/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "metrics_collector.h" #include <sysexits.h> #include <time.h> #include <memory> #include <base/bind.h> #include <base/files/file_path.h> #include <base/files/file_util.h> #include <base/hash.h> #include <base/logging.h> #include <base/strings/string_number_conversions.h> #include <base/strings/string_split.h> #include <base/strings/string_util.h> #include <base/strings/stringprintf.h> #include <brillo/binder_watcher.h> #include <brillo/osrelease_reader.h> #include "constants.h" #include "metrics_collector_service_impl.h" using base::FilePath; using base::StringPrintf; using base::Time; using base::TimeDelta; using base::TimeTicks; using chromeos_metrics::PersistentInteger; using std::map; using std::string; using std::vector; namespace { const int kSecondsPerMinute = 60; const int kMinutesPerHour = 60; const int kHoursPerDay = 24; const int kMinutesPerDay = kHoursPerDay * kMinutesPerHour; const int kSecondsPerDay = kSecondsPerMinute * kMinutesPerDay; const int kDaysPerWeek = 7; const int kSecondsPerWeek = kSecondsPerDay * kDaysPerWeek; // Interval between calls to UpdateStats(). const uint32_t kUpdateStatsIntervalMs = 300000; const char kKernelCrashDetectedFile[] = "/data/misc/crash_reporter/run/kernel-crash-detected"; const char kUncleanShutdownDetectedFile[] = "/var/run/unclean-shutdown-detected"; const int kMetricMeminfoInterval = 30; // seconds const char kMeminfoFileName[] = "/proc/meminfo"; const char kVmStatFileName[] = "/proc/vmstat"; const char kWeaveComponent[] = "metrics"; const char kWeaveTrait[] = "_metrics"; } // namespace // Zram sysfs entries. const char MetricsCollector::kComprDataSizeName[] = "compr_data_size"; const char MetricsCollector::kOrigDataSizeName[] = "orig_data_size"; const char MetricsCollector::kZeroPagesName[] = "zero_pages"; // Memory use stats collection intervals. We collect some memory use interval // at these intervals after boot, and we stop collecting after the last one, // with the assumption that in most cases the memory use won't change much // after that. static const int kMemuseIntervals[] = { 1 * kSecondsPerMinute, // 1 minute mark 4 * kSecondsPerMinute, // 5 minute mark 25 * kSecondsPerMinute, // 0.5 hour mark 120 * kSecondsPerMinute, // 2.5 hour mark 600 * kSecondsPerMinute, // 12.5 hour mark }; MetricsCollector::MetricsCollector() : memuse_final_time_(0), memuse_interval_index_(0) {} MetricsCollector::~MetricsCollector() { } // static double MetricsCollector::GetActiveTime() { struct timespec ts; int r = clock_gettime(CLOCK_MONOTONIC, &ts); if (r < 0) { PLOG(WARNING) << "clock_gettime(CLOCK_MONOTONIC) failed"; return 0; } else { return ts.tv_sec + static_cast<double>(ts.tv_nsec) / (1000 * 1000 * 1000); } } int MetricsCollector::Run() { if (CheckSystemCrash(kKernelCrashDetectedFile)) { ProcessKernelCrash(); } if (CheckSystemCrash(kUncleanShutdownDetectedFile)) { ProcessUncleanShutdown(); } // On OS version change, clear version stats (which are reported daily). int32_t version = GetOsVersionHash(); if (version_cycle_->Get() != version) { version_cycle_->Set(version); kernel_crashes_version_count_->Set(0); version_cumulative_active_use_->Set(0); version_cumulative_cpu_use_->Set(0); } // Start metricscollectorservice android::sp<BnMetricsCollectorServiceImpl> metrics_collector_service = new BnMetricsCollectorServiceImpl(this); android::status_t status = android::defaultServiceManager()->addService( metrics_collector_service->getInterfaceDescriptor(), metrics_collector_service); CHECK(status == android::OK) << "failed to register service metricscollectorservice"; // Watch Binder events in the main loop brillo::BinderWatcher binder_watcher; CHECK(binder_watcher.Init()) << "Binder FD watcher init failed"; return brillo::Daemon::Run(); } uint32_t MetricsCollector::GetOsVersionHash() { brillo::OsReleaseReader reader; reader.Load(); string version; if (!reader.GetString(metrics::kProductVersion, &version)) { LOG(ERROR) << "failed to read the product version."; version = metrics::kDefaultVersion; } uint32_t version_hash = base::Hash(version); if (testing_) { version_hash = 42; // return any plausible value for the hash } return version_hash; } void MetricsCollector::Init(bool testing, MetricsLibraryInterface* metrics_lib, const string& diskstats_path, const base::FilePath& private_metrics_directory, const base::FilePath& shared_metrics_directory) { CHECK(metrics_lib); testing_ = testing; shared_metrics_directory_ = shared_metrics_directory; metrics_lib_ = metrics_lib; daily_active_use_.reset(new PersistentInteger("Platform.UseTime.PerDay", private_metrics_directory)); version_cumulative_active_use_.reset(new PersistentInteger( "Platform.CumulativeUseTime", private_metrics_directory)); version_cumulative_cpu_use_.reset(new PersistentInteger( "Platform.CumulativeCpuTime", private_metrics_directory)); kernel_crash_interval_.reset(new PersistentInteger( "Platform.KernelCrashInterval", private_metrics_directory)); unclean_shutdown_interval_.reset(new PersistentInteger( "Platform.UncleanShutdownInterval", private_metrics_directory)); user_crash_interval_.reset(new PersistentInteger("Platform.UserCrashInterval", private_metrics_directory)); any_crashes_daily_count_.reset(new PersistentInteger( "Platform.AnyCrashes.PerDay", private_metrics_directory)); any_crashes_weekly_count_.reset(new PersistentInteger( "Platform.AnyCrashes.PerWeek", private_metrics_directory)); user_crashes_daily_count_.reset(new PersistentInteger( "Platform.UserCrashes.PerDay", private_metrics_directory)); user_crashes_weekly_count_.reset(new PersistentInteger( "Platform.UserCrashes.PerWeek", private_metrics_directory)); kernel_crashes_daily_count_.reset(new PersistentInteger( "Platform.KernelCrashes.PerDay", private_metrics_directory)); kernel_crashes_weekly_count_.reset(new PersistentInteger( "Platform.KernelCrashes.PerWeek", private_metrics_directory)); kernel_crashes_version_count_.reset(new PersistentInteger( "Platform.KernelCrashesSinceUpdate", private_metrics_directory)); unclean_shutdowns_daily_count_.reset(new PersistentInteger( "Platform.UncleanShutdown.PerDay", private_metrics_directory)); unclean_shutdowns_weekly_count_.reset(new PersistentInteger( "Platform.UncleanShutdowns.PerWeek", private_metrics_directory)); daily_cycle_.reset( new PersistentInteger("daily.cycle", private_metrics_directory)); weekly_cycle_.reset( new PersistentInteger("weekly.cycle", private_metrics_directory)); version_cycle_.reset( new PersistentInteger("version.cycle", private_metrics_directory)); disk_usage_collector_.reset(new DiskUsageCollector(metrics_lib_)); averaged_stats_collector_.reset( new AveragedStatisticsCollector(metrics_lib_, diskstats_path, kVmStatFileName)); cpu_usage_collector_.reset(new CpuUsageCollector(metrics_lib_)); } int MetricsCollector::OnInit() { int return_code = brillo::Daemon::OnInit(); if (return_code != EX_OK) return return_code; StatsReporterInit(); // Start collecting meminfo stats. ScheduleMeminfoCallback(kMetricMeminfoInterval); memuse_final_time_ = GetActiveTime() + kMemuseIntervals[0]; ScheduleMemuseCallback(kMemuseIntervals[0]); if (testing_) return EX_OK; weave_service_subscription_ = weaved::Service::Connect( brillo::MessageLoop::current(), base::Bind(&MetricsCollector::OnWeaveServiceConnected, weak_ptr_factory_.GetWeakPtr())); latest_cpu_use_microseconds_ = cpu_usage_collector_->GetCumulativeCpuUse(); base::MessageLoop::current()->PostDelayedTask(FROM_HERE, base::Bind(&MetricsCollector::HandleUpdateStatsTimeout, weak_ptr_factory_.GetWeakPtr()), base::TimeDelta::FromMilliseconds(kUpdateStatsIntervalMs)); return EX_OK; } void MetricsCollector::OnWeaveServiceConnected( const std::weak_ptr<weaved::Service>& service) { service_ = service; auto weave_service = service_.lock(); if (!weave_service) return; weave_service->AddComponent(kWeaveComponent, {kWeaveTrait}, nullptr); weave_service->AddCommandHandler( kWeaveComponent, kWeaveTrait, "enableAnalyticsReporting", base::Bind(&MetricsCollector::OnEnableMetrics, weak_ptr_factory_.GetWeakPtr())); weave_service->AddCommandHandler( kWeaveComponent, kWeaveTrait, "disableAnalyticsReporting", base::Bind(&MetricsCollector::OnDisableMetrics, weak_ptr_factory_.GetWeakPtr())); UpdateWeaveState(); } void MetricsCollector::OnEnableMetrics( std::unique_ptr<weaved::Command> command) { if (base::WriteFile( shared_metrics_directory_.Append(metrics::kConsentFileName), "", 0) != 0) { PLOG(ERROR) << "Could not create the consent file."; command->Abort("metrics_error", "Could not create the consent file", nullptr); return; } UpdateWeaveState(); command->Complete({}, nullptr); } void MetricsCollector::OnDisableMetrics( std::unique_ptr<weaved::Command> command) { if (!base::DeleteFile( shared_metrics_directory_.Append(metrics::kConsentFileName), false)) { PLOG(ERROR) << "Could not delete the consent file."; command->Abort("metrics_error", "Could not delete the consent file", nullptr); return; } UpdateWeaveState(); command->Complete({}, nullptr); } void MetricsCollector::UpdateWeaveState() { auto weave_service = service_.lock(); if (!weave_service) return; std::string enabled = metrics_lib_->AreMetricsEnabled() ? "enabled" : "disabled"; if (!weave_service->SetStateProperty(kWeaveComponent, kWeaveTrait, "analyticsReportingState", *brillo::ToValue(enabled), nullptr)) { LOG(ERROR) << "failed to update weave's state"; } } void MetricsCollector::ProcessUserCrash() { // Counts the active time up to now. UpdateStats(TimeTicks::Now(), Time::Now()); // Reports the active use time since the last crash and resets it. SendAndResetCrashIntervalSample(user_crash_interval_); any_crashes_daily_count_->Add(1); any_crashes_weekly_count_->Add(1); user_crashes_daily_count_->Add(1); user_crashes_weekly_count_->Add(1); } void MetricsCollector::ProcessKernelCrash() { // Counts the active time up to now. UpdateStats(TimeTicks::Now(), Time::Now()); // Reports the active use time since the last crash and resets it. SendAndResetCrashIntervalSample(kernel_crash_interval_); any_crashes_daily_count_->Add(1); any_crashes_weekly_count_->Add(1); kernel_crashes_daily_count_->Add(1); kernel_crashes_weekly_count_->Add(1); kernel_crashes_version_count_->Add(1); } void MetricsCollector::ProcessUncleanShutdown() { // Counts the active time up to now. UpdateStats(TimeTicks::Now(), Time::Now()); // Reports the active use time since the last crash and resets it. SendAndResetCrashIntervalSample(unclean_shutdown_interval_); unclean_shutdowns_daily_count_->Add(1); unclean_shutdowns_weekly_count_->Add(1); any_crashes_daily_count_->Add(1); any_crashes_weekly_count_->Add(1); } bool MetricsCollector::CheckSystemCrash(const string& crash_file) { FilePath crash_detected(crash_file); if (!base::PathExists(crash_detected)) return false; // Deletes the crash-detected file so that the daemon doesn't report // another kernel crash in case it's restarted. base::DeleteFile(crash_detected, false); // not recursive return true; } void MetricsCollector::StatsReporterInit() { disk_usage_collector_->Schedule(); cpu_usage_collector_->Init(); cpu_usage_collector_->Schedule(); // Don't start a collection cycle during the first run to avoid delaying the // boot. averaged_stats_collector_->ScheduleWait(); } void MetricsCollector::ScheduleMeminfoCallback(int wait) { if (testing_) { return; } base::TimeDelta waitDelta = base::TimeDelta::FromSeconds(wait); base::MessageLoop::current()->PostDelayedTask(FROM_HERE, base::Bind(&MetricsCollector::MeminfoCallback, weak_ptr_factory_.GetWeakPtr(), waitDelta), waitDelta); } void MetricsCollector::MeminfoCallback(base::TimeDelta wait) { string meminfo_raw; const FilePath meminfo_path(kMeminfoFileName); if (!base::ReadFileToString(meminfo_path, &meminfo_raw)) { LOG(WARNING) << "cannot read " << meminfo_path.value().c_str(); return; } // Make both calls even if the first one fails. if (ProcessMeminfo(meminfo_raw)) { base::MessageLoop::current()->PostDelayedTask(FROM_HERE, base::Bind(&MetricsCollector::MeminfoCallback, weak_ptr_factory_.GetWeakPtr(), wait), wait); } } // static bool MetricsCollector::ReadFileToUint64(const base::FilePath& path, uint64_t* value) { std::string content; if (!base::ReadFileToString(path, &content)) { PLOG(WARNING) << "cannot read " << path.MaybeAsASCII(); return false; } // Remove final newline. base::TrimWhitespaceASCII(content, base::TRIM_TRAILING, &content); if (!base::StringToUint64(content, value)) { LOG(WARNING) << "invalid integer: " << content; return false; } return true; } bool MetricsCollector::ReportZram(const base::FilePath& zram_dir) { // Data sizes are in bytes. |zero_pages| is in number of pages. uint64_t compr_data_size, orig_data_size, zero_pages; const size_t page_size = 4096; if (!ReadFileToUint64(zram_dir.Append(kComprDataSizeName), &compr_data_size) || !ReadFileToUint64(zram_dir.Append(kOrigDataSizeName), &orig_data_size) || !ReadFileToUint64(zram_dir.Append(kZeroPagesName), &zero_pages)) { return false; } // |orig_data_size| does not include zero-filled pages. orig_data_size += zero_pages * page_size; const int compr_data_size_mb = compr_data_size >> 20; const int savings_mb = (orig_data_size - compr_data_size) >> 20; const int zero_ratio_percent = zero_pages * page_size * 100 / orig_data_size; // Report compressed size in megabytes. 100 MB or less has little impact. SendSample("Platform.ZramCompressedSize", compr_data_size_mb, 100, 4000, 50); SendSample("Platform.ZramSavings", savings_mb, 100, 4000, 50); // The compression ratio is multiplied by 100 for better resolution. The // ratios of interest are between 1 and 6 (100% and 600% as reported). We // don't want samples when very little memory is being compressed. if (compr_data_size_mb >= 1) { SendSample("Platform.ZramCompressionRatioPercent", orig_data_size * 100 / compr_data_size, 100, 600, 50); } // The values of interest for zero_pages are between 1MB and 1GB. The units // are number of pages. SendSample("Platform.ZramZeroPages", zero_pages, 256, 256 * 1024, 50); SendSample("Platform.ZramZeroRatioPercent", zero_ratio_percent, 1, 50, 50); return true; } bool MetricsCollector::ProcessMeminfo(const string& meminfo_raw) { static const MeminfoRecord fields_array[] = { { "MemTotal", "MemTotal" }, // SPECIAL CASE: total system memory { "MemFree", "MemFree" }, { "Buffers", "Buffers" }, { "Cached", "Cached" }, // { "SwapCached", "SwapCached" }, { "Active", "Active" }, { "Inactive", "Inactive" }, { "ActiveAnon", "Active(anon)" }, { "InactiveAnon", "Inactive(anon)" }, { "ActiveFile" , "Active(file)" }, { "InactiveFile", "Inactive(file)" }, { "Unevictable", "Unevictable", kMeminfoOp_HistLog }, // { "Mlocked", "Mlocked" }, { "SwapTotal", "SwapTotal", kMeminfoOp_SwapTotal }, { "SwapFree", "SwapFree", kMeminfoOp_SwapFree }, // { "Dirty", "Dirty" }, // { "Writeback", "Writeback" }, { "AnonPages", "AnonPages" }, { "Mapped", "Mapped" }, { "Shmem", "Shmem", kMeminfoOp_HistLog }, { "Slab", "Slab", kMeminfoOp_HistLog }, // { "SReclaimable", "SReclaimable" }, // { "SUnreclaim", "SUnreclaim" }, }; vector<MeminfoRecord> fields(fields_array, fields_array + arraysize(fields_array)); if (!FillMeminfo(meminfo_raw, &fields)) { return false; } int total_memory = fields[0].value; if (total_memory == 0) { // this "cannot happen" LOG(WARNING) << "borked meminfo parser"; return false; } int swap_total = 0; int swap_free = 0; // Send all fields retrieved, except total memory. for (unsigned int i = 1; i < fields.size(); i++) { string metrics_name = base::StringPrintf("Platform.Meminfo%s", fields[i].name); int percent; switch (fields[i].op) { case kMeminfoOp_HistPercent: // report value as percent of total memory percent = fields[i].value * 100 / total_memory; SendLinearSample(metrics_name, percent, 100, 101); break; case kMeminfoOp_HistLog: // report value in kbytes, log scale, 4Gb max SendSample(metrics_name, fields[i].value, 1, 4 * 1000 * 1000, 100); break; case kMeminfoOp_SwapTotal: swap_total = fields[i].value; case kMeminfoOp_SwapFree: swap_free = fields[i].value; break; } } if (swap_total > 0) { int swap_used = swap_total - swap_free; int swap_used_percent = swap_used * 100 / swap_total; SendSample("Platform.MeminfoSwapUsed", swap_used, 1, 8 * 1000 * 1000, 100); SendLinearSample("Platform.MeminfoSwapUsed.Percent", swap_used_percent, 100, 101); } return true; } bool MetricsCollector::FillMeminfo(const string& meminfo_raw, vector<MeminfoRecord>* fields) { vector<std::string> lines = base::SplitString(meminfo_raw, "\n", base::KEEP_WHITESPACE, base::SPLIT_WANT_NONEMPTY); // Scan meminfo output and collect field values. Each field name has to // match a meminfo entry (case insensitive) after removing non-alpha // characters from the entry. size_t ifield = 0; for (size_t iline = 0; iline < lines.size() && ifield < fields->size(); iline++) { vector<string> tokens = base::SplitString(lines[iline], ": ", base::KEEP_WHITESPACE, base::SPLIT_WANT_NONEMPTY); if (strcmp((*fields)[ifield].match, tokens[0].c_str()) == 0) { // Name matches. Parse value and save. if (!base::StringToInt(tokens[1], &(*fields)[ifield].value)) { LOG(WARNING) << "Cound not convert " << tokens[1] << " to int"; return false; } ifield++; } } if (ifield < fields->size()) { // End of input reached while scanning. LOG(WARNING) << "cannot find field " << (*fields)[ifield].match << " and following"; return false; } return true; } void MetricsCollector::ScheduleMemuseCallback(double interval) { if (testing_) { return; } base::MessageLoop::current()->PostDelayedTask(FROM_HERE, base::Bind(&MetricsCollector::MemuseCallback, weak_ptr_factory_.GetWeakPtr()), base::TimeDelta::FromSeconds(interval)); } void MetricsCollector::MemuseCallback() { // Since we only care about active time (i.e. uptime minus sleep time) but // the callbacks are driven by real time (uptime), we check if we should // reschedule this callback due to intervening sleep periods. double now = GetActiveTime(); // Avoid intervals of less than one second. double remaining_time = ceil(memuse_final_time_ - now); if (remaining_time > 0) { ScheduleMemuseCallback(remaining_time); } else { // Report stats and advance the measurement interval unless there are // errors or we've completed the last interval. if (MemuseCallbackWork() && memuse_interval_index_ < arraysize(kMemuseIntervals)) { double interval = kMemuseIntervals[memuse_interval_index_++]; memuse_final_time_ = now + interval; ScheduleMemuseCallback(interval); } } } bool MetricsCollector::MemuseCallbackWork() { string meminfo_raw; const FilePath meminfo_path(kMeminfoFileName); if (!base::ReadFileToString(meminfo_path, &meminfo_raw)) { LOG(WARNING) << "cannot read " << meminfo_path.value().c_str(); return false; } return ProcessMemuse(meminfo_raw); } bool MetricsCollector::ProcessMemuse(const string& meminfo_raw) { static const MeminfoRecord fields_array[] = { { "MemTotal", "MemTotal" }, // SPECIAL CASE: total system memory { "ActiveAnon", "Active(anon)" }, { "InactiveAnon", "Inactive(anon)" }, }; vector<MeminfoRecord> fields(fields_array, fields_array + arraysize(fields_array)); if (!FillMeminfo(meminfo_raw, &fields)) { return false; } int total = fields[0].value; int active_anon = fields[1].value; int inactive_anon = fields[2].value; if (total == 0) { // this "cannot happen" LOG(WARNING) << "borked meminfo parser"; return false; } string metrics_name = base::StringPrintf("Platform.MemuseAnon%d", memuse_interval_index_); SendLinearSample(metrics_name, (active_anon + inactive_anon) * 100 / total, 100, 101); return true; } void MetricsCollector::SendSample(const string& name, int sample, int min, int max, int nbuckets) { metrics_lib_->SendToUMA(name, sample, min, max, nbuckets); } void MetricsCollector::SendKernelCrashesCumulativeCountStats() { // Report the number of crashes for this OS version, but don't clear the // counter. It is cleared elsewhere on version change. int64_t crashes_count = kernel_crashes_version_count_->Get(); SendSample(kernel_crashes_version_count_->Name(), crashes_count, 1, // value of first bucket 500, // value of last bucket 100); // number of buckets int64_t cpu_use_ms = version_cumulative_cpu_use_->Get(); SendSample(version_cumulative_cpu_use_->Name(), cpu_use_ms / 1000, // stat is in seconds 1, // device may be used very little... 8 * 1000 * 1000, // ... or a lot (a little over 90 days) 100); // On the first run after an autoupdate, cpu_use_ms and active_use_seconds // can be zero. Avoid division by zero. if (cpu_use_ms > 0) { // Send the crash frequency since update in number of crashes per CPU year. SendSample("Logging.KernelCrashesPerCpuYear", crashes_count * kSecondsPerDay * 365 * 1000 / cpu_use_ms, 1, 1000 * 1000, // about one crash every 30s of CPU time 100); } int64_t active_use_seconds = version_cumulative_active_use_->Get(); if (active_use_seconds > 0) { SendSample(version_cumulative_active_use_->Name(), active_use_seconds, 1, // device may be used very little... 8 * 1000 * 1000, // ... or a lot (about 90 days) 100); // Same as above, but per year of active time. SendSample("Logging.KernelCrashesPerActiveYear", crashes_count * kSecondsPerDay * 365 / active_use_seconds, 1, 1000 * 1000, // about one crash every 30s of active time 100); } } void MetricsCollector::SendAndResetDailyUseSample( const unique_ptr<PersistentInteger>& use) { SendSample(use->Name(), use->GetAndClear(), 1, // value of first bucket kSecondsPerDay, // value of last bucket 50); // number of buckets } void MetricsCollector::SendAndResetCrashIntervalSample( const unique_ptr<PersistentInteger>& interval) { SendSample(interval->Name(), interval->GetAndClear(), 1, // value of first bucket 4 * kSecondsPerWeek, // value of last bucket 50); // number of buckets } void MetricsCollector::SendAndResetCrashFrequencySample( const unique_ptr<PersistentInteger>& frequency) { SendSample(frequency->Name(), frequency->GetAndClear(), 1, // value of first bucket 100, // value of last bucket 50); // number of buckets } void MetricsCollector::SendLinearSample(const string& name, int sample, int max, int nbuckets) { // TODO(semenzato): add a proper linear histogram to the Chrome external // metrics API. LOG_IF(FATAL, nbuckets != max + 1) << "unsupported histogram scale"; metrics_lib_->SendEnumToUMA(name, sample, max); } void MetricsCollector::UpdateStats(TimeTicks now_ticks, Time now_wall_time) { const int elapsed_seconds = (now_ticks - last_update_stats_time_).InSeconds(); daily_active_use_->Add(elapsed_seconds); version_cumulative_active_use_->Add(elapsed_seconds); user_crash_interval_->Add(elapsed_seconds); kernel_crash_interval_->Add(elapsed_seconds); TimeDelta cpu_use = cpu_usage_collector_->GetCumulativeCpuUse(); version_cumulative_cpu_use_->Add( (cpu_use - latest_cpu_use_microseconds_).InMilliseconds()); latest_cpu_use_microseconds_ = cpu_use; last_update_stats_time_ = now_ticks; const TimeDelta since_epoch = now_wall_time - Time::UnixEpoch(); const int day = since_epoch.InDays(); const int week = day / 7; if (daily_cycle_->Get() != day) { daily_cycle_->Set(day); SendAndResetDailyUseSample(daily_active_use_); SendAndResetCrashFrequencySample(any_crashes_daily_count_); SendAndResetCrashFrequencySample(user_crashes_daily_count_); SendAndResetCrashFrequencySample(kernel_crashes_daily_count_); SendAndResetCrashFrequencySample(unclean_shutdowns_daily_count_); SendKernelCrashesCumulativeCountStats(); } if (weekly_cycle_->Get() != week) { weekly_cycle_->Set(week); SendAndResetCrashFrequencySample(any_crashes_weekly_count_); SendAndResetCrashFrequencySample(user_crashes_weekly_count_); SendAndResetCrashFrequencySample(kernel_crashes_weekly_count_); SendAndResetCrashFrequencySample(unclean_shutdowns_weekly_count_); } } void MetricsCollector::HandleUpdateStatsTimeout() { UpdateStats(TimeTicks::Now(), Time::Now()); base::MessageLoop::current()->PostDelayedTask(FROM_HERE, base::Bind(&MetricsCollector::HandleUpdateStatsTimeout, weak_ptr_factory_.GetWeakPtr()), base::TimeDelta::FromMilliseconds(kUpdateStatsIntervalMs)); }