// // Copyright (C) 2014 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "update_engine/update_manager/chromeos_policy.h" #include <algorithm> #include <set> #include <string> #include <base/logging.h> #include <base/strings/string_util.h> #include <base/time/time.h> #include "update_engine/common/error_code.h" #include "update_engine/common/error_code_utils.h" #include "update_engine/common/utils.h" #include "update_engine/update_manager/device_policy_provider.h" #include "update_engine/update_manager/policy_utils.h" #include "update_engine/update_manager/shill_provider.h" using base::Time; using base::TimeDelta; using chromeos_update_engine::ErrorCode; using std::get; using std::max; using std::min; using std::set; using std::string; namespace { // Examines |err_code| and decides whether the URL index needs to be advanced, // the error count for the URL incremented, or none of the above. In the first // case, returns true; in the second case, increments |*url_num_error_p| and // returns false; otherwise just returns false. // // TODO(garnold) Adapted from PayloadState::UpdateFailed() (to be retired). bool HandleErrorCode(ErrorCode err_code, int* url_num_error_p) { err_code = chromeos_update_engine::utils::GetBaseErrorCode(err_code); switch (err_code) { // Errors which are good indicators of a problem with a particular URL or // the protocol used in the URL or entities in the communication channel // (e.g. proxies). We should try the next available URL in the next update // check to quickly recover from these errors. case ErrorCode::kPayloadHashMismatchError: case ErrorCode::kPayloadSizeMismatchError: case ErrorCode::kDownloadPayloadVerificationError: case ErrorCode::kDownloadPayloadPubKeyVerificationError: case ErrorCode::kSignedDeltaPayloadExpectedError: case ErrorCode::kDownloadInvalidMetadataMagicString: case ErrorCode::kDownloadSignatureMissingInManifest: case ErrorCode::kDownloadManifestParseError: case ErrorCode::kDownloadMetadataSignatureError: case ErrorCode::kDownloadMetadataSignatureVerificationError: case ErrorCode::kDownloadMetadataSignatureMismatch: case ErrorCode::kDownloadOperationHashVerificationError: case ErrorCode::kDownloadOperationExecutionError: case ErrorCode::kDownloadOperationHashMismatch: case ErrorCode::kDownloadInvalidMetadataSize: case ErrorCode::kDownloadInvalidMetadataSignature: case ErrorCode::kDownloadOperationHashMissingError: case ErrorCode::kDownloadMetadataSignatureMissingError: case ErrorCode::kPayloadMismatchedType: case ErrorCode::kUnsupportedMajorPayloadVersion: case ErrorCode::kUnsupportedMinorPayloadVersion: LOG(INFO) << "Advancing download URL due to error " << chromeos_update_engine::utils::ErrorCodeToString(err_code) << " (" << static_cast<int>(err_code) << ")"; return true; // Errors which seem to be just transient network/communication related // failures and do not indicate any inherent problem with the URL itself. // So, we should keep the current URL but just increment the // failure count to give it more chances. This way, while we maximize our // chances of downloading from the URLs that appear earlier in the response // (because download from a local server URL that appears earlier in a // response is preferable than downloading from the next URL which could be // an Internet URL and thus could be more expensive). case ErrorCode::kError: case ErrorCode::kDownloadTransferError: case ErrorCode::kDownloadWriteError: case ErrorCode::kDownloadStateInitializationError: case ErrorCode::kOmahaErrorInHTTPResponse: // Aggregate for HTTP errors. LOG(INFO) << "Incrementing URL failure count due to error " << chromeos_update_engine::utils::ErrorCodeToString(err_code) << " (" << static_cast<int>(err_code) << ")"; *url_num_error_p += 1; return false; // Errors which are not specific to a URL and hence shouldn't result in // the URL being penalized. This can happen in two cases: // 1. We haven't started downloading anything: These errors don't cost us // anything in terms of actual payload bytes, so we should just do the // regular retries at the next update check. // 2. We have successfully downloaded the payload: In this case, the // payload attempt number would have been incremented and would take care // of the back-off at the next update check. // In either case, there's no need to update URL index or failure count. case ErrorCode::kOmahaRequestError: case ErrorCode::kOmahaResponseHandlerError: case ErrorCode::kPostinstallRunnerError: case ErrorCode::kFilesystemCopierError: case ErrorCode::kInstallDeviceOpenError: case ErrorCode::kKernelDeviceOpenError: case ErrorCode::kDownloadNewPartitionInfoError: case ErrorCode::kNewRootfsVerificationError: case ErrorCode::kNewKernelVerificationError: case ErrorCode::kPostinstallBootedFromFirmwareB: case ErrorCode::kPostinstallFirmwareRONotUpdatable: case ErrorCode::kOmahaRequestEmptyResponseError: case ErrorCode::kOmahaRequestXMLParseError: case ErrorCode::kOmahaResponseInvalid: case ErrorCode::kOmahaUpdateIgnoredPerPolicy: case ErrorCode::kOmahaUpdateDeferredPerPolicy: case ErrorCode::kOmahaUpdateDeferredForBackoff: case ErrorCode::kPostinstallPowerwashError: case ErrorCode::kUpdateCanceledByChannelChange: case ErrorCode::kOmahaRequestXMLHasEntityDecl: case ErrorCode::kFilesystemVerifierError: case ErrorCode::kUserCanceled: LOG(INFO) << "Not changing URL index or failure count due to error " << chromeos_update_engine::utils::ErrorCodeToString(err_code) << " (" << static_cast<int>(err_code) << ")"; return false; case ErrorCode::kSuccess: // success code case ErrorCode::kUmaReportedMax: // not an error code case ErrorCode::kOmahaRequestHTTPResponseBase: // aggregated already case ErrorCode::kDevModeFlag: // not an error code case ErrorCode::kResumedFlag: // not an error code case ErrorCode::kTestImageFlag: // not an error code case ErrorCode::kTestOmahaUrlFlag: // not an error code case ErrorCode::kSpecialFlags: // not an error code // These shouldn't happen. Enumerating these explicitly here so that we // can let the compiler warn about new error codes that are added to // action_processor.h but not added here. LOG(WARNING) << "Unexpected error " << chromeos_update_engine::utils::ErrorCodeToString(err_code) << " (" << static_cast<int>(err_code) << ")"; // Note: Not adding a default here so as to let the compiler warn us of // any new enums that were added in the .h but not listed in this switch. } return false; } // Checks whether |url| can be used under given download restrictions. bool IsUrlUsable(const string& url, bool http_allowed) { return http_allowed || !base::StartsWith(url, "http://", base::CompareCase::INSENSITIVE_ASCII); } } // namespace namespace chromeos_update_manager { const int ChromeOSPolicy::kTimeoutInitialInterval = 7 * 60; // TODO(deymo): Split the update_manager policies for Brillo and ChromeOS and // make the update check periodic interval configurable. #ifdef __ANDROID__ const int ChromeOSPolicy::kTimeoutPeriodicInterval = 5 * 60 * 60; const int ChromeOSPolicy::kTimeoutMaxBackoffInterval = 26 * 60 * 60; #else const int ChromeOSPolicy::kTimeoutPeriodicInterval = 45 * 60; const int ChromeOSPolicy::kTimeoutMaxBackoffInterval = 4 * 60 * 60; #endif // __ANDROID__ const int ChromeOSPolicy::kTimeoutRegularFuzz = 10 * 60; const int ChromeOSPolicy::kAttemptBackoffMaxIntervalInDays = 16; const int ChromeOSPolicy::kAttemptBackoffFuzzInHours = 12; const int ChromeOSPolicy::kMaxP2PAttempts = 10; const int ChromeOSPolicy::kMaxP2PAttemptsPeriodInSeconds = 5 * 24 * 60 * 60; EvalStatus ChromeOSPolicy::UpdateCheckAllowed( EvaluationContext* ec, State* state, string* error, UpdateCheckParams* result) const { // Set the default return values. result->updates_enabled = true; result->target_channel.clear(); result->target_version_prefix.clear(); result->is_interactive = false; DevicePolicyProvider* const dp_provider = state->device_policy_provider(); UpdaterProvider* const updater_provider = state->updater_provider(); SystemProvider* const system_provider = state->system_provider(); // Do not perform any updates if booted from removable device. This decision // is final. const unsigned int* num_slots_p = ec->GetValue( system_provider->var_num_slots()); if (!num_slots_p || *num_slots_p < 2) { LOG(INFO) << "Not enough slots for A/B updates, disabling update checks."; result->updates_enabled = false; return EvalStatus::kSucceeded; } const bool* device_policy_is_loaded_p = ec->GetValue( dp_provider->var_device_policy_is_loaded()); if (device_policy_is_loaded_p && *device_policy_is_loaded_p) { // Check whether updates are disabled by policy. const bool* update_disabled_p = ec->GetValue( dp_provider->var_update_disabled()); if (update_disabled_p && *update_disabled_p) { LOG(INFO) << "Updates disabled by policy, blocking update checks."; return EvalStatus::kAskMeAgainLater; } // Determine whether a target version prefix is dictated by policy. const string* target_version_prefix_p = ec->GetValue( dp_provider->var_target_version_prefix()); if (target_version_prefix_p) result->target_version_prefix = *target_version_prefix_p; // Determine whether a target channel is dictated by policy. const bool* release_channel_delegated_p = ec->GetValue( dp_provider->var_release_channel_delegated()); if (release_channel_delegated_p && !(*release_channel_delegated_p)) { const string* release_channel_p = ec->GetValue( dp_provider->var_release_channel()); if (release_channel_p) result->target_channel = *release_channel_p; } } // First, check to see if an interactive update was requested. const UpdateRequestStatus* forced_update_requested_p = ec->GetValue( updater_provider->var_forced_update_requested()); if (forced_update_requested_p && *forced_update_requested_p != UpdateRequestStatus::kNone) { result->is_interactive = (*forced_update_requested_p == UpdateRequestStatus::kInteractive); LOG(INFO) << "Forced update signaled (" << (result->is_interactive ? "interactive" : "periodic") << "), allowing update check."; return EvalStatus::kSucceeded; } // The logic thereafter applies to periodic updates. Bear in mind that we // should not return a final "no" if any of these criteria are not satisfied, // because the system may still update due to an interactive update request. // Unofficial builds should not perform periodic update checks. const bool* is_official_build_p = ec->GetValue( system_provider->var_is_official_build()); if (is_official_build_p && !(*is_official_build_p)) { LOG(INFO) << "Unofficial build, blocking periodic update checks."; return EvalStatus::kAskMeAgainLater; } // If OOBE is enabled, wait until it is completed. const bool* is_oobe_enabled_p = ec->GetValue( state->config_provider()->var_is_oobe_enabled()); if (is_oobe_enabled_p && *is_oobe_enabled_p) { const bool* is_oobe_complete_p = ec->GetValue( system_provider->var_is_oobe_complete()); if (is_oobe_complete_p && !(*is_oobe_complete_p)) { LOG(INFO) << "OOBE not completed, blocking update checks."; return EvalStatus::kAskMeAgainLater; } } // Ensure that periodic update checks are timed properly. Time next_update_check; if (NextUpdateCheckTime(ec, state, error, &next_update_check) != EvalStatus::kSucceeded) { return EvalStatus::kFailed; } if (!ec->IsWallclockTimeGreaterThan(next_update_check)) { LOG(INFO) << "Periodic check interval not satisfied, blocking until " << chromeos_update_engine::utils::ToString(next_update_check); return EvalStatus::kAskMeAgainLater; } // It is time to check for an update. LOG(INFO) << "Allowing update check."; return EvalStatus::kSucceeded; } EvalStatus ChromeOSPolicy::UpdateCanStart( EvaluationContext* ec, State* state, string* error, UpdateDownloadParams* result, const UpdateState update_state) const { // Set the default return values. Note that we set persisted values (backoff, // scattering) to the same values presented in the update state. The reason is // that preemptive returns, such as the case where an update check is due, // should not clear off the said values; rather, it is the deliberate // inference of new values that should cause them to be reset. result->update_can_start = false; result->cannot_start_reason = UpdateCannotStartReason::kUndefined; result->download_url_idx = -1; result->download_url_allowed = true; result->download_url_num_errors = 0; result->p2p_downloading_allowed = false; result->p2p_sharing_allowed = false; result->do_increment_failures = false; result->backoff_expiry = update_state.backoff_expiry; result->scatter_wait_period = update_state.scatter_wait_period; result->scatter_check_threshold = update_state.scatter_check_threshold; // Make sure that we're not due for an update check. UpdateCheckParams check_result; EvalStatus check_status = UpdateCheckAllowed(ec, state, error, &check_result); if (check_status == EvalStatus::kFailed) return EvalStatus::kFailed; bool is_check_due = (check_status == EvalStatus::kSucceeded && check_result.updates_enabled == true); // Check whether backoff applies, and if not then which URL can be used for // downloading. These require scanning the download error log, and so they are // done together. UpdateBackoffAndDownloadUrlResult backoff_url_result; EvalStatus backoff_url_status = UpdateBackoffAndDownloadUrl( ec, state, error, &backoff_url_result, update_state); if (backoff_url_status == EvalStatus::kFailed) return EvalStatus::kFailed; result->download_url_idx = backoff_url_result.url_idx; result->download_url_num_errors = backoff_url_result.url_num_errors; result->do_increment_failures = backoff_url_result.do_increment_failures; result->backoff_expiry = backoff_url_result.backoff_expiry; bool is_backoff_active = (backoff_url_status == EvalStatus::kAskMeAgainLater) || !backoff_url_result.backoff_expiry.is_null(); DevicePolicyProvider* const dp_provider = state->device_policy_provider(); bool is_scattering_active = false; EvalStatus scattering_status = EvalStatus::kSucceeded; const bool* device_policy_is_loaded_p = ec->GetValue( dp_provider->var_device_policy_is_loaded()); if (device_policy_is_loaded_p && *device_policy_is_loaded_p) { // Check whether scattering applies to this update attempt. We should not be // scattering if this is an interactive update check, or if OOBE is enabled // but not completed. // // Note: current code further suppresses scattering if a "deadline" // attribute is found in the Omaha response. However, it appears that the // presence of this attribute is merely indicative of an OOBE update, during // which we suppress scattering anyway. bool is_scattering_applicable = false; result->scatter_wait_period = kZeroInterval; result->scatter_check_threshold = 0; if (!update_state.is_interactive) { const bool* is_oobe_enabled_p = ec->GetValue( state->config_provider()->var_is_oobe_enabled()); if (is_oobe_enabled_p && !(*is_oobe_enabled_p)) { is_scattering_applicable = true; } else { const bool* is_oobe_complete_p = ec->GetValue( state->system_provider()->var_is_oobe_complete()); is_scattering_applicable = (is_oobe_complete_p && *is_oobe_complete_p); } } // Compute scattering values. if (is_scattering_applicable) { UpdateScatteringResult scatter_result; scattering_status = UpdateScattering(ec, state, error, &scatter_result, update_state); if (scattering_status == EvalStatus::kFailed) { return EvalStatus::kFailed; } else { result->scatter_wait_period = scatter_result.wait_period; result->scatter_check_threshold = scatter_result.check_threshold; if (scattering_status == EvalStatus::kAskMeAgainLater || scatter_result.is_scattering) is_scattering_active = true; } } } // Find out whether P2P is globally enabled. bool p2p_enabled; EvalStatus p2p_enabled_status = P2PEnabled(ec, state, error, &p2p_enabled); if (p2p_enabled_status != EvalStatus::kSucceeded) return EvalStatus::kFailed; // Is P2P is enabled, consider allowing it for downloading and/or sharing. if (p2p_enabled) { // Sharing via P2P is allowed if not disabled by Omaha. if (update_state.p2p_sharing_disabled) { LOG(INFO) << "Blocked P2P sharing because it is disabled by Omaha."; } else { result->p2p_sharing_allowed = true; } // Downloading via P2P is allowed if not disabled by Omaha, an update is not // interactive, and other limits haven't been reached. if (update_state.p2p_downloading_disabled) { LOG(INFO) << "Blocked P2P downloading because it is disabled by Omaha."; } else if (update_state.is_interactive) { LOG(INFO) << "Blocked P2P downloading because update is interactive."; } else if (update_state.p2p_num_attempts >= kMaxP2PAttempts) { LOG(INFO) << "Blocked P2P downloading as it was attempted too many " "times."; } else if (!update_state.p2p_first_attempted.is_null() && ec->IsWallclockTimeGreaterThan( update_state.p2p_first_attempted + TimeDelta::FromSeconds(kMaxP2PAttemptsPeriodInSeconds))) { LOG(INFO) << "Blocked P2P downloading as its usage timespan exceeds " "limit."; } else { // P2P download is allowed; if backoff or scattering are active, be sure // to suppress them, yet prevent any download URL from being used. result->p2p_downloading_allowed = true; if (is_backoff_active || is_scattering_active) { is_backoff_active = is_scattering_active = false; result->download_url_allowed = false; } } } // Check for various deterrents. if (is_check_due) { result->cannot_start_reason = UpdateCannotStartReason::kCheckDue; return EvalStatus::kSucceeded; } if (is_backoff_active) { result->cannot_start_reason = UpdateCannotStartReason::kBackoff; return backoff_url_status; } if (is_scattering_active) { result->cannot_start_reason = UpdateCannotStartReason::kScattering; return scattering_status; } if (result->download_url_idx < 0 && !result->p2p_downloading_allowed) { result->cannot_start_reason = UpdateCannotStartReason::kCannotDownload; return EvalStatus::kSucceeded; } // Update is good to go. result->update_can_start = true; return EvalStatus::kSucceeded; } // TODO(garnold) Logic in this method is based on // ConnectionManager::IsUpdateAllowedOver(); be sure to deprecate the latter. // // TODO(garnold) The current logic generally treats the list of allowed // connections coming from the device policy as a whitelist, meaning that it // can only be used for enabling connections, but not disable them. Further, // certain connection types (like Bluetooth) cannot be enabled even by policy. // In effect, the only thing that device policy can change is to enable // updates over a cellular network (disabled by default). We may want to // revisit this semantics, allowing greater flexibility in defining specific // permissions over all types of networks. EvalStatus ChromeOSPolicy::UpdateDownloadAllowed( EvaluationContext* ec, State* state, string* error, bool* result) const { // Get the current connection type. ShillProvider* const shill_provider = state->shill_provider(); const ConnectionType* conn_type_p = ec->GetValue( shill_provider->var_conn_type()); POLICY_CHECK_VALUE_AND_FAIL(conn_type_p, error); ConnectionType conn_type = *conn_type_p; // If we're tethering, treat it as a cellular connection. if (conn_type != ConnectionType::kCellular) { const ConnectionTethering* conn_tethering_p = ec->GetValue( shill_provider->var_conn_tethering()); POLICY_CHECK_VALUE_AND_FAIL(conn_tethering_p, error); if (*conn_tethering_p == ConnectionTethering::kConfirmed) conn_type = ConnectionType::kCellular; } // By default, we allow updates for all connection types, with exceptions as // noted below. This also determines whether a device policy can override the // default. *result = true; bool device_policy_can_override = false; switch (conn_type) { case ConnectionType::kBluetooth: *result = false; break; case ConnectionType::kCellular: *result = false; device_policy_can_override = true; break; case ConnectionType::kUnknown: if (error) *error = "Unknown connection type"; return EvalStatus::kFailed; default: break; // Nothing to do. } // If update is allowed, we're done. if (*result) return EvalStatus::kSucceeded; // Check whether the device policy specifically allows this connection. if (device_policy_can_override) { DevicePolicyProvider* const dp_provider = state->device_policy_provider(); const bool* device_policy_is_loaded_p = ec->GetValue( dp_provider->var_device_policy_is_loaded()); if (device_policy_is_loaded_p && *device_policy_is_loaded_p) { const set<ConnectionType>* allowed_conn_types_p = ec->GetValue( dp_provider->var_allowed_connection_types_for_update()); if (allowed_conn_types_p) { if (allowed_conn_types_p->count(conn_type)) { *result = true; return EvalStatus::kSucceeded; } } else if (conn_type == ConnectionType::kCellular) { // Local user settings can allow updates over cellular iff a policy was // loaded but no allowed connections were specified in it. const bool* update_over_cellular_allowed_p = ec->GetValue( state->updater_provider()->var_cellular_enabled()); if (update_over_cellular_allowed_p && *update_over_cellular_allowed_p) *result = true; } } } return (*result ? EvalStatus::kSucceeded : EvalStatus::kAskMeAgainLater); } EvalStatus ChromeOSPolicy::P2PEnabled(EvaluationContext* ec, State* state, string* error, bool* result) const { bool enabled = false; // Determine whether use of P2P is allowed by policy. Even if P2P is not // explicitly allowed, we allow it if the device is enterprise enrolled (that // is, missing or empty owner string). DevicePolicyProvider* const dp_provider = state->device_policy_provider(); const bool* device_policy_is_loaded_p = ec->GetValue( dp_provider->var_device_policy_is_loaded()); if (device_policy_is_loaded_p && *device_policy_is_loaded_p) { const bool* policy_au_p2p_enabled_p = ec->GetValue( dp_provider->var_au_p2p_enabled()); if (policy_au_p2p_enabled_p) { enabled = *policy_au_p2p_enabled_p; } else { const string* policy_owner_p = ec->GetValue(dp_provider->var_owner()); if (!policy_owner_p || policy_owner_p->empty()) enabled = true; } } // Enable P2P, if so mandated by the updater configuration. This is additive // to whether or not P2P is enabled by device policy. if (!enabled) { const bool* updater_p2p_enabled_p = ec->GetValue( state->updater_provider()->var_p2p_enabled()); enabled = updater_p2p_enabled_p && *updater_p2p_enabled_p; } *result = enabled; return EvalStatus::kSucceeded; } EvalStatus ChromeOSPolicy::P2PEnabledChanged(EvaluationContext* ec, State* state, string* error, bool* result, bool prev_result) const { EvalStatus status = P2PEnabled(ec, state, error, result); if (status == EvalStatus::kSucceeded && *result == prev_result) return EvalStatus::kAskMeAgainLater; return status; } EvalStatus ChromeOSPolicy::NextUpdateCheckTime(EvaluationContext* ec, State* state, string* error, Time* next_update_check) const { UpdaterProvider* const updater_provider = state->updater_provider(); // Don't check for updates too often. We limit the update checks to once every // some interval. The interval is kTimeoutInitialInterval the first time and // kTimeoutPeriodicInterval for the subsequent update checks. If the update // check fails, we increase the interval between the update checks // exponentially until kTimeoutMaxBackoffInterval. Finally, to avoid having // many chromebooks running update checks at the exact same time, we add some // fuzz to the interval. const Time* updater_started_time = ec->GetValue(updater_provider->var_updater_started_time()); POLICY_CHECK_VALUE_AND_FAIL(updater_started_time, error); const Time* last_checked_time = ec->GetValue(updater_provider->var_last_checked_time()); const uint64_t* seed = ec->GetValue(state->random_provider()->var_seed()); POLICY_CHECK_VALUE_AND_FAIL(seed, error); PRNG prng(*seed); // If this is the first attempt, compute and return an initial value. if (!last_checked_time || *last_checked_time < *updater_started_time) { *next_update_check = *updater_started_time + FuzzedInterval( &prng, kTimeoutInitialInterval, kTimeoutRegularFuzz); return EvalStatus::kSucceeded; } // Check whether the server is enforcing a poll interval; if not, this value // will be zero. const unsigned int* server_dictated_poll_interval = ec->GetValue( updater_provider->var_server_dictated_poll_interval()); POLICY_CHECK_VALUE_AND_FAIL(server_dictated_poll_interval, error); int interval = *server_dictated_poll_interval; int fuzz = 0; // If no poll interval was dictated by server compute a back-off period, // starting from a predetermined base periodic interval and increasing // exponentially by the number of consecutive failed attempts. if (interval == 0) { const unsigned int* consecutive_failed_update_checks = ec->GetValue( updater_provider->var_consecutive_failed_update_checks()); POLICY_CHECK_VALUE_AND_FAIL(consecutive_failed_update_checks, error); interval = kTimeoutPeriodicInterval; unsigned int num_failures = *consecutive_failed_update_checks; while (interval < kTimeoutMaxBackoffInterval && num_failures) { interval *= 2; num_failures--; } } // We cannot back off longer than the predetermined maximum interval. if (interval > kTimeoutMaxBackoffInterval) interval = kTimeoutMaxBackoffInterval; // We cannot back off shorter than the predetermined periodic interval. Also, // in this case set the fuzz to a predetermined regular value. if (interval <= kTimeoutPeriodicInterval) { interval = kTimeoutPeriodicInterval; fuzz = kTimeoutRegularFuzz; } // If not otherwise determined, defer to a fuzz of +/-(interval / 2). if (fuzz == 0) fuzz = interval; *next_update_check = *last_checked_time + FuzzedInterval( &prng, interval, fuzz); return EvalStatus::kSucceeded; } TimeDelta ChromeOSPolicy::FuzzedInterval(PRNG* prng, int interval, int fuzz) { DCHECK_GE(interval, 0); DCHECK_GE(fuzz, 0); int half_fuzz = fuzz / 2; // This guarantees the output interval is non negative. int interval_min = max(interval - half_fuzz, 0); int interval_max = interval + half_fuzz; return TimeDelta::FromSeconds(prng->RandMinMax(interval_min, interval_max)); } EvalStatus ChromeOSPolicy::UpdateBackoffAndDownloadUrl( EvaluationContext* ec, State* state, string* error, UpdateBackoffAndDownloadUrlResult* result, const UpdateState& update_state) const { // Sanity checks. DCHECK_GE(update_state.download_errors_max, 0); // Set default result values. result->do_increment_failures = false; result->backoff_expiry = update_state.backoff_expiry; result->url_idx = -1; result->url_num_errors = 0; const bool* is_official_build_p = ec->GetValue( state->system_provider()->var_is_official_build()); bool is_official_build = (is_official_build_p ? *is_official_build_p : true); // Check whether backoff is enabled. bool may_backoff = false; if (update_state.is_backoff_disabled) { LOG(INFO) << "Backoff disabled by Omaha."; } else if (update_state.is_interactive) { LOG(INFO) << "No backoff for interactive updates."; } else if (update_state.is_delta_payload) { LOG(INFO) << "No backoff for delta payloads."; } else if (!is_official_build) { LOG(INFO) << "No backoff for unofficial builds."; } else { may_backoff = true; } // If previous backoff still in effect, block. if (may_backoff && !update_state.backoff_expiry.is_null() && !ec->IsWallclockTimeGreaterThan(update_state.backoff_expiry)) { LOG(INFO) << "Previous backoff has not expired, waiting."; return EvalStatus::kAskMeAgainLater; } // Determine whether HTTP downloads are forbidden by policy. This only // applies to official system builds; otherwise, HTTP is always enabled. bool http_allowed = true; if (is_official_build) { DevicePolicyProvider* const dp_provider = state->device_policy_provider(); const bool* device_policy_is_loaded_p = ec->GetValue( dp_provider->var_device_policy_is_loaded()); if (device_policy_is_loaded_p && *device_policy_is_loaded_p) { const bool* policy_http_downloads_enabled_p = ec->GetValue( dp_provider->var_http_downloads_enabled()); http_allowed = (!policy_http_downloads_enabled_p || *policy_http_downloads_enabled_p); } } int url_idx = update_state.last_download_url_idx; if (url_idx < 0) url_idx = -1; bool do_advance_url = false; bool is_failure_occurred = false; Time err_time; // Scan the relevant part of the download error log, tracking which URLs are // being used, and accounting the number of errors for each URL. Note that // this process may not traverse all errors provided, as it may decide to bail // out midway depending on the particular errors exhibited, the number of // failures allowed, etc. When this ends, |url_idx| will point to the last URL // used (-1 if starting fresh), |do_advance_url| will determine whether the // URL needs to be advanced, and |err_time| the point in time when the last // reported error occurred. Additionally, if the error log indicates that an // update attempt has failed (abnormal), then |is_failure_occurred| will be // set to true. const int num_urls = update_state.download_urls.size(); int prev_url_idx = -1; int url_num_errors = update_state.last_download_url_num_errors; Time prev_err_time; bool is_first = true; for (const auto& err_tuple : update_state.download_errors) { // Do some sanity checks. int used_url_idx = get<0>(err_tuple); if (is_first && url_idx >= 0 && used_url_idx != url_idx) { LOG(WARNING) << "First URL in error log (" << used_url_idx << ") not as expected (" << url_idx << ")"; } is_first = false; url_idx = used_url_idx; if (url_idx < 0 || url_idx >= num_urls) { LOG(ERROR) << "Download error log contains an invalid URL index (" << url_idx << ")"; return EvalStatus::kFailed; } err_time = get<2>(err_tuple); if (!(prev_err_time.is_null() || err_time >= prev_err_time)) { // TODO(garnold) Monotonicity cannot really be assumed when dealing with // wallclock-based timestamps. However, we're making a simplifying // assumption so as to keep the policy implementation straightforward, for // now. In general, we should convert all timestamp handling in the // UpdateManager to use monotonic time (instead of wallclock), including // the computation of various expiration times (backoff, scattering, etc). // The client will do whatever conversions necessary when // persisting/retrieving these values across reboots. See chromium:408794. LOG(ERROR) << "Download error timestamps not monotonically increasing."; return EvalStatus::kFailed; } prev_err_time = err_time; // Ignore errors that happened before the last known failed attempt. if (!update_state.failures_last_updated.is_null() && err_time <= update_state.failures_last_updated) continue; if (prev_url_idx >= 0) { if (url_idx < prev_url_idx) { LOG(ERROR) << "The URLs in the download error log have wrapped around (" << prev_url_idx << "->" << url_idx << "). This should not have happened and means that there's " "a bug. To be conservative, we record a failed attempt " "(invalidating the rest of the error log) and resume " "download from the first usable URL."; url_idx = -1; is_failure_occurred = true; break; } if (url_idx > prev_url_idx) { url_num_errors = 0; do_advance_url = false; } } if (HandleErrorCode(get<1>(err_tuple), &url_num_errors) || url_num_errors > update_state.download_errors_max) do_advance_url = true; prev_url_idx = url_idx; } // If required, advance to the next usable URL. If the URLs wraparound, we // mark an update attempt failure. Also be sure to set the download error // count to zero. if (url_idx < 0 || do_advance_url) { url_num_errors = 0; int start_url_idx = -1; do { if (++url_idx == num_urls) { url_idx = 0; // We only mark failure if an actual advancing of a URL was required. if (do_advance_url) is_failure_occurred = true; } if (start_url_idx < 0) start_url_idx = url_idx; else if (url_idx == start_url_idx) url_idx = -1; // No usable URL. } while (url_idx >= 0 && !IsUrlUsable(update_state.download_urls[url_idx], http_allowed)); } // If we have a download URL but a failure was observed, compute a new backoff // expiry (if allowed). The backoff period is generally 2 ^ (num_failures - 1) // days, bounded by the size of int and kAttemptBackoffMaxIntervalInDays, and // fuzzed by kAttemptBackoffFuzzInHours hours. Backoff expiry is computed from // the latest recorded time of error. Time backoff_expiry; if (url_idx >= 0 && is_failure_occurred && may_backoff) { CHECK(!err_time.is_null()) << "We must have an error timestamp if a failure occurred!"; const uint64_t* seed = ec->GetValue(state->random_provider()->var_seed()); POLICY_CHECK_VALUE_AND_FAIL(seed, error); PRNG prng(*seed); int exp = min(update_state.num_failures, static_cast<int>(sizeof(int)) * 8 - 2); TimeDelta backoff_interval = TimeDelta::FromDays( min(1 << exp, kAttemptBackoffMaxIntervalInDays)); TimeDelta backoff_fuzz = TimeDelta::FromHours(kAttemptBackoffFuzzInHours); TimeDelta wait_period = FuzzedInterval(&prng, backoff_interval.InSeconds(), backoff_fuzz.InSeconds()); backoff_expiry = err_time + wait_period; // If the newly computed backoff already expired, nullify it. if (ec->IsWallclockTimeGreaterThan(backoff_expiry)) backoff_expiry = Time(); } result->do_increment_failures = is_failure_occurred; result->backoff_expiry = backoff_expiry; result->url_idx = url_idx; result->url_num_errors = url_num_errors; return EvalStatus::kSucceeded; } EvalStatus ChromeOSPolicy::UpdateScattering( EvaluationContext* ec, State* state, string* error, UpdateScatteringResult* result, const UpdateState& update_state) const { // Preconditions. These stem from the postconditions and usage contract. DCHECK(update_state.scatter_wait_period >= kZeroInterval); DCHECK_GE(update_state.scatter_check_threshold, 0); // Set default result values. result->is_scattering = false; result->wait_period = kZeroInterval; result->check_threshold = 0; DevicePolicyProvider* const dp_provider = state->device_policy_provider(); // Ensure that a device policy is loaded. const bool* device_policy_is_loaded_p = ec->GetValue( dp_provider->var_device_policy_is_loaded()); if (!(device_policy_is_loaded_p && *device_policy_is_loaded_p)) return EvalStatus::kSucceeded; // Is scattering enabled by policy? const TimeDelta* scatter_factor_p = ec->GetValue( dp_provider->var_scatter_factor()); if (!scatter_factor_p || *scatter_factor_p == kZeroInterval) return EvalStatus::kSucceeded; // Obtain a pseudo-random number generator. const uint64_t* seed = ec->GetValue(state->random_provider()->var_seed()); POLICY_CHECK_VALUE_AND_FAIL(seed, error); PRNG prng(*seed); // Step 1: Maintain the scattering wait period. // // If no wait period was previously determined, or it no longer fits in the // scatter factor, then generate a new one. Otherwise, keep the one we have. TimeDelta wait_period = update_state.scatter_wait_period; if (wait_period == kZeroInterval || wait_period > *scatter_factor_p) { wait_period = TimeDelta::FromSeconds( prng.RandMinMax(1, scatter_factor_p->InSeconds())); } // If we surpassed the wait period or the max scatter period associated with // the update, then no wait is needed. Time wait_expires = (update_state.first_seen + min(wait_period, update_state.scatter_wait_period_max)); if (ec->IsWallclockTimeGreaterThan(wait_expires)) wait_period = kZeroInterval; // Step 2: Maintain the update check threshold count. // // If an update check threshold is not specified then generate a new // one. int check_threshold = update_state.scatter_check_threshold; if (check_threshold == 0) { check_threshold = prng.RandMinMax( update_state.scatter_check_threshold_min, update_state.scatter_check_threshold_max); } // If the update check threshold is not within allowed range then nullify it. // TODO(garnold) This is compliant with current logic found in // OmahaRequestAction::IsUpdateCheckCountBasedWaitingSatisfied(). We may want // to change it so that it behaves similarly to the wait period case, namely // if the current value exceeds the maximum, we set a new one within range. if (check_threshold > update_state.scatter_check_threshold_max) check_threshold = 0; // If the update check threshold is non-zero and satisfied, then nullify it. if (check_threshold > 0 && update_state.num_checks >= check_threshold) check_threshold = 0; bool is_scattering = (wait_period != kZeroInterval || check_threshold); EvalStatus ret = EvalStatus::kSucceeded; if (is_scattering && wait_period == update_state.scatter_wait_period && check_threshold == update_state.scatter_check_threshold) ret = EvalStatus::kAskMeAgainLater; result->is_scattering = is_scattering; result->wait_period = wait_period; result->check_threshold = check_threshold; return ret; } } // namespace chromeos_update_manager