) {} virtual ~FatalException() throw(); virtual const char* what() const throw(); const char* filename() const { return filename_; } int line() const { return line_; } const std::string& message() const { return message_; } private: const char* filename_; const int line_; const std::string message_; }; #endif // This is at the end of the file instead of the beginning to work around a bug // in some versions of MSVC. using namespace std; // Don't do this at home, kids. } // namespace protobuf } // namespace google #endif // GOOGLE_PROTOBUF_COMMON_H__