// // Copyright (C) 2015 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "update_engine/payload_generator/delta_diff_utils.h" #include <algorithm> #include <map> #include <base/files/file_util.h> #include <base/format_macros.h> #include <base/strings/stringprintf.h> #include "update_engine/common/hash_calculator.h" #include "update_engine/common/subprocess.h" #include "update_engine/common/utils.h" #include "update_engine/payload_generator/block_mapping.h" #include "update_engine/payload_generator/bzip.h" #include "update_engine/payload_generator/delta_diff_generator.h" #include "update_engine/payload_generator/extent_ranges.h" #include "update_engine/payload_generator/extent_utils.h" #include "update_engine/payload_generator/xz.h" using std::map; using std::string; using std::vector; namespace chromeos_update_engine { namespace { const char* const kBsdiffPath = "bsdiff"; const char* const kImgdiffPath = "imgdiff"; // The maximum destination size allowed for bsdiff. In general, bsdiff should // work for arbitrary big files, but the payload generation and payload // application requires a significant amount of RAM. We put a hard-limit of // 200 MiB that should not affect any released board, but will limit the // Chrome binary in ASan builders. const uint64_t kMaxBsdiffDestinationSize = 200 * 1024 * 1024; // bytes // The maximum destination size allowed for imgdiff. In general, imgdiff should // work for arbitrary big files, but the payload application is quite memory // intensive, so we limit these operations to 50 MiB. const uint64_t kMaxImgdiffDestinationSize = 50 * 1024 * 1024; // bytes // Process a range of blocks from |range_start| to |range_end| in the extent at // position |*idx_p| of |extents|. If |do_remove| is true, this range will be // removed, which may cause the extent to be trimmed, split or removed entirely. // The value of |*idx_p| is updated to point to the next extent to be processed. // Returns true iff the next extent to process is a new or updated one. bool ProcessExtentBlockRange(vector<Extent>* extents, size_t* idx_p, const bool do_remove, uint64_t range_start, uint64_t range_end) { size_t idx = *idx_p; uint64_t start_block = (*extents)[idx].start_block(); uint64_t num_blocks = (*extents)[idx].num_blocks(); uint64_t range_size = range_end - range_start; if (do_remove) { if (range_size == num_blocks) { // Remove the entire extent. extents->erase(extents->begin() + idx); } else if (range_end == num_blocks) { // Trim the end of the extent. (*extents)[idx].set_num_blocks(num_blocks - range_size); idx++; } else if (range_start == 0) { // Trim the head of the extent. (*extents)[idx].set_start_block(start_block + range_size); (*extents)[idx].set_num_blocks(num_blocks - range_size); } else { // Trim the middle, splitting the remainder into two parts. (*extents)[idx].set_num_blocks(range_start); Extent e; e.set_start_block(start_block + range_end); e.set_num_blocks(num_blocks - range_end); idx++; extents->insert(extents->begin() + idx, e); } } else if (range_end == num_blocks) { // Done with this extent. idx++; } else { return false; } *idx_p = idx; return true; } // Remove identical corresponding block ranges in |src_extents| and // |dst_extents|. Used for preventing moving of blocks onto themselves during // MOVE operations. The value of |total_bytes| indicates the actual length of // content; this may be slightly less than the total size of blocks, in which // case the last block is only partly occupied with data. Returns the total // number of bytes removed. size_t RemoveIdenticalBlockRanges(vector<Extent>* src_extents, vector<Extent>* dst_extents, const size_t total_bytes) { size_t src_idx = 0; size_t dst_idx = 0; uint64_t src_offset = 0, dst_offset = 0; bool new_src = true, new_dst = true; size_t removed_bytes = 0, nonfull_block_bytes; bool do_remove = false; while (src_idx < src_extents->size() && dst_idx < dst_extents->size()) { if (new_src) { src_offset = 0; new_src = false; } if (new_dst) { dst_offset = 0; new_dst = false; } do_remove = ((*src_extents)[src_idx].start_block() + src_offset == (*dst_extents)[dst_idx].start_block() + dst_offset); uint64_t src_num_blocks = (*src_extents)[src_idx].num_blocks(); uint64_t dst_num_blocks = (*dst_extents)[dst_idx].num_blocks(); uint64_t min_num_blocks = std::min(src_num_blocks - src_offset, dst_num_blocks - dst_offset); uint64_t prev_src_offset = src_offset; uint64_t prev_dst_offset = dst_offset; src_offset += min_num_blocks; dst_offset += min_num_blocks; new_src = ProcessExtentBlockRange(src_extents, &src_idx, do_remove, prev_src_offset, src_offset); new_dst = ProcessExtentBlockRange(dst_extents, &dst_idx, do_remove, prev_dst_offset, dst_offset); if (do_remove) removed_bytes += min_num_blocks * kBlockSize; } // If we removed the last block and this block is only partly used by file // content, deduct the unused portion from the total removed byte count. if (do_remove && (nonfull_block_bytes = total_bytes % kBlockSize)) removed_bytes -= kBlockSize - nonfull_block_bytes; return removed_bytes; } // Returns true if the given blob |data| contains gzip header magic. bool ContainsGZip(const brillo::Blob& data) { const uint8_t kGZipMagic[] = {0x1f, 0x8b, 0x08, 0x00}; return std::search(data.begin(), data.end(), std::begin(kGZipMagic), std::end(kGZipMagic)) != data.end(); } } // namespace namespace diff_utils { bool DeltaReadPartition(vector<AnnotatedOperation>* aops, const PartitionConfig& old_part, const PartitionConfig& new_part, ssize_t hard_chunk_blocks, size_t soft_chunk_blocks, const PayloadVersion& version, BlobFileWriter* blob_file) { ExtentRanges old_visited_blocks; ExtentRanges new_visited_blocks; TEST_AND_RETURN_FALSE(DeltaMovedAndZeroBlocks( aops, old_part.path, new_part.path, old_part.size / kBlockSize, new_part.size / kBlockSize, soft_chunk_blocks, version, blob_file, &old_visited_blocks, &new_visited_blocks)); map<string, vector<Extent>> old_files_map; if (old_part.fs_interface) { vector<FilesystemInterface::File> old_files; old_part.fs_interface->GetFiles(&old_files); for (const FilesystemInterface::File& file : old_files) old_files_map[file.name] = file.extents; } TEST_AND_RETURN_FALSE(new_part.fs_interface); vector<FilesystemInterface::File> new_files; new_part.fs_interface->GetFiles(&new_files); // The processing is very straightforward here, we generate operations for // every file (and pseudo-file such as the metadata) in the new filesystem // based on the file with the same name in the old filesystem, if any. // Files with overlapping data blocks (like hardlinks or filesystems with tail // packing or compression where the blocks store more than one file) are only // generated once in the new image, but are also used only once from the old // image due to some simplifications (see below). for (const FilesystemInterface::File& new_file : new_files) { // Ignore the files in the new filesystem without blocks. Symlinks with // data blocks (for example, symlinks bigger than 60 bytes in ext2) are // handled as normal files. We also ignore blocks that were already // processed by a previous file. vector<Extent> new_file_extents = FilterExtentRanges( new_file.extents, new_visited_blocks); new_visited_blocks.AddExtents(new_file_extents); if (new_file_extents.empty()) continue; LOG(INFO) << "Encoding file " << new_file.name << " (" << BlocksInExtents(new_file_extents) << " blocks)"; // We can't visit each dst image inode more than once, as that would // duplicate work. Here, we avoid visiting each source image inode // more than once. Technically, we could have multiple operations // that read the same blocks from the source image for diffing, but // we choose not to avoid complexity. Eventually we will move away // from using a graph/cycle detection/etc to generate diffs, and at that // time, it will be easy (non-complex) to have many operations read // from the same source blocks. At that time, this code can die. -adlr vector<Extent> old_file_extents = FilterExtentRanges( old_files_map[new_file.name], old_visited_blocks); old_visited_blocks.AddExtents(old_file_extents); TEST_AND_RETURN_FALSE(DeltaReadFile(aops, old_part.path, new_part.path, old_file_extents, new_file_extents, new_file.name, // operation name hard_chunk_blocks, version, blob_file)); } // Process all the blocks not included in any file. We provided all the unused // blocks in the old partition as available data. vector<Extent> new_unvisited = { ExtentForRange(0, new_part.size / kBlockSize)}; new_unvisited = FilterExtentRanges(new_unvisited, new_visited_blocks); if (new_unvisited.empty()) return true; vector<Extent> old_unvisited; if (old_part.fs_interface) { old_unvisited.push_back(ExtentForRange(0, old_part.size / kBlockSize)); old_unvisited = FilterExtentRanges(old_unvisited, old_visited_blocks); } LOG(INFO) << "Scanning " << BlocksInExtents(new_unvisited) << " unwritten blocks using chunk size of " << soft_chunk_blocks << " blocks."; // We use the soft_chunk_blocks limit for the <non-file-data> as we don't // really know the structure of this data and we should not expect it to have // redundancy between partitions. TEST_AND_RETURN_FALSE(DeltaReadFile(aops, old_part.path, new_part.path, old_unvisited, new_unvisited, "<non-file-data>", // operation name soft_chunk_blocks, version, blob_file)); return true; } bool DeltaMovedAndZeroBlocks(vector<AnnotatedOperation>* aops, const string& old_part, const string& new_part, size_t old_num_blocks, size_t new_num_blocks, ssize_t chunk_blocks, const PayloadVersion& version, BlobFileWriter* blob_file, ExtentRanges* old_visited_blocks, ExtentRanges* new_visited_blocks) { vector<BlockMapping::BlockId> old_block_ids; vector<BlockMapping::BlockId> new_block_ids; TEST_AND_RETURN_FALSE(MapPartitionBlocks(old_part, new_part, old_num_blocks * kBlockSize, new_num_blocks * kBlockSize, kBlockSize, &old_block_ids, &new_block_ids)); // If the update is inplace, we map all the blocks that didn't move, // regardless of the contents since they are already copied and no operation // is required. if (version.InplaceUpdate()) { uint64_t num_blocks = std::min(old_num_blocks, new_num_blocks); for (uint64_t block = 0; block < num_blocks; block++) { if (old_block_ids[block] == new_block_ids[block] && !old_visited_blocks->ContainsBlock(block) && !new_visited_blocks->ContainsBlock(block)) { old_visited_blocks->AddBlock(block); new_visited_blocks->AddBlock(block); } } } // A mapping from the block_id to the list of block numbers with that block id // in the old partition. This is used to lookup where in the old partition // is a block from the new partition. map<BlockMapping::BlockId, vector<uint64_t>> old_blocks_map; for (uint64_t block = old_num_blocks; block-- > 0; ) { if (old_block_ids[block] != 0 && !old_visited_blocks->ContainsBlock(block)) old_blocks_map[old_block_ids[block]].push_back(block); // Mark all zeroed blocks in the old image as "used" since it doesn't make // any sense to spend I/O to read zeros from the source partition and more // importantly, these could sometimes be blocks discarded in the SSD which // would read non-zero values. if (old_block_ids[block] == 0) old_visited_blocks->AddBlock(block); } // The collection of blocks in the new partition with just zeros. This is a // common case for free-space that's also problematic for bsdiff, so we want // to optimize it using REPLACE_BZ operations. The blob for a REPLACE_BZ of // just zeros is so small that it doesn't make sense to spend the I/O reading // zeros from the old partition. vector<Extent> new_zeros; vector<Extent> old_identical_blocks; vector<Extent> new_identical_blocks; for (uint64_t block = 0; block < new_num_blocks; block++) { // Only produce operations for blocks that were not yet visited. if (new_visited_blocks->ContainsBlock(block)) continue; if (new_block_ids[block] == 0) { AppendBlockToExtents(&new_zeros, block); continue; } auto old_blocks_map_it = old_blocks_map.find(new_block_ids[block]); // Check if the block exists in the old partition at all. if (old_blocks_map_it == old_blocks_map.end() || old_blocks_map_it->second.empty()) continue; AppendBlockToExtents(&old_identical_blocks, old_blocks_map_it->second.back()); AppendBlockToExtents(&new_identical_blocks, block); // We can't reuse source blocks in minor version 1 because the cycle // breaking algorithm used in the in-place update doesn't support that. if (version.InplaceUpdate()) old_blocks_map_it->second.pop_back(); } // Produce operations for the zero blocks split per output extent. // TODO(deymo): Produce ZERO operations instead of calling DeltaReadFile(). size_t num_ops = aops->size(); new_visited_blocks->AddExtents(new_zeros); for (Extent extent : new_zeros) { TEST_AND_RETURN_FALSE(DeltaReadFile(aops, "", new_part, vector<Extent>(), // old_extents vector<Extent>{extent}, // new_extents "<zeros>", chunk_blocks, version, blob_file)); } LOG(INFO) << "Produced " << (aops->size() - num_ops) << " operations for " << BlocksInExtents(new_zeros) << " zeroed blocks"; // Produce MOVE/SOURCE_COPY operations for the moved blocks. num_ops = aops->size(); if (chunk_blocks == -1) chunk_blocks = new_num_blocks; uint64_t used_blocks = 0; old_visited_blocks->AddExtents(old_identical_blocks); new_visited_blocks->AddExtents(new_identical_blocks); for (Extent extent : new_identical_blocks) { // We split the operation at the extent boundary or when bigger than // chunk_blocks. for (uint64_t op_block_offset = 0; op_block_offset < extent.num_blocks(); op_block_offset += chunk_blocks) { aops->emplace_back(); AnnotatedOperation* aop = &aops->back(); aop->name = "<identical-blocks>"; aop->op.set_type(version.OperationAllowed(InstallOperation::SOURCE_COPY) ? InstallOperation::SOURCE_COPY : InstallOperation::MOVE); uint64_t chunk_num_blocks = std::min(extent.num_blocks() - op_block_offset, static_cast<uint64_t>(chunk_blocks)); // The current operation represents the move/copy operation for the // sublist starting at |used_blocks| of length |chunk_num_blocks| where // the src and dst are from |old_identical_blocks| and // |new_identical_blocks| respectively. StoreExtents( ExtentsSublist(old_identical_blocks, used_blocks, chunk_num_blocks), aop->op.mutable_src_extents()); Extent* op_dst_extent = aop->op.add_dst_extents(); op_dst_extent->set_start_block(extent.start_block() + op_block_offset); op_dst_extent->set_num_blocks(chunk_num_blocks); CHECK( vector<Extent>{*op_dst_extent} == // NOLINT(whitespace/braces) ExtentsSublist(new_identical_blocks, used_blocks, chunk_num_blocks)); used_blocks += chunk_num_blocks; } } LOG(INFO) << "Produced " << (aops->size() - num_ops) << " operations for " << used_blocks << " identical blocks moved"; return true; } bool DeltaReadFile(vector<AnnotatedOperation>* aops, const string& old_part, const string& new_part, const vector<Extent>& old_extents, const vector<Extent>& new_extents, const string& name, ssize_t chunk_blocks, const PayloadVersion& version, BlobFileWriter* blob_file) { brillo::Blob data; InstallOperation operation; uint64_t total_blocks = BlocksInExtents(new_extents); if (chunk_blocks == -1) chunk_blocks = total_blocks; for (uint64_t block_offset = 0; block_offset < total_blocks; block_offset += chunk_blocks) { // Split the old/new file in the same chunks. Note that this could drop // some information from the old file used for the new chunk. If the old // file is smaller (or even empty when there's no old file) the chunk will // also be empty. vector<Extent> old_extents_chunk = ExtentsSublist( old_extents, block_offset, chunk_blocks); vector<Extent> new_extents_chunk = ExtentsSublist( new_extents, block_offset, chunk_blocks); NormalizeExtents(&old_extents_chunk); NormalizeExtents(&new_extents_chunk); TEST_AND_RETURN_FALSE(ReadExtentsToDiff(old_part, new_part, old_extents_chunk, new_extents_chunk, version, &data, &operation)); // Check if the operation writes nothing. if (operation.dst_extents_size() == 0) { if (operation.type() == InstallOperation::MOVE) { LOG(INFO) << "Empty MOVE operation (" << name << "), skipping"; continue; } else { LOG(ERROR) << "Empty non-MOVE operation"; return false; } } // Now, insert into the list of operations. AnnotatedOperation aop; aop.name = name; if (static_cast<uint64_t>(chunk_blocks) < total_blocks) { aop.name = base::StringPrintf("%s:%" PRIu64, name.c_str(), block_offset / chunk_blocks); } aop.op = operation; // Write the data TEST_AND_RETURN_FALSE(aop.SetOperationBlob(data, blob_file)); aops->emplace_back(aop); } return true; } bool GenerateBestFullOperation(const brillo::Blob& new_data, const PayloadVersion& version, brillo::Blob* out_blob, InstallOperation_Type* out_type) { if (new_data.empty()) return false; if (version.OperationAllowed(InstallOperation::ZERO) && std::all_of( new_data.begin(), new_data.end(), [](uint8_t x) { return x == 0; })) { // The read buffer is all zeros, so produce a ZERO operation. No need to // check other types of operations in this case. *out_blob = brillo::Blob(); *out_type = InstallOperation::ZERO; return true; } bool out_blob_set = false; // Try compressing |new_data| with xz first. if (version.OperationAllowed(InstallOperation::REPLACE_XZ)) { brillo::Blob new_data_xz; if (XzCompress(new_data, &new_data_xz) && !new_data_xz.empty()) { *out_type = InstallOperation::REPLACE_XZ; *out_blob = std::move(new_data_xz); out_blob_set = true; } } // Try compressing it with bzip2. if (version.OperationAllowed(InstallOperation::REPLACE_BZ)) { brillo::Blob new_data_bz; // TODO(deymo): Implement some heuristic to determine if it is worth trying // to compress the blob with bzip2 if we already have a good REPLACE_XZ. if (BzipCompress(new_data, &new_data_bz) && !new_data_bz.empty() && (!out_blob_set || out_blob->size() > new_data_bz.size())) { // A REPLACE_BZ is better or nothing else was set. *out_type = InstallOperation::REPLACE_BZ; *out_blob = std::move(new_data_bz); out_blob_set = true; } } // If nothing else worked or it was badly compressed we try a REPLACE. if (!out_blob_set || out_blob->size() >= new_data.size()) { *out_type = InstallOperation::REPLACE; // This needs to make a copy of the data in the case bzip or xz didn't // compress well, which is not the common case so the performance hit is // low. *out_blob = new_data; } return true; } bool ReadExtentsToDiff(const string& old_part, const string& new_part, const vector<Extent>& old_extents, const vector<Extent>& new_extents, const PayloadVersion& version, brillo::Blob* out_data, InstallOperation* out_op) { InstallOperation operation; // We read blocks from old_extents and write blocks to new_extents. uint64_t blocks_to_read = BlocksInExtents(old_extents); uint64_t blocks_to_write = BlocksInExtents(new_extents); // Disable bsdiff and imgdiff when the data is too big. bool bsdiff_allowed = version.OperationAllowed(InstallOperation::SOURCE_BSDIFF) || version.OperationAllowed(InstallOperation::BSDIFF); if (bsdiff_allowed && blocks_to_read * kBlockSize > kMaxBsdiffDestinationSize) { LOG(INFO) << "bsdiff blacklisted, data too big: " << blocks_to_read * kBlockSize << " bytes"; bsdiff_allowed = false; } bool imgdiff_allowed = version.OperationAllowed(InstallOperation::IMGDIFF); if (imgdiff_allowed && blocks_to_read * kBlockSize > kMaxImgdiffDestinationSize) { LOG(INFO) << "imgdiff blacklisted, data too big: " << blocks_to_read * kBlockSize << " bytes"; imgdiff_allowed = false; } // Make copies of the extents so we can modify them. vector<Extent> src_extents = old_extents; vector<Extent> dst_extents = new_extents; // Read in bytes from new data. brillo::Blob new_data; TEST_AND_RETURN_FALSE(utils::ReadExtents(new_part, new_extents, &new_data, kBlockSize * blocks_to_write, kBlockSize)); TEST_AND_RETURN_FALSE(!new_data.empty()); // Data blob that will be written to delta file. brillo::Blob data_blob; // Try generating a full operation for the given new data, regardless of the // old_data. InstallOperation_Type op_type; TEST_AND_RETURN_FALSE( GenerateBestFullOperation(new_data, version, &data_blob, &op_type)); operation.set_type(op_type); brillo::Blob old_data; if (blocks_to_read > 0) { // Read old data. TEST_AND_RETURN_FALSE( utils::ReadExtents(old_part, src_extents, &old_data, kBlockSize * blocks_to_read, kBlockSize)); if (old_data == new_data) { // No change in data. operation.set_type(version.OperationAllowed(InstallOperation::SOURCE_COPY) ? InstallOperation::SOURCE_COPY : InstallOperation::MOVE); data_blob = brillo::Blob(); } else if (bsdiff_allowed || imgdiff_allowed) { // If the source file is considered bsdiff safe (no bsdiff bugs // triggered), see if BSDIFF encoding is smaller. base::FilePath old_chunk; TEST_AND_RETURN_FALSE(base::CreateTemporaryFile(&old_chunk)); ScopedPathUnlinker old_unlinker(old_chunk.value()); TEST_AND_RETURN_FALSE(utils::WriteFile( old_chunk.value().c_str(), old_data.data(), old_data.size())); base::FilePath new_chunk; TEST_AND_RETURN_FALSE(base::CreateTemporaryFile(&new_chunk)); ScopedPathUnlinker new_unlinker(new_chunk.value()); TEST_AND_RETURN_FALSE(utils::WriteFile( new_chunk.value().c_str(), new_data.data(), new_data.size())); if (bsdiff_allowed) { brillo::Blob bsdiff_delta; TEST_AND_RETURN_FALSE(DiffFiles( kBsdiffPath, old_chunk.value(), new_chunk.value(), &bsdiff_delta)); CHECK_GT(bsdiff_delta.size(), static_cast<brillo::Blob::size_type>(0)); if (bsdiff_delta.size() < data_blob.size()) { operation.set_type( version.OperationAllowed(InstallOperation::SOURCE_BSDIFF) ? InstallOperation::SOURCE_BSDIFF : InstallOperation::BSDIFF); data_blob = std::move(bsdiff_delta); } } if (imgdiff_allowed && ContainsGZip(old_data) && ContainsGZip(new_data)) { brillo::Blob imgdiff_delta; // Imgdiff might fail in some cases, only use the result if it succeed, // otherwise print the extents to analyze. if (DiffFiles(kImgdiffPath, old_chunk.value(), new_chunk.value(), &imgdiff_delta) && imgdiff_delta.size() > 0) { if (imgdiff_delta.size() < data_blob.size()) { operation.set_type(InstallOperation::IMGDIFF); data_blob = std::move(imgdiff_delta); } } else { LOG(ERROR) << "Imgdiff failed with source extents: " << ExtentsToString(src_extents) << ", destination extents: " << ExtentsToString(dst_extents); } } } } size_t removed_bytes = 0; // Remove identical src/dst block ranges in MOVE operations. if (operation.type() == InstallOperation::MOVE) { removed_bytes = RemoveIdenticalBlockRanges( &src_extents, &dst_extents, new_data.size()); } // Set legacy src_length and dst_length fields. operation.set_src_length(old_data.size() - removed_bytes); operation.set_dst_length(new_data.size() - removed_bytes); // Embed extents in the operation. StoreExtents(src_extents, operation.mutable_src_extents()); StoreExtents(dst_extents, operation.mutable_dst_extents()); // Replace operations should not have source extents. if (IsAReplaceOperation(operation.type())) { operation.clear_src_extents(); operation.clear_src_length(); } *out_data = std::move(data_blob); *out_op = operation; return true; } // Runs the bsdiff or imgdiff tool in |diff_path| on two files and returns the // resulting delta in |out|. Returns true on success. bool DiffFiles(const string& diff_path, const string& old_file, const string& new_file, brillo::Blob* out) { const string kPatchFile = "delta.patchXXXXXX"; string patch_file_path; TEST_AND_RETURN_FALSE( utils::MakeTempFile(kPatchFile, &patch_file_path, nullptr)); vector<string> cmd; cmd.push_back(diff_path); cmd.push_back(old_file); cmd.push_back(new_file); cmd.push_back(patch_file_path); int rc = 1; brillo::Blob patch_file; string stdout; TEST_AND_RETURN_FALSE(Subprocess::SynchronousExec(cmd, &rc, &stdout)); if (rc != 0) { LOG(ERROR) << diff_path << " returned " << rc << std::endl << stdout; return false; } TEST_AND_RETURN_FALSE(utils::ReadFile(patch_file_path, out)); unlink(patch_file_path.c_str()); return true; } bool IsAReplaceOperation(InstallOperation_Type op_type) { return (op_type == InstallOperation::REPLACE || op_type == InstallOperation::REPLACE_BZ || op_type == InstallOperation::REPLACE_XZ); } // Returns true if |op| is a no-op operation that doesn't do any useful work // (e.g., a move operation that copies blocks onto themselves). bool IsNoopOperation(const InstallOperation& op) { return (op.type() == InstallOperation::MOVE && ExpandExtents(op.src_extents()) == ExpandExtents(op.dst_extents())); } void FilterNoopOperations(vector<AnnotatedOperation>* ops) { ops->erase( std::remove_if( ops->begin(), ops->end(), [](const AnnotatedOperation& aop){return IsNoopOperation(aop.op);}), ops->end()); } bool InitializePartitionInfo(const PartitionConfig& part, PartitionInfo* info) { info->set_size(part.size); HashCalculator hasher; TEST_AND_RETURN_FALSE(hasher.UpdateFile(part.path, part.size) == static_cast<off_t>(part.size)); TEST_AND_RETURN_FALSE(hasher.Finalize()); const brillo::Blob& hash = hasher.raw_hash(); info->set_hash(hash.data(), hash.size()); LOG(INFO) << part.path << ": size=" << part.size << " hash=" << hasher.hash(); return true; } bool CompareAopsByDestination(AnnotatedOperation first_aop, AnnotatedOperation second_aop) { // We want empty operations to be at the end of the payload. if (!first_aop.op.dst_extents().size() || !second_aop.op.dst_extents().size()) return ((!first_aop.op.dst_extents().size()) < (!second_aop.op.dst_extents().size())); uint32_t first_dst_start = first_aop.op.dst_extents(0).start_block(); uint32_t second_dst_start = second_aop.op.dst_extents(0).start_block(); return first_dst_start < second_dst_start; } } // namespace diff_utils } // namespace chromeos_update_engine