普通文本  |  6801行  |  272.87 KB

/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "code_generator_arm.h"

#include "arch/arm/instruction_set_features_arm.h"
#include "art_method.h"
#include "code_generator_utils.h"
#include "compiled_method.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "gc/accounting/card_table.h"
#include "intrinsics.h"
#include "intrinsics_arm.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "thread.h"
#include "utils/arm/assembler_arm.h"
#include "utils/arm/managed_register_arm.h"
#include "utils/assembler.h"
#include "utils/stack_checks.h"

namespace art {

template<class MirrorType>
class GcRoot;

namespace arm {

static bool ExpectedPairLayout(Location location) {
  // We expected this for both core and fpu register pairs.
  return ((location.low() & 1) == 0) && (location.low() + 1 == location.high());
}

static constexpr int kCurrentMethodStackOffset = 0;
static constexpr Register kMethodRegisterArgument = R0;

static constexpr Register kCoreAlwaysSpillRegister = R5;
static constexpr Register kCoreCalleeSaves[] =
    { R5, R6, R7, R8, R10, R11, LR };
static constexpr SRegister kFpuCalleeSaves[] =
    { S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, S28, S29, S30, S31 };

// D31 cannot be split into two S registers, and the register allocator only works on
// S registers. Therefore there is no need to block it.
static constexpr DRegister DTMP = D31;

static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;

#define __ down_cast<ArmAssembler*>(codegen->GetAssembler())->
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArmWordSize, x).Int32Value()

class NullCheckSlowPathARM : public SlowPathCode {
 public:
  explicit NullCheckSlowPathARM(HNullCheck* instruction) : SlowPathCode(instruction) {}

  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
    __ Bind(GetEntryLabel());
    if (instruction_->CanThrowIntoCatchBlock()) {
      // Live registers will be restored in the catch block if caught.
      SaveLiveRegisters(codegen, instruction_->GetLocations());
    }
    arm_codegen->InvokeRuntime(
        QUICK_ENTRY_POINT(pThrowNullPointer), instruction_, instruction_->GetDexPc(), this);
    CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
  }

  bool IsFatal() const OVERRIDE { return true; }

  const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM"; }

 private:
  DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM);
};

class DivZeroCheckSlowPathARM : public SlowPathCode {
 public:
  explicit DivZeroCheckSlowPathARM(HDivZeroCheck* instruction) : SlowPathCode(instruction) {}

  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
    __ Bind(GetEntryLabel());
    if (instruction_->CanThrowIntoCatchBlock()) {
      // Live registers will be restored in the catch block if caught.
      SaveLiveRegisters(codegen, instruction_->GetLocations());
    }
    arm_codegen->InvokeRuntime(
        QUICK_ENTRY_POINT(pThrowDivZero), instruction_, instruction_->GetDexPc(), this);
    CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
  }

  bool IsFatal() const OVERRIDE { return true; }

  const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM"; }

 private:
  DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM);
};

class SuspendCheckSlowPathARM : public SlowPathCode {
 public:
  SuspendCheckSlowPathARM(HSuspendCheck* instruction, HBasicBlock* successor)
      : SlowPathCode(instruction), successor_(successor) {}

  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
    __ Bind(GetEntryLabel());
    SaveLiveRegisters(codegen, instruction_->GetLocations());
    arm_codegen->InvokeRuntime(
        QUICK_ENTRY_POINT(pTestSuspend), instruction_, instruction_->GetDexPc(), this);
    CheckEntrypointTypes<kQuickTestSuspend, void, void>();
    RestoreLiveRegisters(codegen, instruction_->GetLocations());
    if (successor_ == nullptr) {
      __ b(GetReturnLabel());
    } else {
      __ b(arm_codegen->GetLabelOf(successor_));
    }
  }

  Label* GetReturnLabel() {
    DCHECK(successor_ == nullptr);
    return &return_label_;
  }

  HBasicBlock* GetSuccessor() const {
    return successor_;
  }

  const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM"; }

 private:
  // If not null, the block to branch to after the suspend check.
  HBasicBlock* const successor_;

  // If `successor_` is null, the label to branch to after the suspend check.
  Label return_label_;

  DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM);
};

class BoundsCheckSlowPathARM : public SlowPathCode {
 public:
  explicit BoundsCheckSlowPathARM(HBoundsCheck* instruction)
      : SlowPathCode(instruction) {}

  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
    LocationSummary* locations = instruction_->GetLocations();

    __ Bind(GetEntryLabel());
    if (instruction_->CanThrowIntoCatchBlock()) {
      // Live registers will be restored in the catch block if caught.
      SaveLiveRegisters(codegen, instruction_->GetLocations());
    }
    // We're moving two locations to locations that could overlap, so we need a parallel
    // move resolver.
    InvokeRuntimeCallingConvention calling_convention;
    codegen->EmitParallelMoves(
        locations->InAt(0),
        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
        Primitive::kPrimInt,
        locations->InAt(1),
        Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
        Primitive::kPrimInt);
    arm_codegen->InvokeRuntime(
        QUICK_ENTRY_POINT(pThrowArrayBounds), instruction_, instruction_->GetDexPc(), this);
    CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
  }

  bool IsFatal() const OVERRIDE { return true; }

  const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM"; }

 private:
  DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM);
};

class LoadClassSlowPathARM : public SlowPathCode {
 public:
  LoadClassSlowPathARM(HLoadClass* cls,
                       HInstruction* at,
                       uint32_t dex_pc,
                       bool do_clinit)
      : SlowPathCode(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
    DCHECK(at->IsLoadClass() || at->IsClinitCheck());
  }

  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    LocationSummary* locations = at_->GetLocations();

    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
    __ Bind(GetEntryLabel());
    SaveLiveRegisters(codegen, locations);

    InvokeRuntimeCallingConvention calling_convention;
    __ LoadImmediate(calling_convention.GetRegisterAt(0), cls_->GetTypeIndex());
    int32_t entry_point_offset = do_clinit_
        ? QUICK_ENTRY_POINT(pInitializeStaticStorage)
        : QUICK_ENTRY_POINT(pInitializeType);
    arm_codegen->InvokeRuntime(entry_point_offset, at_, dex_pc_, this);
    if (do_clinit_) {
      CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
    } else {
      CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
    }

    // Move the class to the desired location.
    Location out = locations->Out();
    if (out.IsValid()) {
      DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
      arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
    }
    RestoreLiveRegisters(codegen, locations);
    __ b(GetExitLabel());
  }

  const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM"; }

 private:
  // The class this slow path will load.
  HLoadClass* const cls_;

  // The instruction where this slow path is happening.
  // (Might be the load class or an initialization check).
  HInstruction* const at_;

  // The dex PC of `at_`.
  const uint32_t dex_pc_;

  // Whether to initialize the class.
  const bool do_clinit_;

  DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM);
};

class LoadStringSlowPathARM : public SlowPathCode {
 public:
  explicit LoadStringSlowPathARM(HLoadString* instruction) : SlowPathCode(instruction) {}

  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    LocationSummary* locations = instruction_->GetLocations();
    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));

    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
    __ Bind(GetEntryLabel());
    SaveLiveRegisters(codegen, locations);

    InvokeRuntimeCallingConvention calling_convention;
    const uint32_t string_index = instruction_->AsLoadString()->GetStringIndex();
    __ LoadImmediate(calling_convention.GetRegisterAt(0), string_index);
    arm_codegen->InvokeRuntime(
        QUICK_ENTRY_POINT(pResolveString), instruction_, instruction_->GetDexPc(), this);
    CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
    arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));

    RestoreLiveRegisters(codegen, locations);
    __ b(GetExitLabel());
  }

  const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM"; }

 private:
  DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM);
};

class TypeCheckSlowPathARM : public SlowPathCode {
 public:
  TypeCheckSlowPathARM(HInstruction* instruction, bool is_fatal)
      : SlowPathCode(instruction), is_fatal_(is_fatal) {}

  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    LocationSummary* locations = instruction_->GetLocations();
    Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0)
                                                        : locations->Out();
    DCHECK(instruction_->IsCheckCast()
           || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));

    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
    __ Bind(GetEntryLabel());

    if (!is_fatal_) {
      SaveLiveRegisters(codegen, locations);
    }

    // We're moving two locations to locations that could overlap, so we need a parallel
    // move resolver.
    InvokeRuntimeCallingConvention calling_convention;
    codegen->EmitParallelMoves(
        locations->InAt(1),
        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
        Primitive::kPrimNot,
        object_class,
        Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
        Primitive::kPrimNot);

    if (instruction_->IsInstanceOf()) {
      arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pInstanceofNonTrivial),
                                 instruction_,
                                 instruction_->GetDexPc(),
                                 this);
      CheckEntrypointTypes<
          kQuickInstanceofNonTrivial, uint32_t, const mirror::Class*, const mirror::Class*>();
      arm_codegen->Move32(locations->Out(), Location::RegisterLocation(R0));
    } else {
      DCHECK(instruction_->IsCheckCast());
      arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast),
                                 instruction_,
                                 instruction_->GetDexPc(),
                                 this);
      CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>();
    }

    if (!is_fatal_) {
      RestoreLiveRegisters(codegen, locations);
      __ b(GetExitLabel());
    }
  }

  const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM"; }

  bool IsFatal() const OVERRIDE { return is_fatal_; }

 private:
  const bool is_fatal_;

  DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM);
};

class DeoptimizationSlowPathARM : public SlowPathCode {
 public:
  explicit DeoptimizationSlowPathARM(HDeoptimize* instruction)
    : SlowPathCode(instruction) {}

  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
    __ Bind(GetEntryLabel());
    SaveLiveRegisters(codegen, instruction_->GetLocations());
    arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize),
                               instruction_,
                               instruction_->GetDexPc(),
                               this);
    CheckEntrypointTypes<kQuickDeoptimize, void, void>();
  }

  const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM"; }

 private:
  DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM);
};

class ArraySetSlowPathARM : public SlowPathCode {
 public:
  explicit ArraySetSlowPathARM(HInstruction* instruction) : SlowPathCode(instruction) {}

  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    LocationSummary* locations = instruction_->GetLocations();
    __ Bind(GetEntryLabel());
    SaveLiveRegisters(codegen, locations);

    InvokeRuntimeCallingConvention calling_convention;
    HParallelMove parallel_move(codegen->GetGraph()->GetArena());
    parallel_move.AddMove(
        locations->InAt(0),
        Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
        Primitive::kPrimNot,
        nullptr);
    parallel_move.AddMove(
        locations->InAt(1),
        Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
        Primitive::kPrimInt,
        nullptr);
    parallel_move.AddMove(
        locations->InAt(2),
        Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
        Primitive::kPrimNot,
        nullptr);
    codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);

    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
    arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject),
                               instruction_,
                               instruction_->GetDexPc(),
                               this);
    CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
    RestoreLiveRegisters(codegen, locations);
    __ b(GetExitLabel());
  }

  const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM"; }

 private:
  DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM);
};

// Slow path marking an object during a read barrier.
class ReadBarrierMarkSlowPathARM : public SlowPathCode {
 public:
  ReadBarrierMarkSlowPathARM(HInstruction* instruction, Location out, Location obj)
      : SlowPathCode(instruction), out_(out), obj_(obj) {
    DCHECK(kEmitCompilerReadBarrier);
  }

  const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM"; }

  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    LocationSummary* locations = instruction_->GetLocations();
    Register reg_out = out_.AsRegister<Register>();
    DCHECK(locations->CanCall());
    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
    DCHECK(instruction_->IsInstanceFieldGet() ||
           instruction_->IsStaticFieldGet() ||
           instruction_->IsArrayGet() ||
           instruction_->IsLoadClass() ||
           instruction_->IsLoadString() ||
           instruction_->IsInstanceOf() ||
           instruction_->IsCheckCast())
        << "Unexpected instruction in read barrier marking slow path: "
        << instruction_->DebugName();

    __ Bind(GetEntryLabel());
    SaveLiveRegisters(codegen, locations);

    InvokeRuntimeCallingConvention calling_convention;
    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
    arm_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), obj_);
    arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierMark),
                               instruction_,
                               instruction_->GetDexPc(),
                               this);
    CheckEntrypointTypes<kQuickReadBarrierMark, mirror::Object*, mirror::Object*>();
    arm_codegen->Move32(out_, Location::RegisterLocation(R0));

    RestoreLiveRegisters(codegen, locations);
    __ b(GetExitLabel());
  }

 private:
  const Location out_;
  const Location obj_;

  DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM);
};

// Slow path generating a read barrier for a heap reference.
class ReadBarrierForHeapReferenceSlowPathARM : public SlowPathCode {
 public:
  ReadBarrierForHeapReferenceSlowPathARM(HInstruction* instruction,
                                         Location out,
                                         Location ref,
                                         Location obj,
                                         uint32_t offset,
                                         Location index)
      : SlowPathCode(instruction),
        out_(out),
        ref_(ref),
        obj_(obj),
        offset_(offset),
        index_(index) {
    DCHECK(kEmitCompilerReadBarrier);
    // If `obj` is equal to `out` or `ref`, it means the initial object
    // has been overwritten by (or after) the heap object reference load
    // to be instrumented, e.g.:
    //
    //   __ LoadFromOffset(kLoadWord, out, out, offset);
    //   codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
    //
    // In that case, we have lost the information about the original
    // object, and the emitted read barrier cannot work properly.
    DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
    DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
  }

  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
    LocationSummary* locations = instruction_->GetLocations();
    Register reg_out = out_.AsRegister<Register>();
    DCHECK(locations->CanCall());
    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
    DCHECK(!instruction_->IsInvoke() ||
           (instruction_->IsInvokeStaticOrDirect() &&
            instruction_->GetLocations()->Intrinsified()))
        << "Unexpected instruction in read barrier for heap reference slow path: "
        << instruction_->DebugName();

    __ Bind(GetEntryLabel());
    SaveLiveRegisters(codegen, locations);

    // We may have to change the index's value, but as `index_` is a
    // constant member (like other "inputs" of this slow path),
    // introduce a copy of it, `index`.
    Location index = index_;
    if (index_.IsValid()) {
      // Handle `index_` for HArrayGet and intrinsic UnsafeGetObject.
      if (instruction_->IsArrayGet()) {
        // Compute the actual memory offset and store it in `index`.
        Register index_reg = index_.AsRegister<Register>();
        DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
        if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
          // We are about to change the value of `index_reg` (see the
          // calls to art::arm::Thumb2Assembler::Lsl and
          // art::arm::Thumb2Assembler::AddConstant below), but it has
          // not been saved by the previous call to
          // art::SlowPathCode::SaveLiveRegisters, as it is a
          // callee-save register --
          // art::SlowPathCode::SaveLiveRegisters does not consider
          // callee-save registers, as it has been designed with the
          // assumption that callee-save registers are supposed to be
          // handled by the called function.  So, as a callee-save
          // register, `index_reg` _would_ eventually be saved onto
          // the stack, but it would be too late: we would have
          // changed its value earlier.  Therefore, we manually save
          // it here into another freely available register,
          // `free_reg`, chosen of course among the caller-save
          // registers (as a callee-save `free_reg` register would
          // exhibit the same problem).
          //
          // Note we could have requested a temporary register from
          // the register allocator instead; but we prefer not to, as
          // this is a slow path, and we know we can find a
          // caller-save register that is available.
          Register free_reg = FindAvailableCallerSaveRegister(codegen);
          __ Mov(free_reg, index_reg);
          index_reg = free_reg;
          index = Location::RegisterLocation(index_reg);
        } else {
          // The initial register stored in `index_` has already been
          // saved in the call to art::SlowPathCode::SaveLiveRegisters
          // (as it is not a callee-save register), so we can freely
          // use it.
        }
        // Shifting the index value contained in `index_reg` by the scale
        // factor (2) cannot overflow in practice, as the runtime is
        // unable to allocate object arrays with a size larger than
        // 2^26 - 1 (that is, 2^28 - 4 bytes).
        __ Lsl(index_reg, index_reg, TIMES_4);
        static_assert(
            sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
            "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
        __ AddConstant(index_reg, index_reg, offset_);
      } else {
        DCHECK(instruction_->IsInvoke());
        DCHECK(instruction_->GetLocations()->Intrinsified());
        DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
               (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
            << instruction_->AsInvoke()->GetIntrinsic();
        DCHECK_EQ(offset_, 0U);
        DCHECK(index_.IsRegisterPair());
        // UnsafeGet's offset location is a register pair, the low
        // part contains the correct offset.
        index = index_.ToLow();
      }
    }

    // We're moving two or three locations to locations that could
    // overlap, so we need a parallel move resolver.
    InvokeRuntimeCallingConvention calling_convention;
    HParallelMove parallel_move(codegen->GetGraph()->GetArena());
    parallel_move.AddMove(ref_,
                          Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
                          Primitive::kPrimNot,
                          nullptr);
    parallel_move.AddMove(obj_,
                          Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
                          Primitive::kPrimNot,
                          nullptr);
    if (index.IsValid()) {
      parallel_move.AddMove(index,
                            Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
                            Primitive::kPrimInt,
                            nullptr);
      codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
    } else {
      codegen->GetMoveResolver()->EmitNativeCode(&parallel_move);
      __ LoadImmediate(calling_convention.GetRegisterAt(2), offset_);
    }
    arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierSlow),
                               instruction_,
                               instruction_->GetDexPc(),
                               this);
    CheckEntrypointTypes<
        kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
    arm_codegen->Move32(out_, Location::RegisterLocation(R0));

    RestoreLiveRegisters(codegen, locations);
    __ b(GetExitLabel());
  }

  const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM"; }

 private:
  Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
    size_t ref = static_cast<int>(ref_.AsRegister<Register>());
    size_t obj = static_cast<int>(obj_.AsRegister<Register>());
    for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
      if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
        return static_cast<Register>(i);
      }
    }
    // We shall never fail to find a free caller-save register, as
    // there are more than two core caller-save registers on ARM
    // (meaning it is possible to find one which is different from
    // `ref` and `obj`).
    DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
    LOG(FATAL) << "Could not find a free caller-save register";
    UNREACHABLE();
  }

  const Location out_;
  const Location ref_;
  const Location obj_;
  const uint32_t offset_;
  // An additional location containing an index to an array.
  // Only used for HArrayGet and the UnsafeGetObject &
  // UnsafeGetObjectVolatile intrinsics.
  const Location index_;

  DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM);
};

// Slow path generating a read barrier for a GC root.
class ReadBarrierForRootSlowPathARM : public SlowPathCode {
 public:
  ReadBarrierForRootSlowPathARM(HInstruction* instruction, Location out, Location root)
      : SlowPathCode(instruction), out_(out), root_(root) {
    DCHECK(kEmitCompilerReadBarrier);
  }

  void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
    LocationSummary* locations = instruction_->GetLocations();
    Register reg_out = out_.AsRegister<Register>();
    DCHECK(locations->CanCall());
    DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
    DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
        << "Unexpected instruction in read barrier for GC root slow path: "
        << instruction_->DebugName();

    __ Bind(GetEntryLabel());
    SaveLiveRegisters(codegen, locations);

    InvokeRuntimeCallingConvention calling_convention;
    CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen);
    arm_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_);
    arm_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierForRootSlow),
                               instruction_,
                               instruction_->GetDexPc(),
                               this);
    CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
    arm_codegen->Move32(out_, Location::RegisterLocation(R0));

    RestoreLiveRegisters(codegen, locations);
    __ b(GetExitLabel());
  }

  const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM"; }

 private:
  const Location out_;
  const Location root_;

  DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM);
};

#undef __
#define __ down_cast<ArmAssembler*>(GetAssembler())->

inline Condition ARMCondition(IfCondition cond) {
  switch (cond) {
    case kCondEQ: return EQ;
    case kCondNE: return NE;
    case kCondLT: return LT;
    case kCondLE: return LE;
    case kCondGT: return GT;
    case kCondGE: return GE;
    case kCondB:  return LO;
    case kCondBE: return LS;
    case kCondA:  return HI;
    case kCondAE: return HS;
  }
  LOG(FATAL) << "Unreachable";
  UNREACHABLE();
}

// Maps signed condition to unsigned condition.
inline Condition ARMUnsignedCondition(IfCondition cond) {
  switch (cond) {
    case kCondEQ: return EQ;
    case kCondNE: return NE;
    // Signed to unsigned.
    case kCondLT: return LO;
    case kCondLE: return LS;
    case kCondGT: return HI;
    case kCondGE: return HS;
    // Unsigned remain unchanged.
    case kCondB:  return LO;
    case kCondBE: return LS;
    case kCondA:  return HI;
    case kCondAE: return HS;
  }
  LOG(FATAL) << "Unreachable";
  UNREACHABLE();
}

inline Condition ARMFPCondition(IfCondition cond, bool gt_bias) {
  // The ARM condition codes can express all the necessary branches, see the
  // "Meaning (floating-point)" column in the table A8-1 of the ARMv7 reference manual.
  // There is no dex instruction or HIR that would need the missing conditions
  // "equal or unordered" or "not equal".
  switch (cond) {
    case kCondEQ: return EQ;
    case kCondNE: return NE /* unordered */;
    case kCondLT: return gt_bias ? CC : LT /* unordered */;
    case kCondLE: return gt_bias ? LS : LE /* unordered */;
    case kCondGT: return gt_bias ? HI /* unordered */ : GT;
    case kCondGE: return gt_bias ? CS /* unordered */ : GE;
    default:
      LOG(FATAL) << "UNREACHABLE";
      UNREACHABLE();
  }
}

void CodeGeneratorARM::DumpCoreRegister(std::ostream& stream, int reg) const {
  stream << Register(reg);
}

void CodeGeneratorARM::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
  stream << SRegister(reg);
}

size_t CodeGeneratorARM::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
  __ StoreToOffset(kStoreWord, static_cast<Register>(reg_id), SP, stack_index);
  return kArmWordSize;
}

size_t CodeGeneratorARM::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
  __ LoadFromOffset(kLoadWord, static_cast<Register>(reg_id), SP, stack_index);
  return kArmWordSize;
}

size_t CodeGeneratorARM::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
  __ StoreSToOffset(static_cast<SRegister>(reg_id), SP, stack_index);
  return kArmWordSize;
}

size_t CodeGeneratorARM::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
  __ LoadSFromOffset(static_cast<SRegister>(reg_id), SP, stack_index);
  return kArmWordSize;
}

CodeGeneratorARM::CodeGeneratorARM(HGraph* graph,
                                   const ArmInstructionSetFeatures& isa_features,
                                   const CompilerOptions& compiler_options,
                                   OptimizingCompilerStats* stats)
    : CodeGenerator(graph,
                    kNumberOfCoreRegisters,
                    kNumberOfSRegisters,
                    kNumberOfRegisterPairs,
                    ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
                                        arraysize(kCoreCalleeSaves)),
                    ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves),
                                        arraysize(kFpuCalleeSaves)),
                    compiler_options,
                    stats),
      block_labels_(nullptr),
      location_builder_(graph, this),
      instruction_visitor_(graph, this),
      move_resolver_(graph->GetArena(), this),
      assembler_(graph->GetArena()),
      isa_features_(isa_features),
      uint32_literals_(std::less<uint32_t>(),
                       graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
      method_patches_(MethodReferenceComparator(),
                      graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
      call_patches_(MethodReferenceComparator(),
                    graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
      relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
      pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
      boot_image_string_patches_(StringReferenceValueComparator(),
                                 graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
      pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
      boot_image_address_patches_(std::less<uint32_t>(),
                                  graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) {
  // Always save the LR register to mimic Quick.
  AddAllocatedRegister(Location::RegisterLocation(LR));
}

void CodeGeneratorARM::Finalize(CodeAllocator* allocator) {
  // Ensure that we fix up branches and literal loads and emit the literal pool.
  __ FinalizeCode();

  // Adjust native pc offsets in stack maps.
  for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) {
    uint32_t old_position = stack_map_stream_.GetStackMap(i).native_pc_offset;
    uint32_t new_position = __ GetAdjustedPosition(old_position);
    stack_map_stream_.SetStackMapNativePcOffset(i, new_position);
  }
  // Adjust pc offsets for the disassembly information.
  if (disasm_info_ != nullptr) {
    GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval();
    frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start);
    frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end);
    for (auto& it : *disasm_info_->GetInstructionIntervals()) {
      it.second.start = __ GetAdjustedPosition(it.second.start);
      it.second.end = __ GetAdjustedPosition(it.second.end);
    }
    for (auto& it : *disasm_info_->GetSlowPathIntervals()) {
      it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start);
      it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end);
    }
  }

  CodeGenerator::Finalize(allocator);
}

void CodeGeneratorARM::SetupBlockedRegisters() const {
  // Don't allocate the dalvik style register pair passing.
  blocked_register_pairs_[R1_R2] = true;

  // Stack register, LR and PC are always reserved.
  blocked_core_registers_[SP] = true;
  blocked_core_registers_[LR] = true;
  blocked_core_registers_[PC] = true;

  // Reserve thread register.
  blocked_core_registers_[TR] = true;

  // Reserve temp register.
  blocked_core_registers_[IP] = true;

  if (GetGraph()->IsDebuggable()) {
    // Stubs do not save callee-save floating point registers. If the graph
    // is debuggable, we need to deal with these registers differently. For
    // now, just block them.
    for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
      blocked_fpu_registers_[kFpuCalleeSaves[i]] = true;
    }
  }

  UpdateBlockedPairRegisters();
}

void CodeGeneratorARM::UpdateBlockedPairRegisters() const {
  for (int i = 0; i < kNumberOfRegisterPairs; i++) {
    ArmManagedRegister current =
        ArmManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i));
    if (blocked_core_registers_[current.AsRegisterPairLow()]
        || blocked_core_registers_[current.AsRegisterPairHigh()]) {
      blocked_register_pairs_[i] = true;
    }
  }
}

InstructionCodeGeneratorARM::InstructionCodeGeneratorARM(HGraph* graph, CodeGeneratorARM* codegen)
      : InstructionCodeGenerator(graph, codegen),
        assembler_(codegen->GetAssembler()),
        codegen_(codegen) {}

void CodeGeneratorARM::ComputeSpillMask() {
  core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
  DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
  // There is no easy instruction to restore just the PC on thumb2. We spill and
  // restore another arbitrary register.
  core_spill_mask_ |= (1 << kCoreAlwaysSpillRegister);
  fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
  // We use vpush and vpop for saving and restoring floating point registers, which take
  // a SRegister and the number of registers to save/restore after that SRegister. We
  // therefore update the `fpu_spill_mask_` to also contain those registers not allocated,
  // but in the range.
  if (fpu_spill_mask_ != 0) {
    uint32_t least_significant_bit = LeastSignificantBit(fpu_spill_mask_);
    uint32_t most_significant_bit = MostSignificantBit(fpu_spill_mask_);
    for (uint32_t i = least_significant_bit + 1 ; i < most_significant_bit; ++i) {
      fpu_spill_mask_ |= (1 << i);
    }
  }
}

static dwarf::Reg DWARFReg(Register reg) {
  return dwarf::Reg::ArmCore(static_cast<int>(reg));
}

static dwarf::Reg DWARFReg(SRegister reg) {
  return dwarf::Reg::ArmFp(static_cast<int>(reg));
}

void CodeGeneratorARM::GenerateFrameEntry() {
  bool skip_overflow_check =
      IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm);
  DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
  __ Bind(&frame_entry_label_);

  if (HasEmptyFrame()) {
    return;
  }

  if (!skip_overflow_check) {
    __ AddConstant(IP, SP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kArm)));
    __ LoadFromOffset(kLoadWord, IP, IP, 0);
    RecordPcInfo(nullptr, 0);
  }

  __ PushList(core_spill_mask_);
  __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(core_spill_mask_));
  __ cfi().RelOffsetForMany(DWARFReg(kMethodRegisterArgument), 0, core_spill_mask_, kArmWordSize);
  if (fpu_spill_mask_ != 0) {
    SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_));
    __ vpushs(start_register, POPCOUNT(fpu_spill_mask_));
    __ cfi().AdjustCFAOffset(kArmWordSize * POPCOUNT(fpu_spill_mask_));
    __ cfi().RelOffsetForMany(DWARFReg(S0), 0, fpu_spill_mask_, kArmWordSize);
  }
  int adjust = GetFrameSize() - FrameEntrySpillSize();
  __ AddConstant(SP, -adjust);
  __ cfi().AdjustCFAOffset(adjust);
  __ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, 0);
}

void CodeGeneratorARM::GenerateFrameExit() {
  if (HasEmptyFrame()) {
    __ bx(LR);
    return;
  }
  __ cfi().RememberState();
  int adjust = GetFrameSize() - FrameEntrySpillSize();
  __ AddConstant(SP, adjust);
  __ cfi().AdjustCFAOffset(-adjust);
  if (fpu_spill_mask_ != 0) {
    SRegister start_register = SRegister(LeastSignificantBit(fpu_spill_mask_));
    __ vpops(start_register, POPCOUNT(fpu_spill_mask_));
    __ cfi().AdjustCFAOffset(-kArmPointerSize * POPCOUNT(fpu_spill_mask_));
    __ cfi().RestoreMany(DWARFReg(SRegister(0)), fpu_spill_mask_);
  }
  // Pop LR into PC to return.
  DCHECK_NE(core_spill_mask_ & (1 << LR), 0U);
  uint32_t pop_mask = (core_spill_mask_ & (~(1 << LR))) | 1 << PC;
  __ PopList(pop_mask);
  __ cfi().RestoreState();
  __ cfi().DefCFAOffset(GetFrameSize());
}

void CodeGeneratorARM::Bind(HBasicBlock* block) {
  Label* label = GetLabelOf(block);
  __ BindTrackedLabel(label);
}

Location InvokeDexCallingConventionVisitorARM::GetNextLocation(Primitive::Type type) {
  switch (type) {
    case Primitive::kPrimBoolean:
    case Primitive::kPrimByte:
    case Primitive::kPrimChar:
    case Primitive::kPrimShort:
    case Primitive::kPrimInt:
    case Primitive::kPrimNot: {
      uint32_t index = gp_index_++;
      uint32_t stack_index = stack_index_++;
      if (index < calling_convention.GetNumberOfRegisters()) {
        return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
      } else {
        return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
      }
    }

    case Primitive::kPrimLong: {
      uint32_t index = gp_index_;
      uint32_t stack_index = stack_index_;
      gp_index_ += 2;
      stack_index_ += 2;
      if (index + 1 < calling_convention.GetNumberOfRegisters()) {
        if (calling_convention.GetRegisterAt(index) == R1) {
          // Skip R1, and use R2_R3 instead.
          gp_index_++;
          index++;
        }
      }
      if (index + 1 < calling_convention.GetNumberOfRegisters()) {
        DCHECK_EQ(calling_convention.GetRegisterAt(index) + 1,
                  calling_convention.GetRegisterAt(index + 1));

        return Location::RegisterPairLocation(calling_convention.GetRegisterAt(index),
                                              calling_convention.GetRegisterAt(index + 1));
      } else {
        return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
      }
    }

    case Primitive::kPrimFloat: {
      uint32_t stack_index = stack_index_++;
      if (float_index_ % 2 == 0) {
        float_index_ = std::max(double_index_, float_index_);
      }
      if (float_index_ < calling_convention.GetNumberOfFpuRegisters()) {
        return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(float_index_++));
      } else {
        return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index));
      }
    }

    case Primitive::kPrimDouble: {
      double_index_ = std::max(double_index_, RoundUp(float_index_, 2));
      uint32_t stack_index = stack_index_;
      stack_index_ += 2;
      if (double_index_ + 1 < calling_convention.GetNumberOfFpuRegisters()) {
        uint32_t index = double_index_;
        double_index_ += 2;
        Location result = Location::FpuRegisterPairLocation(
          calling_convention.GetFpuRegisterAt(index),
          calling_convention.GetFpuRegisterAt(index + 1));
        DCHECK(ExpectedPairLayout(result));
        return result;
      } else {
        return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index));
      }
    }

    case Primitive::kPrimVoid:
      LOG(FATAL) << "Unexpected parameter type " << type;
      break;
  }
  return Location::NoLocation();
}

Location InvokeDexCallingConventionVisitorARM::GetReturnLocation(Primitive::Type type) const {
  switch (type) {
    case Primitive::kPrimBoolean:
    case Primitive::kPrimByte:
    case Primitive::kPrimChar:
    case Primitive::kPrimShort:
    case Primitive::kPrimInt:
    case Primitive::kPrimNot: {
      return Location::RegisterLocation(R0);
    }

    case Primitive::kPrimFloat: {
      return Location::FpuRegisterLocation(S0);
    }

    case Primitive::kPrimLong: {
      return Location::RegisterPairLocation(R0, R1);
    }

    case Primitive::kPrimDouble: {
      return Location::FpuRegisterPairLocation(S0, S1);
    }

    case Primitive::kPrimVoid:
      return Location::NoLocation();
  }

  UNREACHABLE();
}

Location InvokeDexCallingConventionVisitorARM::GetMethodLocation() const {
  return Location::RegisterLocation(kMethodRegisterArgument);
}

void CodeGeneratorARM::Move32(Location destination, Location source) {
  if (source.Equals(destination)) {
    return;
  }
  if (destination.IsRegister()) {
    if (source.IsRegister()) {
      __ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>());
    } else if (source.IsFpuRegister()) {
      __ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>());
    } else {
      __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex());
    }
  } else if (destination.IsFpuRegister()) {
    if (source.IsRegister()) {
      __ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>());
    } else if (source.IsFpuRegister()) {
      __ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>());
    } else {
      __ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex());
    }
  } else {
    DCHECK(destination.IsStackSlot()) << destination;
    if (source.IsRegister()) {
      __ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, destination.GetStackIndex());
    } else if (source.IsFpuRegister()) {
      __ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex());
    } else {
      DCHECK(source.IsStackSlot()) << source;
      __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex());
      __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
    }
  }
}

void CodeGeneratorARM::Move64(Location destination, Location source) {
  if (source.Equals(destination)) {
    return;
  }
  if (destination.IsRegisterPair()) {
    if (source.IsRegisterPair()) {
      EmitParallelMoves(
          Location::RegisterLocation(source.AsRegisterPairHigh<Register>()),
          Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()),
          Primitive::kPrimInt,
          Location::RegisterLocation(source.AsRegisterPairLow<Register>()),
          Location::RegisterLocation(destination.AsRegisterPairLow<Register>()),
          Primitive::kPrimInt);
    } else if (source.IsFpuRegister()) {
      UNIMPLEMENTED(FATAL);
    } else if (source.IsFpuRegisterPair()) {
      __ vmovrrd(destination.AsRegisterPairLow<Register>(),
                 destination.AsRegisterPairHigh<Register>(),
                 FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
    } else {
      DCHECK(source.IsDoubleStackSlot());
      DCHECK(ExpectedPairLayout(destination));
      __ LoadFromOffset(kLoadWordPair, destination.AsRegisterPairLow<Register>(),
                        SP, source.GetStackIndex());
    }
  } else if (destination.IsFpuRegisterPair()) {
    if (source.IsDoubleStackSlot()) {
      __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
                         SP,
                         source.GetStackIndex());
    } else if (source.IsRegisterPair()) {
      __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
                 source.AsRegisterPairLow<Register>(),
                 source.AsRegisterPairHigh<Register>());
    } else {
      UNIMPLEMENTED(FATAL);
    }
  } else {
    DCHECK(destination.IsDoubleStackSlot());
    if (source.IsRegisterPair()) {
      // No conflict possible, so just do the moves.
      if (source.AsRegisterPairLow<Register>() == R1) {
        DCHECK_EQ(source.AsRegisterPairHigh<Register>(), R2);
        __ StoreToOffset(kStoreWord, R1, SP, destination.GetStackIndex());
        __ StoreToOffset(kStoreWord, R2, SP, destination.GetHighStackIndex(kArmWordSize));
      } else {
        __ StoreToOffset(kStoreWordPair, source.AsRegisterPairLow<Register>(),
                         SP, destination.GetStackIndex());
      }
    } else if (source.IsFpuRegisterPair()) {
      __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()),
                        SP,
                        destination.GetStackIndex());
    } else {
      DCHECK(source.IsDoubleStackSlot());
      EmitParallelMoves(
          Location::StackSlot(source.GetStackIndex()),
          Location::StackSlot(destination.GetStackIndex()),
          Primitive::kPrimInt,
          Location::StackSlot(source.GetHighStackIndex(kArmWordSize)),
          Location::StackSlot(destination.GetHighStackIndex(kArmWordSize)),
          Primitive::kPrimInt);
    }
  }
}

void CodeGeneratorARM::MoveConstant(Location location, int32_t value) {
  DCHECK(location.IsRegister());
  __ LoadImmediate(location.AsRegister<Register>(), value);
}

void CodeGeneratorARM::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
  HParallelMove move(GetGraph()->GetArena());
  move.AddMove(src, dst, dst_type, nullptr);
  GetMoveResolver()->EmitNativeCode(&move);
}

void CodeGeneratorARM::AddLocationAsTemp(Location location, LocationSummary* locations) {
  if (location.IsRegister()) {
    locations->AddTemp(location);
  } else if (location.IsRegisterPair()) {
    locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
    locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
  } else {
    UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
  }
}

void CodeGeneratorARM::InvokeRuntime(QuickEntrypointEnum entrypoint,
                                     HInstruction* instruction,
                                     uint32_t dex_pc,
                                     SlowPathCode* slow_path) {
  InvokeRuntime(GetThreadOffset<kArmWordSize>(entrypoint).Int32Value(),
                instruction,
                dex_pc,
                slow_path);
}

void CodeGeneratorARM::InvokeRuntime(int32_t entry_point_offset,
                                     HInstruction* instruction,
                                     uint32_t dex_pc,
                                     SlowPathCode* slow_path) {
  ValidateInvokeRuntime(instruction, slow_path);
  __ LoadFromOffset(kLoadWord, LR, TR, entry_point_offset);
  __ blx(LR);
  RecordPcInfo(instruction, dex_pc, slow_path);
}

void InstructionCodeGeneratorARM::HandleGoto(HInstruction* got, HBasicBlock* successor) {
  DCHECK(!successor->IsExitBlock());

  HBasicBlock* block = got->GetBlock();
  HInstruction* previous = got->GetPrevious();

  HLoopInformation* info = block->GetLoopInformation();
  if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
    codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
    GenerateSuspendCheck(info->GetSuspendCheck(), successor);
    return;
  }

  if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
    GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
  }
  if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) {
    __ b(codegen_->GetLabelOf(successor));
  }
}

void LocationsBuilderARM::VisitGoto(HGoto* got) {
  got->SetLocations(nullptr);
}

void InstructionCodeGeneratorARM::VisitGoto(HGoto* got) {
  HandleGoto(got, got->GetSuccessor());
}

void LocationsBuilderARM::VisitTryBoundary(HTryBoundary* try_boundary) {
  try_boundary->SetLocations(nullptr);
}

void InstructionCodeGeneratorARM::VisitTryBoundary(HTryBoundary* try_boundary) {
  HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
  if (!successor->IsExitBlock()) {
    HandleGoto(try_boundary, successor);
  }
}

void LocationsBuilderARM::VisitExit(HExit* exit) {
  exit->SetLocations(nullptr);
}

void InstructionCodeGeneratorARM::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
}

void InstructionCodeGeneratorARM::GenerateFPJumps(HCondition* cond,
                                                  Label* true_label,
                                                  Label* false_label ATTRIBUTE_UNUSED) {
  __ vmstat();  // transfer FP status register to ARM APSR.
  __ b(true_label, ARMFPCondition(cond->GetCondition(), cond->IsGtBias()));
}

void InstructionCodeGeneratorARM::GenerateLongComparesAndJumps(HCondition* cond,
                                                               Label* true_label,
                                                               Label* false_label) {
  LocationSummary* locations = cond->GetLocations();
  Location left = locations->InAt(0);
  Location right = locations->InAt(1);
  IfCondition if_cond = cond->GetCondition();

  Register left_high = left.AsRegisterPairHigh<Register>();
  Register left_low = left.AsRegisterPairLow<Register>();
  IfCondition true_high_cond = if_cond;
  IfCondition false_high_cond = cond->GetOppositeCondition();
  Condition final_condition = ARMUnsignedCondition(if_cond);  // unsigned on lower part

  // Set the conditions for the test, remembering that == needs to be
  // decided using the low words.
  // TODO: consider avoiding jumps with temporary and CMP low+SBC high
  switch (if_cond) {
    case kCondEQ:
    case kCondNE:
      // Nothing to do.
      break;
    case kCondLT:
      false_high_cond = kCondGT;
      break;
    case kCondLE:
      true_high_cond = kCondLT;
      break;
    case kCondGT:
      false_high_cond = kCondLT;
      break;
    case kCondGE:
      true_high_cond = kCondGT;
      break;
    case kCondB:
      false_high_cond = kCondA;
      break;
    case kCondBE:
      true_high_cond = kCondB;
      break;
    case kCondA:
      false_high_cond = kCondB;
      break;
    case kCondAE:
      true_high_cond = kCondA;
      break;
  }
  if (right.IsConstant()) {
    int64_t value = right.GetConstant()->AsLongConstant()->GetValue();
    int32_t val_low = Low32Bits(value);
    int32_t val_high = High32Bits(value);

    __ CmpConstant(left_high, val_high);
    if (if_cond == kCondNE) {
      __ b(true_label, ARMCondition(true_high_cond));
    } else if (if_cond == kCondEQ) {
      __ b(false_label, ARMCondition(false_high_cond));
    } else {
      __ b(true_label, ARMCondition(true_high_cond));
      __ b(false_label, ARMCondition(false_high_cond));
    }
    // Must be equal high, so compare the lows.
    __ CmpConstant(left_low, val_low);
  } else {
    Register right_high = right.AsRegisterPairHigh<Register>();
    Register right_low = right.AsRegisterPairLow<Register>();

    __ cmp(left_high, ShifterOperand(right_high));
    if (if_cond == kCondNE) {
      __ b(true_label, ARMCondition(true_high_cond));
    } else if (if_cond == kCondEQ) {
      __ b(false_label, ARMCondition(false_high_cond));
    } else {
      __ b(true_label, ARMCondition(true_high_cond));
      __ b(false_label, ARMCondition(false_high_cond));
    }
    // Must be equal high, so compare the lows.
    __ cmp(left_low, ShifterOperand(right_low));
  }
  // The last comparison might be unsigned.
  // TODO: optimize cases where this is always true/false
  __ b(true_label, final_condition);
}

void InstructionCodeGeneratorARM::GenerateCompareTestAndBranch(HCondition* condition,
                                                               Label* true_target_in,
                                                               Label* false_target_in) {
  // Generated branching requires both targets to be explicit. If either of the
  // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead.
  Label fallthrough_target;
  Label* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in;
  Label* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in;

  LocationSummary* locations = condition->GetLocations();
  Location left = locations->InAt(0);
  Location right = locations->InAt(1);

  Primitive::Type type = condition->InputAt(0)->GetType();
  switch (type) {
    case Primitive::kPrimLong:
      GenerateLongComparesAndJumps(condition, true_target, false_target);
      break;
    case Primitive::kPrimFloat:
      __ vcmps(left.AsFpuRegister<SRegister>(), right.AsFpuRegister<SRegister>());
      GenerateFPJumps(condition, true_target, false_target);
      break;
    case Primitive::kPrimDouble:
      __ vcmpd(FromLowSToD(left.AsFpuRegisterPairLow<SRegister>()),
               FromLowSToD(right.AsFpuRegisterPairLow<SRegister>()));
      GenerateFPJumps(condition, true_target, false_target);
      break;
    default:
      LOG(FATAL) << "Unexpected compare type " << type;
  }

  if (false_target != &fallthrough_target) {
    __ b(false_target);
  }

  if (fallthrough_target.IsLinked()) {
    __ Bind(&fallthrough_target);
  }
}

void InstructionCodeGeneratorARM::GenerateTestAndBranch(HInstruction* instruction,
                                                        size_t condition_input_index,
                                                        Label* true_target,
                                                        Label* false_target) {
  HInstruction* cond = instruction->InputAt(condition_input_index);

  if (true_target == nullptr && false_target == nullptr) {
    // Nothing to do. The code always falls through.
    return;
  } else if (cond->IsIntConstant()) {
    // Constant condition, statically compared against "true" (integer value 1).
    if (cond->AsIntConstant()->IsTrue()) {
      if (true_target != nullptr) {
        __ b(true_target);
      }
    } else {
      DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
      if (false_target != nullptr) {
        __ b(false_target);
      }
    }
    return;
  }

  // The following code generates these patterns:
  //  (1) true_target == nullptr && false_target != nullptr
  //        - opposite condition true => branch to false_target
  //  (2) true_target != nullptr && false_target == nullptr
  //        - condition true => branch to true_target
  //  (3) true_target != nullptr && false_target != nullptr
  //        - condition true => branch to true_target
  //        - branch to false_target
  if (IsBooleanValueOrMaterializedCondition(cond)) {
    // Condition has been materialized, compare the output to 0.
    Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
    DCHECK(cond_val.IsRegister());
    if (true_target == nullptr) {
      __ CompareAndBranchIfZero(cond_val.AsRegister<Register>(), false_target);
    } else {
      __ CompareAndBranchIfNonZero(cond_val.AsRegister<Register>(), true_target);
    }
  } else {
    // Condition has not been materialized. Use its inputs as the comparison and
    // its condition as the branch condition.
    HCondition* condition = cond->AsCondition();

    // If this is a long or FP comparison that has been folded into
    // the HCondition, generate the comparison directly.
    Primitive::Type type = condition->InputAt(0)->GetType();
    if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) {
      GenerateCompareTestAndBranch(condition, true_target, false_target);
      return;
    }

    LocationSummary* locations = cond->GetLocations();
    DCHECK(locations->InAt(0).IsRegister());
    Register left = locations->InAt(0).AsRegister<Register>();
    Location right = locations->InAt(1);
    if (right.IsRegister()) {
      __ cmp(left, ShifterOperand(right.AsRegister<Register>()));
    } else {
      DCHECK(right.IsConstant());
      __ CmpConstant(left, CodeGenerator::GetInt32ValueOf(right.GetConstant()));
    }
    if (true_target == nullptr) {
      __ b(false_target, ARMCondition(condition->GetOppositeCondition()));
    } else {
      __ b(true_target, ARMCondition(condition->GetCondition()));
    }
  }

  // If neither branch falls through (case 3), the conditional branch to `true_target`
  // was already emitted (case 2) and we need to emit a jump to `false_target`.
  if (true_target != nullptr && false_target != nullptr) {
    __ b(false_target);
  }
}

void LocationsBuilderARM::VisitIf(HIf* if_instr) {
  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
  if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
    locations->SetInAt(0, Location::RequiresRegister());
  }
}

void InstructionCodeGeneratorARM::VisitIf(HIf* if_instr) {
  HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
  HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
  Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
      nullptr : codegen_->GetLabelOf(true_successor);
  Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
      nullptr : codegen_->GetLabelOf(false_successor);
  GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
}

void LocationsBuilderARM::VisitDeoptimize(HDeoptimize* deoptimize) {
  LocationSummary* locations = new (GetGraph()->GetArena())
      LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
  if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
    locations->SetInAt(0, Location::RequiresRegister());
  }
}

void InstructionCodeGeneratorARM::VisitDeoptimize(HDeoptimize* deoptimize) {
  SlowPathCode* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM>(deoptimize);
  GenerateTestAndBranch(deoptimize,
                        /* condition_input_index */ 0,
                        slow_path->GetEntryLabel(),
                        /* false_target */ nullptr);
}

void LocationsBuilderARM::VisitSelect(HSelect* select) {
  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
  if (Primitive::IsFloatingPointType(select->GetType())) {
    locations->SetInAt(0, Location::RequiresFpuRegister());
    locations->SetInAt(1, Location::RequiresFpuRegister());
  } else {
    locations->SetInAt(0, Location::RequiresRegister());
    locations->SetInAt(1, Location::RequiresRegister());
  }
  if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
    locations->SetInAt(2, Location::RequiresRegister());
  }
  locations->SetOut(Location::SameAsFirstInput());
}

void InstructionCodeGeneratorARM::VisitSelect(HSelect* select) {
  LocationSummary* locations = select->GetLocations();
  Label false_target;
  GenerateTestAndBranch(select,
                        /* condition_input_index */ 2,
                        /* true_target */ nullptr,
                        &false_target);
  codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
  __ Bind(&false_target);
}

void LocationsBuilderARM::VisitNativeDebugInfo(HNativeDebugInfo* info) {
  new (GetGraph()->GetArena()) LocationSummary(info);
}

void InstructionCodeGeneratorARM::VisitNativeDebugInfo(HNativeDebugInfo*) {
  // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
}

void CodeGeneratorARM::GenerateNop() {
  __ nop();
}

void LocationsBuilderARM::HandleCondition(HCondition* cond) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall);
  // Handle the long/FP comparisons made in instruction simplification.
  switch (cond->InputAt(0)->GetType()) {
    case Primitive::kPrimLong:
      locations->SetInAt(0, Location::RequiresRegister());
      locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
      if (!cond->IsEmittedAtUseSite()) {
        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
      }
      break;

    case Primitive::kPrimFloat:
    case Primitive::kPrimDouble:
      locations->SetInAt(0, Location::RequiresFpuRegister());
      locations->SetInAt(1, Location::RequiresFpuRegister());
      if (!cond->IsEmittedAtUseSite()) {
        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
      }
      break;

    default:
      locations->SetInAt(0, Location::RequiresRegister());
      locations->SetInAt(1, Location::RegisterOrConstant(cond->InputAt(1)));
      if (!cond->IsEmittedAtUseSite()) {
        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
      }
  }
}

void InstructionCodeGeneratorARM::HandleCondition(HCondition* cond) {
  if (cond->IsEmittedAtUseSite()) {
    return;
  }

  LocationSummary* locations = cond->GetLocations();
  Location left = locations->InAt(0);
  Location right = locations->InAt(1);
  Register out = locations->Out().AsRegister<Register>();
  Label true_label, false_label;

  switch (cond->InputAt(0)->GetType()) {
    default: {
      // Integer case.
      if (right.IsRegister()) {
        __ cmp(left.AsRegister<Register>(), ShifterOperand(right.AsRegister<Register>()));
      } else {
        DCHECK(right.IsConstant());
        __ CmpConstant(left.AsRegister<Register>(),
                       CodeGenerator::GetInt32ValueOf(right.GetConstant()));
      }
      __ it(ARMCondition(cond->GetCondition()), kItElse);
      __ mov(locations->Out().AsRegister<Register>(), ShifterOperand(1),
             ARMCondition(cond->GetCondition()));
      __ mov(locations->Out().AsRegister<Register>(), ShifterOperand(0),
             ARMCondition(cond->GetOppositeCondition()));
      return;
    }
    case Primitive::kPrimLong:
      GenerateLongComparesAndJumps(cond, &true_label, &false_label);
      break;
    case Primitive::kPrimFloat:
      __ vcmps(left.AsFpuRegister<SRegister>(), right.AsFpuRegister<SRegister>());
      GenerateFPJumps(cond, &true_label, &false_label);
      break;
    case Primitive::kPrimDouble:
      __ vcmpd(FromLowSToD(left.AsFpuRegisterPairLow<SRegister>()),
               FromLowSToD(right.AsFpuRegisterPairLow<SRegister>()));
      GenerateFPJumps(cond, &true_label, &false_label);
      break;
  }

  // Convert the jumps into the result.
  Label done_label;

  // False case: result = 0.
  __ Bind(&false_label);
  __ LoadImmediate(out, 0);
  __ b(&done_label);

  // True case: result = 1.
  __ Bind(&true_label);
  __ LoadImmediate(out, 1);
  __ Bind(&done_label);
}

void LocationsBuilderARM::VisitEqual(HEqual* comp) {
  HandleCondition(comp);
}

void InstructionCodeGeneratorARM::VisitEqual(HEqual* comp) {
  HandleCondition(comp);
}

void LocationsBuilderARM::VisitNotEqual(HNotEqual* comp) {
  HandleCondition(comp);
}

void InstructionCodeGeneratorARM::VisitNotEqual(HNotEqual* comp) {
  HandleCondition(comp);
}

void LocationsBuilderARM::VisitLessThan(HLessThan* comp) {
  HandleCondition(comp);
}

void InstructionCodeGeneratorARM::VisitLessThan(HLessThan* comp) {
  HandleCondition(comp);
}

void LocationsBuilderARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
  HandleCondition(comp);
}

void InstructionCodeGeneratorARM::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
  HandleCondition(comp);
}

void LocationsBuilderARM::VisitGreaterThan(HGreaterThan* comp) {
  HandleCondition(comp);
}

void InstructionCodeGeneratorARM::VisitGreaterThan(HGreaterThan* comp) {
  HandleCondition(comp);
}

void LocationsBuilderARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
  HandleCondition(comp);
}

void InstructionCodeGeneratorARM::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
  HandleCondition(comp);
}

void LocationsBuilderARM::VisitBelow(HBelow* comp) {
  HandleCondition(comp);
}

void InstructionCodeGeneratorARM::VisitBelow(HBelow* comp) {
  HandleCondition(comp);
}

void LocationsBuilderARM::VisitBelowOrEqual(HBelowOrEqual* comp) {
  HandleCondition(comp);
}

void InstructionCodeGeneratorARM::VisitBelowOrEqual(HBelowOrEqual* comp) {
  HandleCondition(comp);
}

void LocationsBuilderARM::VisitAbove(HAbove* comp) {
  HandleCondition(comp);
}

void InstructionCodeGeneratorARM::VisitAbove(HAbove* comp) {
  HandleCondition(comp);
}

void LocationsBuilderARM::VisitAboveOrEqual(HAboveOrEqual* comp) {
  HandleCondition(comp);
}

void InstructionCodeGeneratorARM::VisitAboveOrEqual(HAboveOrEqual* comp) {
  HandleCondition(comp);
}

void LocationsBuilderARM::VisitIntConstant(HIntConstant* constant) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
  locations->SetOut(Location::ConstantLocation(constant));
}

void InstructionCodeGeneratorARM::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
  // Will be generated at use site.
}

void LocationsBuilderARM::VisitNullConstant(HNullConstant* constant) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
  locations->SetOut(Location::ConstantLocation(constant));
}

void InstructionCodeGeneratorARM::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
  // Will be generated at use site.
}

void LocationsBuilderARM::VisitLongConstant(HLongConstant* constant) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
  locations->SetOut(Location::ConstantLocation(constant));
}

void InstructionCodeGeneratorARM::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
  // Will be generated at use site.
}

void LocationsBuilderARM::VisitFloatConstant(HFloatConstant* constant) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
  locations->SetOut(Location::ConstantLocation(constant));
}

void InstructionCodeGeneratorARM::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
  // Will be generated at use site.
}

void LocationsBuilderARM::VisitDoubleConstant(HDoubleConstant* constant) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
  locations->SetOut(Location::ConstantLocation(constant));
}

void InstructionCodeGeneratorARM::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) {
  // Will be generated at use site.
}

void LocationsBuilderARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
  memory_barrier->SetLocations(nullptr);
}

void InstructionCodeGeneratorARM::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
  codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
}

void LocationsBuilderARM::VisitReturnVoid(HReturnVoid* ret) {
  ret->SetLocations(nullptr);
}

void InstructionCodeGeneratorARM::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
  codegen_->GenerateFrameExit();
}

void LocationsBuilderARM::VisitReturn(HReturn* ret) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
  locations->SetInAt(0, parameter_visitor_.GetReturnLocation(ret->InputAt(0)->GetType()));
}

void InstructionCodeGeneratorARM::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) {
  codegen_->GenerateFrameExit();
}

void LocationsBuilderARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
  // The trampoline uses the same calling convention as dex calling conventions,
  // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
  // the method_idx.
  HandleInvoke(invoke);
}

void InstructionCodeGeneratorARM::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
  codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
}

void LocationsBuilderARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
  // Explicit clinit checks triggered by static invokes must have been pruned by
  // art::PrepareForRegisterAllocation.
  DCHECK(!invoke->IsStaticWithExplicitClinitCheck());

  IntrinsicLocationsBuilderARM intrinsic(GetGraph()->GetArena(),
                                         codegen_->GetAssembler(),
                                         codegen_->GetInstructionSetFeatures());
  if (intrinsic.TryDispatch(invoke)) {
    if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) {
      invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
    }
    return;
  }

  HandleInvoke(invoke);

  // For PC-relative dex cache the invoke has an extra input, the PC-relative address base.
  if (invoke->HasPcRelativeDexCache()) {
    invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
  }
}

static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM* codegen) {
  if (invoke->GetLocations()->Intrinsified()) {
    IntrinsicCodeGeneratorARM intrinsic(codegen);
    intrinsic.Dispatch(invoke);
    return true;
  }
  return false;
}

void InstructionCodeGeneratorARM::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
  // Explicit clinit checks triggered by static invokes must have been pruned by
  // art::PrepareForRegisterAllocation.
  DCHECK(!invoke->IsStaticWithExplicitClinitCheck());

  if (TryGenerateIntrinsicCode(invoke, codegen_)) {
    return;
  }

  LocationSummary* locations = invoke->GetLocations();
  codegen_->GenerateStaticOrDirectCall(
      invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}

void LocationsBuilderARM::HandleInvoke(HInvoke* invoke) {
  InvokeDexCallingConventionVisitorARM calling_convention_visitor;
  CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
}

void LocationsBuilderARM::VisitInvokeVirtual(HInvokeVirtual* invoke) {
  IntrinsicLocationsBuilderARM intrinsic(GetGraph()->GetArena(),
                                         codegen_->GetAssembler(),
                                         codegen_->GetInstructionSetFeatures());
  if (intrinsic.TryDispatch(invoke)) {
    return;
  }

  HandleInvoke(invoke);
}

void InstructionCodeGeneratorARM::VisitInvokeVirtual(HInvokeVirtual* invoke) {
  if (TryGenerateIntrinsicCode(invoke, codegen_)) {
    return;
  }

  codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
  DCHECK(!codegen_->IsLeafMethod());
  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}

void LocationsBuilderARM::VisitInvokeInterface(HInvokeInterface* invoke) {
  HandleInvoke(invoke);
  // Add the hidden argument.
  invoke->GetLocations()->AddTemp(Location::RegisterLocation(R12));
}

void InstructionCodeGeneratorARM::VisitInvokeInterface(HInvokeInterface* invoke) {
  // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
  LocationSummary* locations = invoke->GetLocations();
  Register temp = locations->GetTemp(0).AsRegister<Register>();
  Register hidden_reg = locations->GetTemp(1).AsRegister<Register>();
  Location receiver = locations->InAt(0);
  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();

  // Set the hidden argument. This is safe to do this here, as R12
  // won't be modified thereafter, before the `blx` (call) instruction.
  DCHECK_EQ(R12, hidden_reg);
  __ LoadImmediate(hidden_reg, invoke->GetDexMethodIndex());

  if (receiver.IsStackSlot()) {
    __ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex());
    // /* HeapReference<Class> */ temp = temp->klass_
    __ LoadFromOffset(kLoadWord, temp, temp, class_offset);
  } else {
    // /* HeapReference<Class> */ temp = receiver->klass_
    __ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
  }
  codegen_->MaybeRecordImplicitNullCheck(invoke);
  // Instead of simply (possibly) unpoisoning `temp` here, we should
  // emit a read barrier for the previous class reference load.
  // However this is not required in practice, as this is an
  // intermediate/temporary reference and because the current
  // concurrent copying collector keeps the from-space memory
  // intact/accessible until the end of the marking phase (the
  // concurrent copying collector may not in the future).
  __ MaybeUnpoisonHeapReference(temp);
  __ LoadFromOffset(kLoadWord, temp, temp,
        mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
  uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
      invoke->GetImtIndex() % ImTable::kSize, kArmPointerSize));
  // temp = temp->GetImtEntryAt(method_offset);
  __ LoadFromOffset(kLoadWord, temp, temp, method_offset);
  uint32_t entry_point =
      ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmWordSize).Int32Value();
  // LR = temp->GetEntryPoint();
  __ LoadFromOffset(kLoadWord, LR, temp, entry_point);
  // LR();
  __ blx(LR);
  DCHECK(!codegen_->IsLeafMethod());
  codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}

void LocationsBuilderARM::VisitNeg(HNeg* neg) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
  switch (neg->GetResultType()) {
    case Primitive::kPrimInt: {
      locations->SetInAt(0, Location::RequiresRegister());
      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
      break;
    }
    case Primitive::kPrimLong: {
      locations->SetInAt(0, Location::RequiresRegister());
      locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
      break;
    }

    case Primitive::kPrimFloat:
    case Primitive::kPrimDouble:
      locations->SetInAt(0, Location::RequiresFpuRegister());
      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
      break;

    default:
      LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
  }
}

void InstructionCodeGeneratorARM::VisitNeg(HNeg* neg) {
  LocationSummary* locations = neg->GetLocations();
  Location out = locations->Out();
  Location in = locations->InAt(0);
  switch (neg->GetResultType()) {
    case Primitive::kPrimInt:
      DCHECK(in.IsRegister());
      __ rsb(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(0));
      break;

    case Primitive::kPrimLong:
      DCHECK(in.IsRegisterPair());
      // out.lo = 0 - in.lo (and update the carry/borrow (C) flag)
      __ rsbs(out.AsRegisterPairLow<Register>(),
              in.AsRegisterPairLow<Register>(),
              ShifterOperand(0));
      // We cannot emit an RSC (Reverse Subtract with Carry)
      // instruction here, as it does not exist in the Thumb-2
      // instruction set.  We use the following approach
      // using SBC and SUB instead.
      //
      // out.hi = -C
      __ sbc(out.AsRegisterPairHigh<Register>(),
             out.AsRegisterPairHigh<Register>(),
             ShifterOperand(out.AsRegisterPairHigh<Register>()));
      // out.hi = out.hi - in.hi
      __ sub(out.AsRegisterPairHigh<Register>(),
             out.AsRegisterPairHigh<Register>(),
             ShifterOperand(in.AsRegisterPairHigh<Register>()));
      break;

    case Primitive::kPrimFloat:
      DCHECK(in.IsFpuRegister());
      __ vnegs(out.AsFpuRegister<SRegister>(), in.AsFpuRegister<SRegister>());
      break;

    case Primitive::kPrimDouble:
      DCHECK(in.IsFpuRegisterPair());
      __ vnegd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
               FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
      break;

    default:
      LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
  }
}

void LocationsBuilderARM::VisitTypeConversion(HTypeConversion* conversion) {
  Primitive::Type result_type = conversion->GetResultType();
  Primitive::Type input_type = conversion->GetInputType();
  DCHECK_NE(result_type, input_type);

  // The float-to-long, double-to-long and long-to-float type conversions
  // rely on a call to the runtime.
  LocationSummary::CallKind call_kind =
      (((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
        && result_type == Primitive::kPrimLong)
       || (input_type == Primitive::kPrimLong && result_type == Primitive::kPrimFloat))
      ? LocationSummary::kCall
      : LocationSummary::kNoCall;
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);

  // The Java language does not allow treating boolean as an integral type but
  // our bit representation makes it safe.

  switch (result_type) {
    case Primitive::kPrimByte:
      switch (input_type) {
        case Primitive::kPrimLong:
          // Type conversion from long to byte is a result of code transformations.
        case Primitive::kPrimBoolean:
          // Boolean input is a result of code transformations.
        case Primitive::kPrimShort:
        case Primitive::kPrimInt:
        case Primitive::kPrimChar:
          // Processing a Dex `int-to-byte' instruction.
          locations->SetInAt(0, Location::RequiresRegister());
          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
          break;

        default:
          LOG(FATAL) << "Unexpected type conversion from " << input_type
                     << " to " << result_type;
      }
      break;

    case Primitive::kPrimShort:
      switch (input_type) {
        case Primitive::kPrimLong:
          // Type conversion from long to short is a result of code transformations.
        case Primitive::kPrimBoolean:
          // Boolean input is a result of code transformations.
        case Primitive::kPrimByte:
        case Primitive::kPrimInt:
        case Primitive::kPrimChar:
          // Processing a Dex `int-to-short' instruction.
          locations->SetInAt(0, Location::RequiresRegister());
          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
          break;

        default:
          LOG(FATAL) << "Unexpected type conversion from " << input_type
                     << " to " << result_type;
      }
      break;

    case Primitive::kPrimInt:
      switch (input_type) {
        case Primitive::kPrimLong:
          // Processing a Dex `long-to-int' instruction.
          locations->SetInAt(0, Location::Any());
          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
          break;

        case Primitive::kPrimFloat:
          // Processing a Dex `float-to-int' instruction.
          locations->SetInAt(0, Location::RequiresFpuRegister());
          locations->SetOut(Location::RequiresRegister());
          locations->AddTemp(Location::RequiresFpuRegister());
          break;

        case Primitive::kPrimDouble:
          // Processing a Dex `double-to-int' instruction.
          locations->SetInAt(0, Location::RequiresFpuRegister());
          locations->SetOut(Location::RequiresRegister());
          locations->AddTemp(Location::RequiresFpuRegister());
          break;

        default:
          LOG(FATAL) << "Unexpected type conversion from " << input_type
                     << " to " << result_type;
      }
      break;

    case Primitive::kPrimLong:
      switch (input_type) {
        case Primitive::kPrimBoolean:
          // Boolean input is a result of code transformations.
        case Primitive::kPrimByte:
        case Primitive::kPrimShort:
        case Primitive::kPrimInt:
        case Primitive::kPrimChar:
          // Processing a Dex `int-to-long' instruction.
          locations->SetInAt(0, Location::RequiresRegister());
          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
          break;

        case Primitive::kPrimFloat: {
          // Processing a Dex `float-to-long' instruction.
          InvokeRuntimeCallingConvention calling_convention;
          locations->SetInAt(0, Location::FpuRegisterLocation(
              calling_convention.GetFpuRegisterAt(0)));
          locations->SetOut(Location::RegisterPairLocation(R0, R1));
          break;
        }

        case Primitive::kPrimDouble: {
          // Processing a Dex `double-to-long' instruction.
          InvokeRuntimeCallingConvention calling_convention;
          locations->SetInAt(0, Location::FpuRegisterPairLocation(
              calling_convention.GetFpuRegisterAt(0),
              calling_convention.GetFpuRegisterAt(1)));
          locations->SetOut(Location::RegisterPairLocation(R0, R1));
          break;
        }

        default:
          LOG(FATAL) << "Unexpected type conversion from " << input_type
                     << " to " << result_type;
      }
      break;

    case Primitive::kPrimChar:
      switch (input_type) {
        case Primitive::kPrimLong:
          // Type conversion from long to char is a result of code transformations.
        case Primitive::kPrimBoolean:
          // Boolean input is a result of code transformations.
        case Primitive::kPrimByte:
        case Primitive::kPrimShort:
        case Primitive::kPrimInt:
          // Processing a Dex `int-to-char' instruction.
          locations->SetInAt(0, Location::RequiresRegister());
          locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
          break;

        default:
          LOG(FATAL) << "Unexpected type conversion from " << input_type
                     << " to " << result_type;
      }
      break;

    case Primitive::kPrimFloat:
      switch (input_type) {
        case Primitive::kPrimBoolean:
          // Boolean input is a result of code transformations.
        case Primitive::kPrimByte:
        case Primitive::kPrimShort:
        case Primitive::kPrimInt:
        case Primitive::kPrimChar:
          // Processing a Dex `int-to-float' instruction.
          locations->SetInAt(0, Location::RequiresRegister());
          locations->SetOut(Location::RequiresFpuRegister());
          break;

        case Primitive::kPrimLong: {
          // Processing a Dex `long-to-float' instruction.
          InvokeRuntimeCallingConvention calling_convention;
          locations->SetInAt(0, Location::RegisterPairLocation(
              calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
          locations->SetOut(Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
          break;
        }

        case Primitive::kPrimDouble:
          // Processing a Dex `double-to-float' instruction.
          locations->SetInAt(0, Location::RequiresFpuRegister());
          locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
          break;

        default:
          LOG(FATAL) << "Unexpected type conversion from " << input_type
                     << " to " << result_type;
      };
      break;

    case Primitive::kPrimDouble:
      switch (input_type) {
        case Primitive::kPrimBoolean:
          // Boolean input is a result of code transformations.
        case Primitive::kPrimByte:
        case Primitive::kPrimShort:
        case Primitive::kPrimInt:
        case Primitive::kPrimChar:
          // Processing a Dex `int-to-double' instruction.
          locations->SetInAt(0, Location::RequiresRegister());
          locations->SetOut(Location::RequiresFpuRegister());
          break;

        case Primitive::kPrimLong:
          // Processing a Dex `long-to-double' instruction.
          locations->SetInAt(0, Location::RequiresRegister());
          locations->SetOut(Location::RequiresFpuRegister());
          locations->AddTemp(Location::RequiresFpuRegister());
          locations->AddTemp(Location::RequiresFpuRegister());
          break;

        case Primitive::kPrimFloat:
          // Processing a Dex `float-to-double' instruction.
          locations->SetInAt(0, Location::RequiresFpuRegister());
          locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
          break;

        default:
          LOG(FATAL) << "Unexpected type conversion from " << input_type
                     << " to " << result_type;
      };
      break;

    default:
      LOG(FATAL) << "Unexpected type conversion from " << input_type
                 << " to " << result_type;
  }
}

void InstructionCodeGeneratorARM::VisitTypeConversion(HTypeConversion* conversion) {
  LocationSummary* locations = conversion->GetLocations();
  Location out = locations->Out();
  Location in = locations->InAt(0);
  Primitive::Type result_type = conversion->GetResultType();
  Primitive::Type input_type = conversion->GetInputType();
  DCHECK_NE(result_type, input_type);
  switch (result_type) {
    case Primitive::kPrimByte:
      switch (input_type) {
        case Primitive::kPrimLong:
          // Type conversion from long to byte is a result of code transformations.
          __ sbfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 8);
          break;
        case Primitive::kPrimBoolean:
          // Boolean input is a result of code transformations.
        case Primitive::kPrimShort:
        case Primitive::kPrimInt:
        case Primitive::kPrimChar:
          // Processing a Dex `int-to-byte' instruction.
          __ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 8);
          break;

        default:
          LOG(FATAL) << "Unexpected type conversion from " << input_type
                     << " to " << result_type;
      }
      break;

    case Primitive::kPrimShort:
      switch (input_type) {
        case Primitive::kPrimLong:
          // Type conversion from long to short is a result of code transformations.
          __ sbfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 16);
          break;
        case Primitive::kPrimBoolean:
          // Boolean input is a result of code transformations.
        case Primitive::kPrimByte:
        case Primitive::kPrimInt:
        case Primitive::kPrimChar:
          // Processing a Dex `int-to-short' instruction.
          __ sbfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16);
          break;

        default:
          LOG(FATAL) << "Unexpected type conversion from " << input_type
                     << " to " << result_type;
      }
      break;

    case Primitive::kPrimInt:
      switch (input_type) {
        case Primitive::kPrimLong:
          // Processing a Dex `long-to-int' instruction.
          DCHECK(out.IsRegister());
          if (in.IsRegisterPair()) {
            __ Mov(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
          } else if (in.IsDoubleStackSlot()) {
            __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), SP, in.GetStackIndex());
          } else {
            DCHECK(in.IsConstant());
            DCHECK(in.GetConstant()->IsLongConstant());
            int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
            __ LoadImmediate(out.AsRegister<Register>(), static_cast<int32_t>(value));
          }
          break;

        case Primitive::kPrimFloat: {
          // Processing a Dex `float-to-int' instruction.
          SRegister temp = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
          __ vmovs(temp, in.AsFpuRegister<SRegister>());
          __ vcvtis(temp, temp);
          __ vmovrs(out.AsRegister<Register>(), temp);
          break;
        }

        case Primitive::kPrimDouble: {
          // Processing a Dex `double-to-int' instruction.
          SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
          DRegister temp_d = FromLowSToD(temp_s);
          __ vmovd(temp_d, FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
          __ vcvtid(temp_s, temp_d);
          __ vmovrs(out.AsRegister<Register>(), temp_s);
          break;
        }

        default:
          LOG(FATAL) << "Unexpected type conversion from " << input_type
                     << " to " << result_type;
      }
      break;

    case Primitive::kPrimLong:
      switch (input_type) {
        case Primitive::kPrimBoolean:
          // Boolean input is a result of code transformations.
        case Primitive::kPrimByte:
        case Primitive::kPrimShort:
        case Primitive::kPrimInt:
        case Primitive::kPrimChar:
          // Processing a Dex `int-to-long' instruction.
          DCHECK(out.IsRegisterPair());
          DCHECK(in.IsRegister());
          __ Mov(out.AsRegisterPairLow<Register>(), in.AsRegister<Register>());
          // Sign extension.
          __ Asr(out.AsRegisterPairHigh<Register>(),
                 out.AsRegisterPairLow<Register>(),
                 31);
          break;

        case Primitive::kPrimFloat:
          // Processing a Dex `float-to-long' instruction.
          codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pF2l),
                                  conversion,
                                  conversion->GetDexPc(),
                                  nullptr);
          CheckEntrypointTypes<kQuickF2l, int64_t, float>();
          break;

        case Primitive::kPrimDouble:
          // Processing a Dex `double-to-long' instruction.
          codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pD2l),
                                  conversion,
                                  conversion->GetDexPc(),
                                  nullptr);
          CheckEntrypointTypes<kQuickD2l, int64_t, double>();
          break;

        default:
          LOG(FATAL) << "Unexpected type conversion from " << input_type
                     << " to " << result_type;
      }
      break;

    case Primitive::kPrimChar:
      switch (input_type) {
        case Primitive::kPrimLong:
          // Type conversion from long to char is a result of code transformations.
          __ ubfx(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>(), 0, 16);
          break;
        case Primitive::kPrimBoolean:
          // Boolean input is a result of code transformations.
        case Primitive::kPrimByte:
        case Primitive::kPrimShort:
        case Primitive::kPrimInt:
          // Processing a Dex `int-to-char' instruction.
          __ ubfx(out.AsRegister<Register>(), in.AsRegister<Register>(), 0, 16);
          break;

        default:
          LOG(FATAL) << "Unexpected type conversion from " << input_type
                     << " to " << result_type;
      }
      break;

    case Primitive::kPrimFloat:
      switch (input_type) {
        case Primitive::kPrimBoolean:
          // Boolean input is a result of code transformations.
        case Primitive::kPrimByte:
        case Primitive::kPrimShort:
        case Primitive::kPrimInt:
        case Primitive::kPrimChar: {
          // Processing a Dex `int-to-float' instruction.
          __ vmovsr(out.AsFpuRegister<SRegister>(), in.AsRegister<Register>());
          __ vcvtsi(out.AsFpuRegister<SRegister>(), out.AsFpuRegister<SRegister>());
          break;
        }

        case Primitive::kPrimLong:
          // Processing a Dex `long-to-float' instruction.
          codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pL2f),
                                  conversion,
                                  conversion->GetDexPc(),
                                  nullptr);
          CheckEntrypointTypes<kQuickL2f, float, int64_t>();
          break;

        case Primitive::kPrimDouble:
          // Processing a Dex `double-to-float' instruction.
          __ vcvtsd(out.AsFpuRegister<SRegister>(),
                    FromLowSToD(in.AsFpuRegisterPairLow<SRegister>()));
          break;

        default:
          LOG(FATAL) << "Unexpected type conversion from " << input_type
                     << " to " << result_type;
      };
      break;

    case Primitive::kPrimDouble:
      switch (input_type) {
        case Primitive::kPrimBoolean:
          // Boolean input is a result of code transformations.
        case Primitive::kPrimByte:
        case Primitive::kPrimShort:
        case Primitive::kPrimInt:
        case Primitive::kPrimChar: {
          // Processing a Dex `int-to-double' instruction.
          __ vmovsr(out.AsFpuRegisterPairLow<SRegister>(), in.AsRegister<Register>());
          __ vcvtdi(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
                    out.AsFpuRegisterPairLow<SRegister>());
          break;
        }

        case Primitive::kPrimLong: {
          // Processing a Dex `long-to-double' instruction.
          Register low = in.AsRegisterPairLow<Register>();
          Register high = in.AsRegisterPairHigh<Register>();
          SRegister out_s = out.AsFpuRegisterPairLow<SRegister>();
          DRegister out_d = FromLowSToD(out_s);
          SRegister temp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>();
          DRegister temp_d = FromLowSToD(temp_s);
          SRegister constant_s = locations->GetTemp(1).AsFpuRegisterPairLow<SRegister>();
          DRegister constant_d = FromLowSToD(constant_s);

          // temp_d = int-to-double(high)
          __ vmovsr(temp_s, high);
          __ vcvtdi(temp_d, temp_s);
          // constant_d = k2Pow32EncodingForDouble
          __ LoadDImmediate(constant_d, bit_cast<double, int64_t>(k2Pow32EncodingForDouble));
          // out_d = unsigned-to-double(low)
          __ vmovsr(out_s, low);
          __ vcvtdu(out_d, out_s);
          // out_d += temp_d * constant_d
          __ vmlad(out_d, temp_d, constant_d);
          break;
        }

        case Primitive::kPrimFloat:
          // Processing a Dex `float-to-double' instruction.
          __ vcvtds(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
                    in.AsFpuRegister<SRegister>());
          break;

        default:
          LOG(FATAL) << "Unexpected type conversion from " << input_type
                     << " to " << result_type;
      };
      break;

    default:
      LOG(FATAL) << "Unexpected type conversion from " << input_type
                 << " to " << result_type;
  }
}

void LocationsBuilderARM::VisitAdd(HAdd* add) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
  switch (add->GetResultType()) {
    case Primitive::kPrimInt: {
      locations->SetInAt(0, Location::RequiresRegister());
      locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
      break;
    }

    case Primitive::kPrimLong: {
      locations->SetInAt(0, Location::RequiresRegister());
      locations->SetInAt(1, Location::RequiresRegister());
      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
      break;
    }

    case Primitive::kPrimFloat:
    case Primitive::kPrimDouble: {
      locations->SetInAt(0, Location::RequiresFpuRegister());
      locations->SetInAt(1, Location::RequiresFpuRegister());
      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
      break;
    }

    default:
      LOG(FATAL) << "Unexpected add type " << add->GetResultType();
  }
}

void InstructionCodeGeneratorARM::VisitAdd(HAdd* add) {
  LocationSummary* locations = add->GetLocations();
  Location out = locations->Out();
  Location first = locations->InAt(0);
  Location second = locations->InAt(1);
  switch (add->GetResultType()) {
    case Primitive::kPrimInt:
      if (second.IsRegister()) {
        __ add(out.AsRegister<Register>(),
               first.AsRegister<Register>(),
               ShifterOperand(second.AsRegister<Register>()));
      } else {
        __ AddConstant(out.AsRegister<Register>(),
                       first.AsRegister<Register>(),
                       second.GetConstant()->AsIntConstant()->GetValue());
      }
      break;

    case Primitive::kPrimLong: {
      DCHECK(second.IsRegisterPair());
      __ adds(out.AsRegisterPairLow<Register>(),
              first.AsRegisterPairLow<Register>(),
              ShifterOperand(second.AsRegisterPairLow<Register>()));
      __ adc(out.AsRegisterPairHigh<Register>(),
             first.AsRegisterPairHigh<Register>(),
             ShifterOperand(second.AsRegisterPairHigh<Register>()));
      break;
    }

    case Primitive::kPrimFloat:
      __ vadds(out.AsFpuRegister<SRegister>(),
               first.AsFpuRegister<SRegister>(),
               second.AsFpuRegister<SRegister>());
      break;

    case Primitive::kPrimDouble:
      __ vaddd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
      break;

    default:
      LOG(FATAL) << "Unexpected add type " << add->GetResultType();
  }
}

void LocationsBuilderARM::VisitSub(HSub* sub) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
  switch (sub->GetResultType()) {
    case Primitive::kPrimInt: {
      locations->SetInAt(0, Location::RequiresRegister());
      locations->SetInAt(1, Location::RegisterOrConstant(sub->InputAt(1)));
      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
      break;
    }

    case Primitive::kPrimLong: {
      locations->SetInAt(0, Location::RequiresRegister());
      locations->SetInAt(1, Location::RequiresRegister());
      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
      break;
    }
    case Primitive::kPrimFloat:
    case Primitive::kPrimDouble: {
      locations->SetInAt(0, Location::RequiresFpuRegister());
      locations->SetInAt(1, Location::RequiresFpuRegister());
      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
      break;
    }
    default:
      LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
  }
}

void InstructionCodeGeneratorARM::VisitSub(HSub* sub) {
  LocationSummary* locations = sub->GetLocations();
  Location out = locations->Out();
  Location first = locations->InAt(0);
  Location second = locations->InAt(1);
  switch (sub->GetResultType()) {
    case Primitive::kPrimInt: {
      if (second.IsRegister()) {
        __ sub(out.AsRegister<Register>(),
               first.AsRegister<Register>(),
               ShifterOperand(second.AsRegister<Register>()));
      } else {
        __ AddConstant(out.AsRegister<Register>(),
                       first.AsRegister<Register>(),
                       -second.GetConstant()->AsIntConstant()->GetValue());
      }
      break;
    }

    case Primitive::kPrimLong: {
      DCHECK(second.IsRegisterPair());
      __ subs(out.AsRegisterPairLow<Register>(),
              first.AsRegisterPairLow<Register>(),
              ShifterOperand(second.AsRegisterPairLow<Register>()));
      __ sbc(out.AsRegisterPairHigh<Register>(),
             first.AsRegisterPairHigh<Register>(),
             ShifterOperand(second.AsRegisterPairHigh<Register>()));
      break;
    }

    case Primitive::kPrimFloat: {
      __ vsubs(out.AsFpuRegister<SRegister>(),
               first.AsFpuRegister<SRegister>(),
               second.AsFpuRegister<SRegister>());
      break;
    }

    case Primitive::kPrimDouble: {
      __ vsubd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
      break;
    }


    default:
      LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
  }
}

void LocationsBuilderARM::VisitMul(HMul* mul) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
  switch (mul->GetResultType()) {
    case Primitive::kPrimInt:
    case Primitive::kPrimLong:  {
      locations->SetInAt(0, Location::RequiresRegister());
      locations->SetInAt(1, Location::RequiresRegister());
      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
      break;
    }

    case Primitive::kPrimFloat:
    case Primitive::kPrimDouble: {
      locations->SetInAt(0, Location::RequiresFpuRegister());
      locations->SetInAt(1, Location::RequiresFpuRegister());
      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
      break;
    }

    default:
      LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
  }
}

void InstructionCodeGeneratorARM::VisitMul(HMul* mul) {
  LocationSummary* locations = mul->GetLocations();
  Location out = locations->Out();
  Location first = locations->InAt(0);
  Location second = locations->InAt(1);
  switch (mul->GetResultType()) {
    case Primitive::kPrimInt: {
      __ mul(out.AsRegister<Register>(),
             first.AsRegister<Register>(),
             second.AsRegister<Register>());
      break;
    }
    case Primitive::kPrimLong: {
      Register out_hi = out.AsRegisterPairHigh<Register>();
      Register out_lo = out.AsRegisterPairLow<Register>();
      Register in1_hi = first.AsRegisterPairHigh<Register>();
      Register in1_lo = first.AsRegisterPairLow<Register>();
      Register in2_hi = second.AsRegisterPairHigh<Register>();
      Register in2_lo = second.AsRegisterPairLow<Register>();

      // Extra checks to protect caused by the existence of R1_R2.
      // The algorithm is wrong if out.hi is either in1.lo or in2.lo:
      // (e.g. in1=r0_r1, in2=r2_r3 and out=r1_r2);
      DCHECK_NE(out_hi, in1_lo);
      DCHECK_NE(out_hi, in2_lo);

      // input: in1 - 64 bits, in2 - 64 bits
      // output: out
      // formula: out.hi : out.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
      // parts: out.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
      // parts: out.lo = (in1.lo * in2.lo)[31:0]

      // IP <- in1.lo * in2.hi
      __ mul(IP, in1_lo, in2_hi);
      // out.hi <- in1.lo * in2.hi + in1.hi * in2.lo
      __ mla(out_hi, in1_hi, in2_lo, IP);
      // out.lo <- (in1.lo * in2.lo)[31:0];
      __ umull(out_lo, IP, in1_lo, in2_lo);
      // out.hi <- in2.hi * in1.lo +  in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
      __ add(out_hi, out_hi, ShifterOperand(IP));
      break;
    }

    case Primitive::kPrimFloat: {
      __ vmuls(out.AsFpuRegister<SRegister>(),
               first.AsFpuRegister<SRegister>(),
               second.AsFpuRegister<SRegister>());
      break;
    }

    case Primitive::kPrimDouble: {
      __ vmuld(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
      break;
    }

    default:
      LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
  }
}

void InstructionCodeGeneratorARM::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
  DCHECK(instruction->IsDiv() || instruction->IsRem());
  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);

  LocationSummary* locations = instruction->GetLocations();
  Location second = locations->InAt(1);
  DCHECK(second.IsConstant());

  Register out = locations->Out().AsRegister<Register>();
  Register dividend = locations->InAt(0).AsRegister<Register>();
  int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
  DCHECK(imm == 1 || imm == -1);

  if (instruction->IsRem()) {
    __ LoadImmediate(out, 0);
  } else {
    if (imm == 1) {
      __ Mov(out, dividend);
    } else {
      __ rsb(out, dividend, ShifterOperand(0));
    }
  }
}

void InstructionCodeGeneratorARM::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
  DCHECK(instruction->IsDiv() || instruction->IsRem());
  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);

  LocationSummary* locations = instruction->GetLocations();
  Location second = locations->InAt(1);
  DCHECK(second.IsConstant());

  Register out = locations->Out().AsRegister<Register>();
  Register dividend = locations->InAt(0).AsRegister<Register>();
  Register temp = locations->GetTemp(0).AsRegister<Register>();
  int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
  uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
  int ctz_imm = CTZ(abs_imm);

  if (ctz_imm == 1) {
    __ Lsr(temp, dividend, 32 - ctz_imm);
  } else {
    __ Asr(temp, dividend, 31);
    __ Lsr(temp, temp, 32 - ctz_imm);
  }
  __ add(out, temp, ShifterOperand(dividend));

  if (instruction->IsDiv()) {
    __ Asr(out, out, ctz_imm);
    if (imm < 0) {
      __ rsb(out, out, ShifterOperand(0));
    }
  } else {
    __ ubfx(out, out, 0, ctz_imm);
    __ sub(out, out, ShifterOperand(temp));
  }
}

void InstructionCodeGeneratorARM::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
  DCHECK(instruction->IsDiv() || instruction->IsRem());
  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);

  LocationSummary* locations = instruction->GetLocations();
  Location second = locations->InAt(1);
  DCHECK(second.IsConstant());

  Register out = locations->Out().AsRegister<Register>();
  Register dividend = locations->InAt(0).AsRegister<Register>();
  Register temp1 = locations->GetTemp(0).AsRegister<Register>();
  Register temp2 = locations->GetTemp(1).AsRegister<Register>();
  int64_t imm = second.GetConstant()->AsIntConstant()->GetValue();

  int64_t magic;
  int shift;
  CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);

  __ LoadImmediate(temp1, magic);
  __ smull(temp2, temp1, dividend, temp1);

  if (imm > 0 && magic < 0) {
    __ add(temp1, temp1, ShifterOperand(dividend));
  } else if (imm < 0 && magic > 0) {
    __ sub(temp1, temp1, ShifterOperand(dividend));
  }

  if (shift != 0) {
    __ Asr(temp1, temp1, shift);
  }

  if (instruction->IsDiv()) {
    __ sub(out, temp1, ShifterOperand(temp1, ASR, 31));
  } else {
    __ sub(temp1, temp1, ShifterOperand(temp1, ASR, 31));
    // TODO: Strength reduction for mls.
    __ LoadImmediate(temp2, imm);
    __ mls(out, temp1, temp2, dividend);
  }
}

void InstructionCodeGeneratorARM::GenerateDivRemConstantIntegral(HBinaryOperation* instruction) {
  DCHECK(instruction->IsDiv() || instruction->IsRem());
  DCHECK(instruction->GetResultType() == Primitive::kPrimInt);

  LocationSummary* locations = instruction->GetLocations();
  Location second = locations->InAt(1);
  DCHECK(second.IsConstant());

  int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
  if (imm == 0) {
    // Do not generate anything. DivZeroCheck would prevent any code to be executed.
  } else if (imm == 1 || imm == -1) {
    DivRemOneOrMinusOne(instruction);
  } else if (IsPowerOfTwo(AbsOrMin(imm))) {
    DivRemByPowerOfTwo(instruction);
  } else {
    DCHECK(imm <= -2 || imm >= 2);
    GenerateDivRemWithAnyConstant(instruction);
  }
}

void LocationsBuilderARM::VisitDiv(HDiv* div) {
  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
  if (div->GetResultType() == Primitive::kPrimLong) {
    // pLdiv runtime call.
    call_kind = LocationSummary::kCall;
  } else if (div->GetResultType() == Primitive::kPrimInt && div->InputAt(1)->IsConstant()) {
    // sdiv will be replaced by other instruction sequence.
  } else if (div->GetResultType() == Primitive::kPrimInt &&
             !codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
    // pIdivmod runtime call.
    call_kind = LocationSummary::kCall;
  }

  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);

  switch (div->GetResultType()) {
    case Primitive::kPrimInt: {
      if (div->InputAt(1)->IsConstant()) {
        locations->SetInAt(0, Location::RequiresRegister());
        locations->SetInAt(1, Location::ConstantLocation(div->InputAt(1)->AsConstant()));
        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
        int32_t value = div->InputAt(1)->AsIntConstant()->GetValue();
        if (value == 1 || value == 0 || value == -1) {
          // No temp register required.
        } else {
          locations->AddTemp(Location::RequiresRegister());
          if (!IsPowerOfTwo(AbsOrMin(value))) {
            locations->AddTemp(Location::RequiresRegister());
          }
        }
      } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
        locations->SetInAt(0, Location::RequiresRegister());
        locations->SetInAt(1, Location::RequiresRegister());
        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
      } else {
        InvokeRuntimeCallingConvention calling_convention;
        locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
        locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
        // Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but
        //       we only need the former.
        locations->SetOut(Location::RegisterLocation(R0));
      }
      break;
    }
    case Primitive::kPrimLong: {
      InvokeRuntimeCallingConvention calling_convention;
      locations->SetInAt(0, Location::RegisterPairLocation(
          calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
      locations->SetInAt(1, Location::RegisterPairLocation(
          calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
      locations->SetOut(Location::RegisterPairLocation(R0, R1));
      break;
    }
    case Primitive::kPrimFloat:
    case Primitive::kPrimDouble: {
      locations->SetInAt(0, Location::RequiresFpuRegister());
      locations->SetInAt(1, Location::RequiresFpuRegister());
      locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
      break;
    }

    default:
      LOG(FATAL) << "Unexpected div type " << div->GetResultType();
  }
}

void InstructionCodeGeneratorARM::VisitDiv(HDiv* div) {
  LocationSummary* locations = div->GetLocations();
  Location out = locations->Out();
  Location first = locations->InAt(0);
  Location second = locations->InAt(1);

  switch (div->GetResultType()) {
    case Primitive::kPrimInt: {
      if (second.IsConstant()) {
        GenerateDivRemConstantIntegral(div);
      } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
        __ sdiv(out.AsRegister<Register>(),
                first.AsRegister<Register>(),
                second.AsRegister<Register>());
      } else {
        InvokeRuntimeCallingConvention calling_convention;
        DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>());
        DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>());
        DCHECK_EQ(R0, out.AsRegister<Register>());

        codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pIdivmod), div, div->GetDexPc(), nullptr);
        CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
      }
      break;
    }

    case Primitive::kPrimLong: {
      InvokeRuntimeCallingConvention calling_convention;
      DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>());
      DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>());
      DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>());
      DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>());
      DCHECK_EQ(R0, out.AsRegisterPairLow<Register>());
      DCHECK_EQ(R1, out.AsRegisterPairHigh<Register>());

      codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLdiv), div, div->GetDexPc(), nullptr);
      CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
      break;
    }

    case Primitive::kPrimFloat: {
      __ vdivs(out.AsFpuRegister<SRegister>(),
               first.AsFpuRegister<SRegister>(),
               second.AsFpuRegister<SRegister>());
      break;
    }

    case Primitive::kPrimDouble: {
      __ vdivd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()),
               FromLowSToD(first.AsFpuRegisterPairLow<SRegister>()),
               FromLowSToD(second.AsFpuRegisterPairLow<SRegister>()));
      break;
    }

    default:
      LOG(FATAL) << "Unexpected div type " << div->GetResultType();
  }
}

void LocationsBuilderARM::VisitRem(HRem* rem) {
  Primitive::Type type = rem->GetResultType();

  // Most remainders are implemented in the runtime.
  LocationSummary::CallKind call_kind = LocationSummary::kCall;
  if (rem->GetResultType() == Primitive::kPrimInt && rem->InputAt(1)->IsConstant()) {
    // sdiv will be replaced by other instruction sequence.
    call_kind = LocationSummary::kNoCall;
  } else if ((rem->GetResultType() == Primitive::kPrimInt)
             && codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
    // Have hardware divide instruction for int, do it with three instructions.
    call_kind = LocationSummary::kNoCall;
  }

  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);

  switch (type) {
    case Primitive::kPrimInt: {
      if (rem->InputAt(1)->IsConstant()) {
        locations->SetInAt(0, Location::RequiresRegister());
        locations->SetInAt(1, Location::ConstantLocation(rem->InputAt(1)->AsConstant()));
        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
        int32_t value = rem->InputAt(1)->AsIntConstant()->GetValue();
        if (value == 1 || value == 0 || value == -1) {
          // No temp register required.
        } else {
          locations->AddTemp(Location::RequiresRegister());
          if (!IsPowerOfTwo(AbsOrMin(value))) {
            locations->AddTemp(Location::RequiresRegister());
          }
        }
      } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
        locations->SetInAt(0, Location::RequiresRegister());
        locations->SetInAt(1, Location::RequiresRegister());
        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
        locations->AddTemp(Location::RequiresRegister());
      } else {
        InvokeRuntimeCallingConvention calling_convention;
        locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
        locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
        // Note: divrem will compute both the quotient and the remainder as the pair R0 and R1, but
        //       we only need the latter.
        locations->SetOut(Location::RegisterLocation(R1));
      }
      break;
    }
    case Primitive::kPrimLong: {
      InvokeRuntimeCallingConvention calling_convention;
      locations->SetInAt(0, Location::RegisterPairLocation(
          calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
      locations->SetInAt(1, Location::RegisterPairLocation(
          calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
      // The runtime helper puts the output in R2,R3.
      locations->SetOut(Location::RegisterPairLocation(R2, R3));
      break;
    }
    case Primitive::kPrimFloat: {
      InvokeRuntimeCallingConvention calling_convention;
      locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
      locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
      locations->SetOut(Location::FpuRegisterLocation(S0));
      break;
    }

    case Primitive::kPrimDouble: {
      InvokeRuntimeCallingConvention calling_convention;
      locations->SetInAt(0, Location::FpuRegisterPairLocation(
          calling_convention.GetFpuRegisterAt(0), calling_convention.GetFpuRegisterAt(1)));
      locations->SetInAt(1, Location::FpuRegisterPairLocation(
          calling_convention.GetFpuRegisterAt(2), calling_convention.GetFpuRegisterAt(3)));
      locations->SetOut(Location::Location::FpuRegisterPairLocation(S0, S1));
      break;
    }

    default:
      LOG(FATAL) << "Unexpected rem type " << type;
  }
}

void InstructionCodeGeneratorARM::VisitRem(HRem* rem) {
  LocationSummary* locations = rem->GetLocations();
  Location out = locations->Out();
  Location first = locations->InAt(0);
  Location second = locations->InAt(1);

  Primitive::Type type = rem->GetResultType();
  switch (type) {
    case Primitive::kPrimInt: {
        if (second.IsConstant()) {
          GenerateDivRemConstantIntegral(rem);
        } else if (codegen_->GetInstructionSetFeatures().HasDivideInstruction()) {
        Register reg1 = first.AsRegister<Register>();
        Register reg2 = second.AsRegister<Register>();
        Register temp = locations->GetTemp(0).AsRegister<Register>();

        // temp = reg1 / reg2  (integer division)
        // dest = reg1 - temp * reg2
        __ sdiv(temp, reg1, reg2);
        __ mls(out.AsRegister<Register>(), temp, reg2, reg1);
      } else {
        InvokeRuntimeCallingConvention calling_convention;
        DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegister<Register>());
        DCHECK_EQ(calling_convention.GetRegisterAt(1), second.AsRegister<Register>());
        DCHECK_EQ(R1, out.AsRegister<Register>());

        codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pIdivmod), rem, rem->GetDexPc(), nullptr);
        CheckEntrypointTypes<kQuickIdivmod, int32_t, int32_t, int32_t>();
      }
      break;
    }

    case Primitive::kPrimLong: {
      codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLmod), rem, rem->GetDexPc(), nullptr);
        CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
      break;
    }

    case Primitive::kPrimFloat: {
      codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pFmodf), rem, rem->GetDexPc(), nullptr);
      CheckEntrypointTypes<kQuickFmodf, float, float, float>();
      break;
    }

    case Primitive::kPrimDouble: {
      codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pFmod), rem, rem->GetDexPc(), nullptr);
      CheckEntrypointTypes<kQuickFmod, double, double, double>();
      break;
    }

    default:
      LOG(FATAL) << "Unexpected rem type " << type;
  }
}

void LocationsBuilderARM::VisitDivZeroCheck(HDivZeroCheck* instruction) {
  LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
      ? LocationSummary::kCallOnSlowPath
      : LocationSummary::kNoCall;
  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
  locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
  if (instruction->HasUses()) {
    locations->SetOut(Location::SameAsFirstInput());
  }
}

void InstructionCodeGeneratorARM::VisitDivZeroCheck(HDivZeroCheck* instruction) {
  SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM(instruction);
  codegen_->AddSlowPath(slow_path);

  LocationSummary* locations = instruction->GetLocations();
  Location value = locations->InAt(0);

  switch (instruction->GetType()) {
    case Primitive::kPrimBoolean:
    case Primitive::kPrimByte:
    case Primitive::kPrimChar:
    case Primitive::kPrimShort:
    case Primitive::kPrimInt: {
      if (value.IsRegister()) {
        __ CompareAndBranchIfZero(value.AsRegister<Register>(), slow_path->GetEntryLabel());
      } else {
        DCHECK(value.IsConstant()) << value;
        if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
          __ b(slow_path->GetEntryLabel());
        }
      }
      break;
    }
    case Primitive::kPrimLong: {
      if (value.IsRegisterPair()) {
        __ orrs(IP,
                value.AsRegisterPairLow<Register>(),
                ShifterOperand(value.AsRegisterPairHigh<Register>()));
        __ b(slow_path->GetEntryLabel(), EQ);
      } else {
        DCHECK(value.IsConstant()) << value;
        if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
          __ b(slow_path->GetEntryLabel());
        }
      }
      break;
    default:
      LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
    }
  }
}

void InstructionCodeGeneratorARM::HandleIntegerRotate(LocationSummary* locations) {
  Register in = locations->InAt(0).AsRegister<Register>();
  Location rhs = locations->InAt(1);
  Register out = locations->Out().AsRegister<Register>();

  if (rhs.IsConstant()) {
    // Arm32 and Thumb2 assemblers require a rotation on the interval [1,31],
    // so map all rotations to a +ve. equivalent in that range.
    // (e.g. left *or* right by -2 bits == 30 bits in the same direction.)
    uint32_t rot = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()) & 0x1F;
    if (rot) {
      // Rotate, mapping left rotations to right equivalents if necessary.
      // (e.g. left by 2 bits == right by 30.)
      __ Ror(out, in, rot);
    } else if (out != in) {
      __ Mov(out, in);
    }
  } else {
    __ Ror(out, in, rhs.AsRegister<Register>());
  }
}

// Gain some speed by mapping all Long rotates onto equivalent pairs of Integer
// rotates by swapping input regs (effectively rotating by the first 32-bits of
// a larger rotation) or flipping direction (thus treating larger right/left
// rotations as sub-word sized rotations in the other direction) as appropriate.
void InstructionCodeGeneratorARM::HandleLongRotate(LocationSummary* locations) {
  Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>();
  Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
  Location rhs = locations->InAt(1);
  Register out_reg_lo = locations->Out().AsRegisterPairLow<Register>();
  Register out_reg_hi = locations->Out().AsRegisterPairHigh<Register>();

  if (rhs.IsConstant()) {
    uint64_t rot = CodeGenerator::GetInt64ValueOf(rhs.GetConstant());
    // Map all rotations to +ve. equivalents on the interval [0,63].
    rot &= kMaxLongShiftDistance;
    // For rotates over a word in size, 'pre-rotate' by 32-bits to keep rotate
    // logic below to a simple pair of binary orr.
    // (e.g. 34 bits == in_reg swap + 2 bits right.)
    if (rot >= kArmBitsPerWord) {
      rot -= kArmBitsPerWord;
      std::swap(in_reg_hi, in_reg_lo);
    }
    // Rotate, or mov to out for zero or word size rotations.
    if (rot != 0u) {
      __ Lsr(out_reg_hi, in_reg_hi, rot);
      __ orr(out_reg_hi, out_reg_hi, ShifterOperand(in_reg_lo, arm::LSL, kArmBitsPerWord - rot));
      __ Lsr(out_reg_lo, in_reg_lo, rot);
      __ orr(out_reg_lo, out_reg_lo, ShifterOperand(in_reg_hi, arm::LSL, kArmBitsPerWord - rot));
    } else {
      __ Mov(out_reg_lo, in_reg_lo);
      __ Mov(out_reg_hi, in_reg_hi);
    }
  } else {
    Register shift_right = locations->GetTemp(0).AsRegister<Register>();
    Register shift_left = locations->GetTemp(1).AsRegister<Register>();
    Label end;
    Label shift_by_32_plus_shift_right;

    __ and_(shift_right, rhs.AsRegister<Register>(), ShifterOperand(0x1F));
    __ Lsrs(shift_left, rhs.AsRegister<Register>(), 6);
    __ rsb(shift_left, shift_right, ShifterOperand(kArmBitsPerWord), AL, kCcKeep);
    __ b(&shift_by_32_plus_shift_right, CC);

    // out_reg_hi = (reg_hi << shift_left) | (reg_lo >> shift_right).
    // out_reg_lo = (reg_lo << shift_left) | (reg_hi >> shift_right).
    __ Lsl(out_reg_hi, in_reg_hi, shift_left);
    __ Lsr(out_reg_lo, in_reg_lo, shift_right);
    __ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo));
    __ Lsl(out_reg_lo, in_reg_lo, shift_left);
    __ Lsr(shift_left, in_reg_hi, shift_right);
    __ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_left));
    __ b(&end);

    __ Bind(&shift_by_32_plus_shift_right);  // Shift by 32+shift_right.
    // out_reg_hi = (reg_hi >> shift_right) | (reg_lo << shift_left).
    // out_reg_lo = (reg_lo >> shift_right) | (reg_hi << shift_left).
    __ Lsr(out_reg_hi, in_reg_hi, shift_right);
    __ Lsl(out_reg_lo, in_reg_lo, shift_left);
    __ add(out_reg_hi, out_reg_hi, ShifterOperand(out_reg_lo));
    __ Lsr(out_reg_lo, in_reg_lo, shift_right);
    __ Lsl(shift_right, in_reg_hi, shift_left);
    __ add(out_reg_lo, out_reg_lo, ShifterOperand(shift_right));

    __ Bind(&end);
  }
}

void LocationsBuilderARM::VisitRor(HRor* ror) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall);
  switch (ror->GetResultType()) {
    case Primitive::kPrimInt: {
      locations->SetInAt(0, Location::RequiresRegister());
      locations->SetInAt(1, Location::RegisterOrConstant(ror->InputAt(1)));
      locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
      break;
    }
    case Primitive::kPrimLong: {
      locations->SetInAt(0, Location::RequiresRegister());
      if (ror->InputAt(1)->IsConstant()) {
        locations->SetInAt(1, Location::ConstantLocation(ror->InputAt(1)->AsConstant()));
      } else {
        locations->SetInAt(1, Location::RequiresRegister());
        locations->AddTemp(Location::RequiresRegister());
        locations->AddTemp(Location::RequiresRegister());
      }
      locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
      break;
    }
    default:
      LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
  }
}

void InstructionCodeGeneratorARM::VisitRor(HRor* ror) {
  LocationSummary* locations = ror->GetLocations();
  Primitive::Type type = ror->GetResultType();
  switch (type) {
    case Primitive::kPrimInt: {
      HandleIntegerRotate(locations);
      break;
    }
    case Primitive::kPrimLong: {
      HandleLongRotate(locations);
      break;
    }
    default:
      LOG(FATAL) << "Unexpected operation type " << type;
      UNREACHABLE();
  }
}

void LocationsBuilderARM::HandleShift(HBinaryOperation* op) {
  DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());

  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);

  switch (op->GetResultType()) {
    case Primitive::kPrimInt: {
      locations->SetInAt(0, Location::RequiresRegister());
      if (op->InputAt(1)->IsConstant()) {
        locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
        locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
      } else {
        locations->SetInAt(1, Location::RequiresRegister());
        // Make the output overlap, as it will be used to hold the masked
        // second input.
        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
      }
      break;
    }
    case Primitive::kPrimLong: {
      locations->SetInAt(0, Location::RequiresRegister());
      if (op->InputAt(1)->IsConstant()) {
        locations->SetInAt(1, Location::ConstantLocation(op->InputAt(1)->AsConstant()));
        // For simplicity, use kOutputOverlap even though we only require that low registers
        // don't clash with high registers which the register allocator currently guarantees.
        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
      } else {
        locations->SetInAt(1, Location::RequiresRegister());
        locations->AddTemp(Location::RequiresRegister());
        locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
      }
      break;
    }
    default:
      LOG(FATAL) << "Unexpected operation type " << op->GetResultType();
  }
}

void InstructionCodeGeneratorARM::HandleShift(HBinaryOperation* op) {
  DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());

  LocationSummary* locations = op->GetLocations();
  Location out = locations->Out();
  Location first = locations->InAt(0);
  Location second = locations->InAt(1);

  Primitive::Type type = op->GetResultType();
  switch (type) {
    case Primitive::kPrimInt: {
      Register out_reg = out.AsRegister<Register>();
      Register first_reg = first.AsRegister<Register>();
      if (second.IsRegister()) {
        Register second_reg = second.AsRegister<Register>();
        // ARM doesn't mask the shift count so we need to do it ourselves.
        __ and_(out_reg, second_reg, ShifterOperand(kMaxIntShiftDistance));
        if (op->IsShl()) {
          __ Lsl(out_reg, first_reg, out_reg);
        } else if (op->IsShr()) {
          __ Asr(out_reg, first_reg, out_reg);
        } else {
          __ Lsr(out_reg, first_reg, out_reg);
        }
      } else {
        int32_t cst = second.GetConstant()->AsIntConstant()->GetValue();
        uint32_t shift_value = cst & kMaxIntShiftDistance;
        if (shift_value == 0) {  // ARM does not support shifting with 0 immediate.
          __ Mov(out_reg, first_reg);
        } else if (op->IsShl()) {
          __ Lsl(out_reg, first_reg, shift_value);
        } else if (op->IsShr()) {
          __ Asr(out_reg, first_reg, shift_value);
        } else {
          __ Lsr(out_reg, first_reg, shift_value);
        }
      }
      break;
    }
    case Primitive::kPrimLong: {
      Register o_h = out.AsRegisterPairHigh<Register>();
      Register o_l = out.AsRegisterPairLow<Register>();

      Register high = first.AsRegisterPairHigh<Register>();
      Register low = first.AsRegisterPairLow<Register>();

      if (second.IsRegister()) {
        Register temp = locations->GetTemp(0).AsRegister<Register>();

        Register second_reg = second.AsRegister<Register>();

        if (op->IsShl()) {
          __ and_(o_l, second_reg, ShifterOperand(kMaxLongShiftDistance));
          // Shift the high part
          __ Lsl(o_h, high, o_l);
          // Shift the low part and `or` what overflew on the high part
          __ rsb(temp, o_l, ShifterOperand(kArmBitsPerWord));
          __ Lsr(temp, low, temp);
          __ orr(o_h, o_h, ShifterOperand(temp));
          // If the shift is > 32 bits, override the high part
          __ subs(temp, o_l, ShifterOperand(kArmBitsPerWord));
          __ it(PL);
          __ Lsl(o_h, low, temp, PL);
          // Shift the low part
          __ Lsl(o_l, low, o_l);
        } else if (op->IsShr()) {
          __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance));
          // Shift the low part
          __ Lsr(o_l, low, o_h);
          // Shift the high part and `or` what underflew on the low part
          __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord));
          __ Lsl(temp, high, temp);
          __ orr(o_l, o_l, ShifterOperand(temp));
          // If the shift is > 32 bits, override the low part
          __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord));
          __ it(PL);
          __ Asr(o_l, high, temp, PL);
          // Shift the high part
          __ Asr(o_h, high, o_h);
        } else {
          __ and_(o_h, second_reg, ShifterOperand(kMaxLongShiftDistance));
          // same as Shr except we use `Lsr`s and not `Asr`s
          __ Lsr(o_l, low, o_h);
          __ rsb(temp, o_h, ShifterOperand(kArmBitsPerWord));
          __ Lsl(temp, high, temp);
          __ orr(o_l, o_l, ShifterOperand(temp));
          __ subs(temp, o_h, ShifterOperand(kArmBitsPerWord));
          __ it(PL);
          __ Lsr(o_l, high, temp, PL);
          __ Lsr(o_h, high, o_h);
        }
      } else {
        // Register allocator doesn't create partial overlap.
        DCHECK_NE(o_l, high);
        DCHECK_NE(o_h, low);
        int32_t cst = second.GetConstant()->AsIntConstant()->GetValue();
        uint32_t shift_value = cst & kMaxLongShiftDistance;
        if (shift_value > 32) {
          if (op->IsShl()) {
            __ Lsl(o_h, low, shift_value - 32);
            __ LoadImmediate(o_l, 0);
          } else if (op->IsShr()) {
            __ Asr(o_l, high, shift_value - 32);
            __ Asr(o_h, high, 31);
          } else {
            __ Lsr(o_l, high, shift_value - 32);
            __ LoadImmediate(o_h, 0);
          }
        } else if (shift_value == 32) {
          if (op->IsShl()) {
            __ mov(o_h, ShifterOperand(low));
            __ LoadImmediate(o_l, 0);
          } else if (op->IsShr()) {
            __ mov(o_l, ShifterOperand(high));
            __ Asr(o_h, high, 31);
          } else {
            __ mov(o_l, ShifterOperand(high));
            __ LoadImmediate(o_h, 0);
          }
        } else if (shift_value == 1) {
          if (op->IsShl()) {
            __ Lsls(o_l, low, 1);
            __ adc(o_h, high, ShifterOperand(high));
          } else if (op->IsShr()) {
            __ Asrs(o_h, high, 1);
            __ Rrx(o_l, low);
          } else {
            __ Lsrs(o_h, high, 1);
            __ Rrx(o_l, low);
          }
        } else {
          DCHECK(2 <= shift_value && shift_value < 32) << shift_value;
          if (op->IsShl()) {
            __ Lsl(o_h, high, shift_value);
            __ orr(o_h, o_h, ShifterOperand(low, LSR, 32 - shift_value));
            __ Lsl(o_l, low, shift_value);
          } else if (op->IsShr()) {
            __ Lsr(o_l, low, shift_value);
            __ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value));
            __ Asr(o_h, high, shift_value);
          } else {
            __ Lsr(o_l, low, shift_value);
            __ orr(o_l, o_l, ShifterOperand(high, LSL, 32 - shift_value));
            __ Lsr(o_h, high, shift_value);
          }
        }
      }
      break;
    }
    default:
      LOG(FATAL) << "Unexpected operation type " << type;
      UNREACHABLE();
  }
}

void LocationsBuilderARM::VisitShl(HShl* shl) {
  HandleShift(shl);
}

void InstructionCodeGeneratorARM::VisitShl(HShl* shl) {
  HandleShift(shl);
}

void LocationsBuilderARM::VisitShr(HShr* shr) {
  HandleShift(shr);
}

void InstructionCodeGeneratorARM::VisitShr(HShr* shr) {
  HandleShift(shr);
}

void LocationsBuilderARM::VisitUShr(HUShr* ushr) {
  HandleShift(ushr);
}

void InstructionCodeGeneratorARM::VisitUShr(HUShr* ushr) {
  HandleShift(ushr);
}

void LocationsBuilderARM::VisitNewInstance(HNewInstance* instruction) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
  if (instruction->IsStringAlloc()) {
    locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument));
  } else {
    InvokeRuntimeCallingConvention calling_convention;
    locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
    locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
  }
  locations->SetOut(Location::RegisterLocation(R0));
}

void InstructionCodeGeneratorARM::VisitNewInstance(HNewInstance* instruction) {
  // Note: if heap poisoning is enabled, the entry point takes cares
  // of poisoning the reference.
  if (instruction->IsStringAlloc()) {
    // String is allocated through StringFactory. Call NewEmptyString entry point.
    Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>();
    MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmWordSize);
    __ LoadFromOffset(kLoadWord, temp, TR, QUICK_ENTRY_POINT(pNewEmptyString));
    __ LoadFromOffset(kLoadWord, LR, temp, code_offset.Int32Value());
    __ blx(LR);
    codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
  } else {
    codegen_->InvokeRuntime(instruction->GetEntrypoint(),
                            instruction,
                            instruction->GetDexPc(),
                            nullptr);
    CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>();
  }
}

void LocationsBuilderARM::VisitNewArray(HNewArray* instruction) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
  InvokeRuntimeCallingConvention calling_convention;
  locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
  locations->SetOut(Location::RegisterLocation(R0));
  locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
  locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
}

void InstructionCodeGeneratorARM::VisitNewArray(HNewArray* instruction) {
  InvokeRuntimeCallingConvention calling_convention;
  __ LoadImmediate(calling_convention.GetRegisterAt(0), instruction->GetTypeIndex());
  // Note: if heap poisoning is enabled, the entry point takes cares
  // of poisoning the reference.
  codegen_->InvokeRuntime(instruction->GetEntrypoint(),
                          instruction,
                          instruction->GetDexPc(),
                          nullptr);
  CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>();
}

void LocationsBuilderARM::VisitParameterValue(HParameterValue* instruction) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
  Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
  if (location.IsStackSlot()) {
    location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
  } else if (location.IsDoubleStackSlot()) {
    location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
  }
  locations->SetOut(location);
}

void InstructionCodeGeneratorARM::VisitParameterValue(
    HParameterValue* instruction ATTRIBUTE_UNUSED) {
  // Nothing to do, the parameter is already at its location.
}

void LocationsBuilderARM::VisitCurrentMethod(HCurrentMethod* instruction) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
  locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
}

void InstructionCodeGeneratorARM::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
  // Nothing to do, the method is already at its location.
}

void LocationsBuilderARM::VisitNot(HNot* not_) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
  locations->SetInAt(0, Location::RequiresRegister());
  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}

void InstructionCodeGeneratorARM::VisitNot(HNot* not_) {
  LocationSummary* locations = not_->GetLocations();
  Location out = locations->Out();
  Location in = locations->InAt(0);
  switch (not_->GetResultType()) {
    case Primitive::kPrimInt:
      __ mvn(out.AsRegister<Register>(), ShifterOperand(in.AsRegister<Register>()));
      break;

    case Primitive::kPrimLong:
      __ mvn(out.AsRegisterPairLow<Register>(),
             ShifterOperand(in.AsRegisterPairLow<Register>()));
      __ mvn(out.AsRegisterPairHigh<Register>(),
             ShifterOperand(in.AsRegisterPairHigh<Register>()));
      break;

    default:
      LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
  }
}

void LocationsBuilderARM::VisitBooleanNot(HBooleanNot* bool_not) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall);
  locations->SetInAt(0, Location::RequiresRegister());
  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}

void InstructionCodeGeneratorARM::VisitBooleanNot(HBooleanNot* bool_not) {
  LocationSummary* locations = bool_not->GetLocations();
  Location out = locations->Out();
  Location in = locations->InAt(0);
  __ eor(out.AsRegister<Register>(), in.AsRegister<Register>(), ShifterOperand(1));
}

void LocationsBuilderARM::VisitCompare(HCompare* compare) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
  switch (compare->InputAt(0)->GetType()) {
    case Primitive::kPrimBoolean:
    case Primitive::kPrimByte:
    case Primitive::kPrimShort:
    case Primitive::kPrimChar:
    case Primitive::kPrimInt:
    case Primitive::kPrimLong: {
      locations->SetInAt(0, Location::RequiresRegister());
      locations->SetInAt(1, Location::RequiresRegister());
      // Output overlaps because it is written before doing the low comparison.
      locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
      break;
    }
    case Primitive::kPrimFloat:
    case Primitive::kPrimDouble: {
      locations->SetInAt(0, Location::RequiresFpuRegister());
      locations->SetInAt(1, Location::RequiresFpuRegister());
      locations->SetOut(Location::RequiresRegister());
      break;
    }
    default:
      LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
  }
}

void InstructionCodeGeneratorARM::VisitCompare(HCompare* compare) {
  LocationSummary* locations = compare->GetLocations();
  Register out = locations->Out().AsRegister<Register>();
  Location left = locations->InAt(0);
  Location right = locations->InAt(1);

  Label less, greater, done;
  Primitive::Type type = compare->InputAt(0)->GetType();
  Condition less_cond;
  switch (type) {
    case Primitive::kPrimBoolean:
    case Primitive::kPrimByte:
    case Primitive::kPrimShort:
    case Primitive::kPrimChar:
    case Primitive::kPrimInt: {
      __ LoadImmediate(out, 0);
      __ cmp(left.AsRegister<Register>(),
             ShifterOperand(right.AsRegister<Register>()));  // Signed compare.
      less_cond = LT;
      break;
    }
    case Primitive::kPrimLong: {
      __ cmp(left.AsRegisterPairHigh<Register>(),
             ShifterOperand(right.AsRegisterPairHigh<Register>()));  // Signed compare.
      __ b(&less, LT);
      __ b(&greater, GT);
      // Do LoadImmediate before the last `cmp`, as LoadImmediate might affect the status flags.
      __ LoadImmediate(out, 0);
      __ cmp(left.AsRegisterPairLow<Register>(),
             ShifterOperand(right.AsRegisterPairLow<Register>()));  // Unsigned compare.
      less_cond = LO;
      break;
    }
    case Primitive::kPrimFloat:
    case Primitive::kPrimDouble: {
      __ LoadImmediate(out, 0);
      if (type == Primitive::kPrimFloat) {
        __ vcmps(left.AsFpuRegister<SRegister>(), right.AsFpuRegister<SRegister>());
      } else {
        __ vcmpd(FromLowSToD(left.AsFpuRegisterPairLow<SRegister>()),
                 FromLowSToD(right.AsFpuRegisterPairLow<SRegister>()));
      }
      __ vmstat();  // transfer FP status register to ARM APSR.
      less_cond = ARMFPCondition(kCondLT, compare->IsGtBias());
      break;
    }
    default:
      LOG(FATAL) << "Unexpected compare type " << type;
      UNREACHABLE();
  }

  __ b(&done, EQ);
  __ b(&less, less_cond);

  __ Bind(&greater);
  __ LoadImmediate(out, 1);
  __ b(&done);

  __ Bind(&less);
  __ LoadImmediate(out, -1);

  __ Bind(&done);
}

void LocationsBuilderARM::VisitPhi(HPhi* instruction) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
  for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
    locations->SetInAt(i, Location::Any());
  }
  locations->SetOut(Location::Any());
}

void InstructionCodeGeneratorARM::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
  LOG(FATAL) << "Unreachable";
}

void CodeGeneratorARM::GenerateMemoryBarrier(MemBarrierKind kind) {
  // TODO (ported from quick): revisit ARM barrier kinds.
  DmbOptions flavor = DmbOptions::ISH;  // Quiet C++ warnings.
  switch (kind) {
    case MemBarrierKind::kAnyStore:
    case MemBarrierKind::kLoadAny:
    case MemBarrierKind::kAnyAny: {
      flavor = DmbOptions::ISH;
      break;
    }
    case MemBarrierKind::kStoreStore: {
      flavor = DmbOptions::ISHST;
      break;
    }
    default:
      LOG(FATAL) << "Unexpected memory barrier " << kind;
  }
  __ dmb(flavor);
}

void InstructionCodeGeneratorARM::GenerateWideAtomicLoad(Register addr,
                                                         uint32_t offset,
                                                         Register out_lo,
                                                         Register out_hi) {
  if (offset != 0) {
    // Ensure `out_lo` is different from `addr`, so that loading
    // `offset` into `out_lo` does not clutter `addr`.
    DCHECK_NE(out_lo, addr);
    __ LoadImmediate(out_lo, offset);
    __ add(IP, addr, ShifterOperand(out_lo));
    addr = IP;
  }
  __ ldrexd(out_lo, out_hi, addr);
}

void InstructionCodeGeneratorARM::GenerateWideAtomicStore(Register addr,
                                                          uint32_t offset,
                                                          Register value_lo,
                                                          Register value_hi,
                                                          Register temp1,
                                                          Register temp2,
                                                          HInstruction* instruction) {
  Label fail;
  if (offset != 0) {
    __ LoadImmediate(temp1, offset);
    __ add(IP, addr, ShifterOperand(temp1));
    addr = IP;
  }
  __ Bind(&fail);
  // We need a load followed by store. (The address used in a STREX instruction must
  // be the same as the address in the most recently executed LDREX instruction.)
  __ ldrexd(temp1, temp2, addr);
  codegen_->MaybeRecordImplicitNullCheck(instruction);
  __ strexd(temp1, value_lo, value_hi, addr);
  __ CompareAndBranchIfNonZero(temp1, &fail);
}

void LocationsBuilderARM::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
  DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());

  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
  locations->SetInAt(0, Location::RequiresRegister());

  Primitive::Type field_type = field_info.GetFieldType();
  if (Primitive::IsFloatingPointType(field_type)) {
    locations->SetInAt(1, Location::RequiresFpuRegister());
  } else {
    locations->SetInAt(1, Location::RequiresRegister());
  }

  bool is_wide = field_type == Primitive::kPrimLong || field_type == Primitive::kPrimDouble;
  bool generate_volatile = field_info.IsVolatile()
      && is_wide
      && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
  bool needs_write_barrier =
      CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
  // Temporary registers for the write barrier.
  // TODO: consider renaming StoreNeedsWriteBarrier to StoreNeedsGCMark.
  if (needs_write_barrier) {
    locations->AddTemp(Location::RequiresRegister());  // Possibly used for reference poisoning too.
    locations->AddTemp(Location::RequiresRegister());
  } else if (generate_volatile) {
    // ARM encoding have some additional constraints for ldrexd/strexd:
    // - registers need to be consecutive
    // - the first register should be even but not R14.
    // We don't test for ARM yet, and the assertion makes sure that we
    // revisit this if we ever enable ARM encoding.
    DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());

    locations->AddTemp(Location::RequiresRegister());
    locations->AddTemp(Location::RequiresRegister());
    if (field_type == Primitive::kPrimDouble) {
      // For doubles we need two more registers to copy the value.
      locations->AddTemp(Location::RegisterLocation(R2));
      locations->AddTemp(Location::RegisterLocation(R3));
    }
  }
}

void InstructionCodeGeneratorARM::HandleFieldSet(HInstruction* instruction,
                                                 const FieldInfo& field_info,
                                                 bool value_can_be_null) {
  DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());

  LocationSummary* locations = instruction->GetLocations();
  Register base = locations->InAt(0).AsRegister<Register>();
  Location value = locations->InAt(1);

  bool is_volatile = field_info.IsVolatile();
  bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
  Primitive::Type field_type = field_info.GetFieldType();
  uint32_t offset = field_info.GetFieldOffset().Uint32Value();
  bool needs_write_barrier =
      CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));

  if (is_volatile) {
    codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
  }

  switch (field_type) {
    case Primitive::kPrimBoolean:
    case Primitive::kPrimByte: {
      __ StoreToOffset(kStoreByte, value.AsRegister<Register>(), base, offset);
      break;
    }

    case Primitive::kPrimShort:
    case Primitive::kPrimChar: {
      __ StoreToOffset(kStoreHalfword, value.AsRegister<Register>(), base, offset);
      break;
    }

    case Primitive::kPrimInt:
    case Primitive::kPrimNot: {
      if (kPoisonHeapReferences && needs_write_barrier) {
        // Note that in the case where `value` is a null reference,
        // we do not enter this block, as a null reference does not
        // need poisoning.
        DCHECK_EQ(field_type, Primitive::kPrimNot);
        Register temp = locations->GetTemp(0).AsRegister<Register>();
        __ Mov(temp, value.AsRegister<Register>());
        __ PoisonHeapReference(temp);
        __ StoreToOffset(kStoreWord, temp, base, offset);
      } else {
        __ StoreToOffset(kStoreWord, value.AsRegister<Register>(), base, offset);
      }
      break;
    }

    case Primitive::kPrimLong: {
      if (is_volatile && !atomic_ldrd_strd) {
        GenerateWideAtomicStore(base, offset,
                                value.AsRegisterPairLow<Register>(),
                                value.AsRegisterPairHigh<Register>(),
                                locations->GetTemp(0).AsRegister<Register>(),
                                locations->GetTemp(1).AsRegister<Register>(),
                                instruction);
      } else {
        __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), base, offset);
        codegen_->MaybeRecordImplicitNullCheck(instruction);
      }
      break;
    }

    case Primitive::kPrimFloat: {
      __ StoreSToOffset(value.AsFpuRegister<SRegister>(), base, offset);
      break;
    }

    case Primitive::kPrimDouble: {
      DRegister value_reg = FromLowSToD(value.AsFpuRegisterPairLow<SRegister>());
      if (is_volatile && !atomic_ldrd_strd) {
        Register value_reg_lo = locations->GetTemp(0).AsRegister<Register>();
        Register value_reg_hi = locations->GetTemp(1).AsRegister<Register>();

        __ vmovrrd(value_reg_lo, value_reg_hi, value_reg);

        GenerateWideAtomicStore(base, offset,
                                value_reg_lo,
                                value_reg_hi,
                                locations->GetTemp(2).AsRegister<Register>(),
                                locations->GetTemp(3).AsRegister<Register>(),
                                instruction);
      } else {
        __ StoreDToOffset(value_reg, base, offset);
        codegen_->MaybeRecordImplicitNullCheck(instruction);
      }
      break;
    }

    case Primitive::kPrimVoid:
      LOG(FATAL) << "Unreachable type " << field_type;
      UNREACHABLE();
  }

  // Longs and doubles are handled in the switch.
  if (field_type != Primitive::kPrimLong && field_type != Primitive::kPrimDouble) {
    codegen_->MaybeRecordImplicitNullCheck(instruction);
  }

  if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
    Register temp = locations->GetTemp(0).AsRegister<Register>();
    Register card = locations->GetTemp(1).AsRegister<Register>();
    codegen_->MarkGCCard(
        temp, card, base, value.AsRegister<Register>(), value_can_be_null);
  }

  if (is_volatile) {
    codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
  }
}

void LocationsBuilderARM::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
  DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());

  bool object_field_get_with_read_barrier =
      kEmitCompilerReadBarrier && (field_info.GetFieldType() == Primitive::kPrimNot);
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(instruction,
                                                   object_field_get_with_read_barrier ?
                                                       LocationSummary::kCallOnSlowPath :
                                                       LocationSummary::kNoCall);
  locations->SetInAt(0, Location::RequiresRegister());

  bool volatile_for_double = field_info.IsVolatile()
      && (field_info.GetFieldType() == Primitive::kPrimDouble)
      && !codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
  // The output overlaps in case of volatile long: we don't want the
  // code generated by GenerateWideAtomicLoad to overwrite the
  // object's location.  Likewise, in the case of an object field get
  // with read barriers enabled, we do not want the load to overwrite
  // the object's location, as we need it to emit the read barrier.
  bool overlap = (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) ||
      object_field_get_with_read_barrier;

  if (Primitive::IsFloatingPointType(instruction->GetType())) {
    locations->SetOut(Location::RequiresFpuRegister());
  } else {
    locations->SetOut(Location::RequiresRegister(),
                      (overlap ? Location::kOutputOverlap : Location::kNoOutputOverlap));
  }
  if (volatile_for_double) {
    // ARM encoding have some additional constraints for ldrexd/strexd:
    // - registers need to be consecutive
    // - the first register should be even but not R14.
    // We don't test for ARM yet, and the assertion makes sure that we
    // revisit this if we ever enable ARM encoding.
    DCHECK_EQ(InstructionSet::kThumb2, codegen_->GetInstructionSet());
    locations->AddTemp(Location::RequiresRegister());
    locations->AddTemp(Location::RequiresRegister());
  } else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
    // We need a temporary register for the read barrier marking slow
    // path in CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier.
    locations->AddTemp(Location::RequiresRegister());
  }
}

Location LocationsBuilderARM::ArmEncodableConstantOrRegister(HInstruction* constant,
                                                             Opcode opcode) {
  DCHECK(!Primitive::IsFloatingPointType(constant->GetType()));
  if (constant->IsConstant() &&
      CanEncodeConstantAsImmediate(constant->AsConstant(), opcode)) {
    return Location::ConstantLocation(constant->AsConstant());
  }
  return Location::RequiresRegister();
}

bool LocationsBuilderARM::CanEncodeConstantAsImmediate(HConstant* input_cst,
                                                       Opcode opcode) {
  uint64_t value = static_cast<uint64_t>(Int64FromConstant(input_cst));
  if (Primitive::Is64BitType(input_cst->GetType())) {
    return CanEncodeConstantAsImmediate(Low32Bits(value), opcode) &&
        CanEncodeConstantAsImmediate(High32Bits(value), opcode);
  } else {
    return CanEncodeConstantAsImmediate(Low32Bits(value), opcode);
  }
}

bool LocationsBuilderARM::CanEncodeConstantAsImmediate(uint32_t value, Opcode opcode) {
  ShifterOperand so;
  ArmAssembler* assembler = codegen_->GetAssembler();
  if (assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, opcode, value, &so)) {
    return true;
  }
  Opcode neg_opcode = kNoOperand;
  switch (opcode) {
    case AND:
      neg_opcode = BIC;
      break;
    case ORR:
      neg_opcode = ORN;
      break;
    default:
      return false;
  }
  return assembler->ShifterOperandCanHold(kNoRegister, kNoRegister, neg_opcode, ~value, &so);
}

void InstructionCodeGeneratorARM::HandleFieldGet(HInstruction* instruction,
                                                 const FieldInfo& field_info) {
  DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());

  LocationSummary* locations = instruction->GetLocations();
  Location base_loc = locations->InAt(0);
  Register base = base_loc.AsRegister<Register>();
  Location out = locations->Out();
  bool is_volatile = field_info.IsVolatile();
  bool atomic_ldrd_strd = codegen_->GetInstructionSetFeatures().HasAtomicLdrdAndStrd();
  Primitive::Type field_type = field_info.GetFieldType();
  uint32_t offset = field_info.GetFieldOffset().Uint32Value();

  switch (field_type) {
    case Primitive::kPrimBoolean:
      __ LoadFromOffset(kLoadUnsignedByte, out.AsRegister<Register>(), base, offset);
      break;

    case Primitive::kPrimByte:
      __ LoadFromOffset(kLoadSignedByte, out.AsRegister<Register>(), base, offset);
      break;

    case Primitive::kPrimShort:
      __ LoadFromOffset(kLoadSignedHalfword, out.AsRegister<Register>(), base, offset);
      break;

    case Primitive::kPrimChar:
      __ LoadFromOffset(kLoadUnsignedHalfword, out.AsRegister<Register>(), base, offset);
      break;

    case Primitive::kPrimInt:
      __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset);
      break;

    case Primitive::kPrimNot: {
      // /* HeapReference<Object> */ out = *(base + offset)
      if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
        Location temp_loc = locations->GetTemp(0);
        // Note that a potential implicit null check is handled in this
        // CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier call.
        codegen_->GenerateFieldLoadWithBakerReadBarrier(
            instruction, out, base, offset, temp_loc, /* needs_null_check */ true);
        if (is_volatile) {
          codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
        }
      } else {
        __ LoadFromOffset(kLoadWord, out.AsRegister<Register>(), base, offset);
        codegen_->MaybeRecordImplicitNullCheck(instruction);
        if (is_volatile) {
          codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
        }
        // If read barriers are enabled, emit read barriers other than
        // Baker's using a slow path (and also unpoison the loaded
        // reference, if heap poisoning is enabled).
        codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
      }
      break;
    }

    case Primitive::kPrimLong:
      if (is_volatile && !atomic_ldrd_strd) {
        GenerateWideAtomicLoad(base, offset,
                               out.AsRegisterPairLow<Register>(),
                               out.AsRegisterPairHigh<Register>());
      } else {
        __ LoadFromOffset(kLoadWordPair, out.AsRegisterPairLow<Register>(), base, offset);
      }
      break;

    case Primitive::kPrimFloat:
      __ LoadSFromOffset(out.AsFpuRegister<SRegister>(), base, offset);
      break;

    case Primitive::kPrimDouble: {
      DRegister out_reg = FromLowSToD(out.AsFpuRegisterPairLow<SRegister>());
      if (is_volatile && !atomic_ldrd_strd) {
        Register lo = locations->GetTemp(0).AsRegister<Register>();
        Register hi = locations->GetTemp(1).AsRegister<Register>();
        GenerateWideAtomicLoad(base, offset, lo, hi);
        codegen_->MaybeRecordImplicitNullCheck(instruction);
        __ vmovdrr(out_reg, lo, hi);
      } else {
        __ LoadDFromOffset(out_reg, base, offset);
        codegen_->MaybeRecordImplicitNullCheck(instruction);
      }
      break;
    }

    case Primitive::kPrimVoid:
      LOG(FATAL) << "Unreachable type " << field_type;
      UNREACHABLE();
  }

  if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimDouble) {
    // Potential implicit null checks, in the case of reference or
    // double fields, are handled in the previous switch statement.
  } else {
    codegen_->MaybeRecordImplicitNullCheck(instruction);
  }

  if (is_volatile) {
    if (field_type == Primitive::kPrimNot) {
      // Memory barriers, in the case of references, are also handled
      // in the previous switch statement.
    } else {
      codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
    }
  }
}

void LocationsBuilderARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
  HandleFieldSet(instruction, instruction->GetFieldInfo());
}

void InstructionCodeGeneratorARM::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
  HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
}

void LocationsBuilderARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
  HandleFieldGet(instruction, instruction->GetFieldInfo());
}

void InstructionCodeGeneratorARM::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
  HandleFieldGet(instruction, instruction->GetFieldInfo());
}

void LocationsBuilderARM::VisitStaticFieldGet(HStaticFieldGet* instruction) {
  HandleFieldGet(instruction, instruction->GetFieldInfo());
}

void InstructionCodeGeneratorARM::VisitStaticFieldGet(HStaticFieldGet* instruction) {
  HandleFieldGet(instruction, instruction->GetFieldInfo());
}

void LocationsBuilderARM::VisitStaticFieldSet(HStaticFieldSet* instruction) {
  HandleFieldSet(instruction, instruction->GetFieldInfo());
}

void InstructionCodeGeneratorARM::VisitStaticFieldSet(HStaticFieldSet* instruction) {
  HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
}

void LocationsBuilderARM::VisitUnresolvedInstanceFieldGet(
    HUnresolvedInstanceFieldGet* instruction) {
  FieldAccessCallingConventionARM calling_convention;
  codegen_->CreateUnresolvedFieldLocationSummary(
      instruction, instruction->GetFieldType(), calling_convention);
}

void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldGet(
    HUnresolvedInstanceFieldGet* instruction) {
  FieldAccessCallingConventionARM calling_convention;
  codegen_->GenerateUnresolvedFieldAccess(instruction,
                                          instruction->GetFieldType(),
                                          instruction->GetFieldIndex(),
                                          instruction->GetDexPc(),
                                          calling_convention);
}

void LocationsBuilderARM::VisitUnresolvedInstanceFieldSet(
    HUnresolvedInstanceFieldSet* instruction) {
  FieldAccessCallingConventionARM calling_convention;
  codegen_->CreateUnresolvedFieldLocationSummary(
      instruction, instruction->GetFieldType(), calling_convention);
}

void InstructionCodeGeneratorARM::VisitUnresolvedInstanceFieldSet(
    HUnresolvedInstanceFieldSet* instruction) {
  FieldAccessCallingConventionARM calling_convention;
  codegen_->GenerateUnresolvedFieldAccess(instruction,
                                          instruction->GetFieldType(),
                                          instruction->GetFieldIndex(),
                                          instruction->GetDexPc(),
                                          calling_convention);
}

void LocationsBuilderARM::VisitUnresolvedStaticFieldGet(
    HUnresolvedStaticFieldGet* instruction) {
  FieldAccessCallingConventionARM calling_convention;
  codegen_->CreateUnresolvedFieldLocationSummary(
      instruction, instruction->GetFieldType(), calling_convention);
}

void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldGet(
    HUnresolvedStaticFieldGet* instruction) {
  FieldAccessCallingConventionARM calling_convention;
  codegen_->GenerateUnresolvedFieldAccess(instruction,
                                          instruction->GetFieldType(),
                                          instruction->GetFieldIndex(),
                                          instruction->GetDexPc(),
                                          calling_convention);
}

void LocationsBuilderARM::VisitUnresolvedStaticFieldSet(
    HUnresolvedStaticFieldSet* instruction) {
  FieldAccessCallingConventionARM calling_convention;
  codegen_->CreateUnresolvedFieldLocationSummary(
      instruction, instruction->GetFieldType(), calling_convention);
}

void InstructionCodeGeneratorARM::VisitUnresolvedStaticFieldSet(
    HUnresolvedStaticFieldSet* instruction) {
  FieldAccessCallingConventionARM calling_convention;
  codegen_->GenerateUnresolvedFieldAccess(instruction,
                                          instruction->GetFieldType(),
                                          instruction->GetFieldIndex(),
                                          instruction->GetDexPc(),
                                          calling_convention);
}

void LocationsBuilderARM::VisitNullCheck(HNullCheck* instruction) {
  LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
      ? LocationSummary::kCallOnSlowPath
      : LocationSummary::kNoCall;
  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
  locations->SetInAt(0, Location::RequiresRegister());
  if (instruction->HasUses()) {
    locations->SetOut(Location::SameAsFirstInput());
  }
}

void CodeGeneratorARM::GenerateImplicitNullCheck(HNullCheck* instruction) {
  if (CanMoveNullCheckToUser(instruction)) {
    return;
  }
  Location obj = instruction->GetLocations()->InAt(0);

  __ LoadFromOffset(kLoadWord, IP, obj.AsRegister<Register>(), 0);
  RecordPcInfo(instruction, instruction->GetDexPc());
}

void CodeGeneratorARM::GenerateExplicitNullCheck(HNullCheck* instruction) {
  SlowPathCode* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM(instruction);
  AddSlowPath(slow_path);

  LocationSummary* locations = instruction->GetLocations();
  Location obj = locations->InAt(0);

  __ CompareAndBranchIfZero(obj.AsRegister<Register>(), slow_path->GetEntryLabel());
}

void InstructionCodeGeneratorARM::VisitNullCheck(HNullCheck* instruction) {
  codegen_->GenerateNullCheck(instruction);
}

void LocationsBuilderARM::VisitArrayGet(HArrayGet* instruction) {
  bool object_array_get_with_read_barrier =
      kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(instruction,
                                                   object_array_get_with_read_barrier ?
                                                       LocationSummary::kCallOnSlowPath :
                                                       LocationSummary::kNoCall);
  locations->SetInAt(0, Location::RequiresRegister());
  locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
  if (Primitive::IsFloatingPointType(instruction->GetType())) {
    locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
  } else {
    // The output overlaps in the case of an object array get with
    // read barriers enabled: we do not want the move to overwrite the
    // array's location, as we need it to emit the read barrier.
    locations->SetOut(
        Location::RequiresRegister(),
        object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
  }
  // We need a temporary register for the read barrier marking slow
  // path in CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier.
  if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
    locations->AddTemp(Location::RequiresRegister());
  }
}

void InstructionCodeGeneratorARM::VisitArrayGet(HArrayGet* instruction) {
  LocationSummary* locations = instruction->GetLocations();
  Location obj_loc = locations->InAt(0);
  Register obj = obj_loc.AsRegister<Register>();
  Location index = locations->InAt(1);
  Location out_loc = locations->Out();

  Primitive::Type type = instruction->GetType();
  switch (type) {
    case Primitive::kPrimBoolean: {
      uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
      Register out = out_loc.AsRegister<Register>();
      if (index.IsConstant()) {
        size_t offset =
            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
        __ LoadFromOffset(kLoadUnsignedByte, out, obj, offset);
      } else {
        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>()));
        __ LoadFromOffset(kLoadUnsignedByte, out, IP, data_offset);
      }
      break;
    }

    case Primitive::kPrimByte: {
      uint32_t data_offset = mirror::Array::DataOffset(sizeof(int8_t)).Uint32Value();
      Register out = out_loc.AsRegister<Register>();
      if (index.IsConstant()) {
        size_t offset =
            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
        __ LoadFromOffset(kLoadSignedByte, out, obj, offset);
      } else {
        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>()));
        __ LoadFromOffset(kLoadSignedByte, out, IP, data_offset);
      }
      break;
    }

    case Primitive::kPrimShort: {
      uint32_t data_offset = mirror::Array::DataOffset(sizeof(int16_t)).Uint32Value();
      Register out = out_loc.AsRegister<Register>();
      if (index.IsConstant()) {
        size_t offset =
            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
        __ LoadFromOffset(kLoadSignedHalfword, out, obj, offset);
      } else {
        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_2));
        __ LoadFromOffset(kLoadSignedHalfword, out, IP, data_offset);
      }
      break;
    }

    case Primitive::kPrimChar: {
      uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
      Register out = out_loc.AsRegister<Register>();
      if (index.IsConstant()) {
        size_t offset =
            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
        __ LoadFromOffset(kLoadUnsignedHalfword, out, obj, offset);
      } else {
        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_2));
        __ LoadFromOffset(kLoadUnsignedHalfword, out, IP, data_offset);
      }
      break;
    }

    case Primitive::kPrimInt: {
      uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
      Register out = out_loc.AsRegister<Register>();
      if (index.IsConstant()) {
        size_t offset =
            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
        __ LoadFromOffset(kLoadWord, out, obj, offset);
      } else {
        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
        __ LoadFromOffset(kLoadWord, out, IP, data_offset);
      }
      break;
    }

    case Primitive::kPrimNot: {
      static_assert(
          sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
          "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
      uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
      // /* HeapReference<Object> */ out =
      //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
      if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
        Location temp = locations->GetTemp(0);
        // Note that a potential implicit null check is handled in this
        // CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier call.
        codegen_->GenerateArrayLoadWithBakerReadBarrier(
            instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true);
      } else {
        Register out = out_loc.AsRegister<Register>();
        if (index.IsConstant()) {
          size_t offset =
              (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
          __ LoadFromOffset(kLoadWord, out, obj, offset);
          codegen_->MaybeRecordImplicitNullCheck(instruction);
          // If read barriers are enabled, emit read barriers other than
          // Baker's using a slow path (and also unpoison the loaded
          // reference, if heap poisoning is enabled).
          codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
        } else {
          __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
          __ LoadFromOffset(kLoadWord, out, IP, data_offset);
          codegen_->MaybeRecordImplicitNullCheck(instruction);
          // If read barriers are enabled, emit read barriers other than
          // Baker's using a slow path (and also unpoison the loaded
          // reference, if heap poisoning is enabled).
          codegen_->MaybeGenerateReadBarrierSlow(
              instruction, out_loc, out_loc, obj_loc, data_offset, index);
        }
      }
      break;
    }

    case Primitive::kPrimLong: {
      uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
      if (index.IsConstant()) {
        size_t offset =
            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
        __ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow<Register>(), obj, offset);
      } else {
        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
        __ LoadFromOffset(kLoadWordPair, out_loc.AsRegisterPairLow<Register>(), IP, data_offset);
      }
      break;
    }

    case Primitive::kPrimFloat: {
      uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
      SRegister out = out_loc.AsFpuRegister<SRegister>();
      if (index.IsConstant()) {
        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
        __ LoadSFromOffset(out, obj, offset);
      } else {
        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
        __ LoadSFromOffset(out, IP, data_offset);
      }
      break;
    }

    case Primitive::kPrimDouble: {
      uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
      SRegister out = out_loc.AsFpuRegisterPairLow<SRegister>();
      if (index.IsConstant()) {
        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
        __ LoadDFromOffset(FromLowSToD(out), obj, offset);
      } else {
        __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
        __ LoadDFromOffset(FromLowSToD(out), IP, data_offset);
      }
      break;
    }

    case Primitive::kPrimVoid:
      LOG(FATAL) << "Unreachable type " << type;
      UNREACHABLE();
  }

  if (type == Primitive::kPrimNot) {
    // Potential implicit null checks, in the case of reference
    // arrays, are handled in the previous switch statement.
  } else {
    codegen_->MaybeRecordImplicitNullCheck(instruction);
  }
}

void LocationsBuilderARM::VisitArraySet(HArraySet* instruction) {
  Primitive::Type value_type = instruction->GetComponentType();

  bool needs_write_barrier =
      CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
  bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
  bool object_array_set_with_read_barrier =
      kEmitCompilerReadBarrier && (value_type == Primitive::kPrimNot);

  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
      instruction,
      (may_need_runtime_call_for_type_check || object_array_set_with_read_barrier) ?
          LocationSummary::kCallOnSlowPath :
          LocationSummary::kNoCall);

  locations->SetInAt(0, Location::RequiresRegister());
  locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
  if (Primitive::IsFloatingPointType(value_type)) {
    locations->SetInAt(2, Location::RequiresFpuRegister());
  } else {
    locations->SetInAt(2, Location::RequiresRegister());
  }
  if (needs_write_barrier) {
    // Temporary registers for the write barrier.
    locations->AddTemp(Location::RequiresRegister());  // Possibly used for ref. poisoning too.
    locations->AddTemp(Location::RequiresRegister());
  }
}

void InstructionCodeGeneratorARM::VisitArraySet(HArraySet* instruction) {
  LocationSummary* locations = instruction->GetLocations();
  Location array_loc = locations->InAt(0);
  Register array = array_loc.AsRegister<Register>();
  Location index = locations->InAt(1);
  Primitive::Type value_type = instruction->GetComponentType();
  bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
  bool needs_write_barrier =
      CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());

  switch (value_type) {
    case Primitive::kPrimBoolean:
    case Primitive::kPrimByte: {
      uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
      Register value = locations->InAt(2).AsRegister<Register>();
      if (index.IsConstant()) {
        size_t offset =
            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
        __ StoreToOffset(kStoreByte, value, array, offset);
      } else {
        __ add(IP, array, ShifterOperand(index.AsRegister<Register>()));
        __ StoreToOffset(kStoreByte, value, IP, data_offset);
      }
      break;
    }

    case Primitive::kPrimShort:
    case Primitive::kPrimChar: {
      uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
      Register value = locations->InAt(2).AsRegister<Register>();
      if (index.IsConstant()) {
        size_t offset =
            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
        __ StoreToOffset(kStoreHalfword, value, array, offset);
      } else {
        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_2));
        __ StoreToOffset(kStoreHalfword, value, IP, data_offset);
      }
      break;
    }

    case Primitive::kPrimNot: {
      uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
      Location value_loc = locations->InAt(2);
      Register value = value_loc.AsRegister<Register>();
      Register source = value;

      if (instruction->InputAt(2)->IsNullConstant()) {
        // Just setting null.
        if (index.IsConstant()) {
          size_t offset =
              (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
          __ StoreToOffset(kStoreWord, source, array, offset);
        } else {
          DCHECK(index.IsRegister()) << index;
          __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
          __ StoreToOffset(kStoreWord, source, IP, data_offset);
        }
        codegen_->MaybeRecordImplicitNullCheck(instruction);
        DCHECK(!needs_write_barrier);
        DCHECK(!may_need_runtime_call_for_type_check);
        break;
      }

      DCHECK(needs_write_barrier);
      Register temp1 = locations->GetTemp(0).AsRegister<Register>();
      Register temp2 = locations->GetTemp(1).AsRegister<Register>();
      uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
      uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
      uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
      Label done;
      SlowPathCode* slow_path = nullptr;

      if (may_need_runtime_call_for_type_check) {
        slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARM(instruction);
        codegen_->AddSlowPath(slow_path);
        if (instruction->GetValueCanBeNull()) {
          Label non_zero;
          __ CompareAndBranchIfNonZero(value, &non_zero);
          if (index.IsConstant()) {
            size_t offset =
               (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
            __ StoreToOffset(kStoreWord, value, array, offset);
          } else {
            DCHECK(index.IsRegister()) << index;
            __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
            __ StoreToOffset(kStoreWord, value, IP, data_offset);
          }
          codegen_->MaybeRecordImplicitNullCheck(instruction);
          __ b(&done);
          __ Bind(&non_zero);
        }

        if (kEmitCompilerReadBarrier) {
          // When read barriers are enabled, the type checking
          // instrumentation requires two read barriers:
          //
          //   __ Mov(temp2, temp1);
          //   // /* HeapReference<Class> */ temp1 = temp1->component_type_
          //   __ LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
          //   codegen_->GenerateReadBarrierSlow(
          //       instruction, temp1_loc, temp1_loc, temp2_loc, component_offset);
          //
          //   // /* HeapReference<Class> */ temp2 = value->klass_
          //   __ LoadFromOffset(kLoadWord, temp2, value, class_offset);
          //   codegen_->GenerateReadBarrierSlow(
          //       instruction, temp2_loc, temp2_loc, value_loc, class_offset, temp1_loc);
          //
          //   __ cmp(temp1, ShifterOperand(temp2));
          //
          // However, the second read barrier may trash `temp`, as it
          // is a temporary register, and as such would not be saved
          // along with live registers before calling the runtime (nor
          // restored afterwards).  So in this case, we bail out and
          // delegate the work to the array set slow path.
          //
          // TODO: Extend the register allocator to support a new
          // "(locally) live temp" location so as to avoid always
          // going into the slow path when read barriers are enabled.
          __ b(slow_path->GetEntryLabel());
        } else {
          // /* HeapReference<Class> */ temp1 = array->klass_
          __ LoadFromOffset(kLoadWord, temp1, array, class_offset);
          codegen_->MaybeRecordImplicitNullCheck(instruction);
          __ MaybeUnpoisonHeapReference(temp1);

          // /* HeapReference<Class> */ temp1 = temp1->component_type_
          __ LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
          // /* HeapReference<Class> */ temp2 = value->klass_
          __ LoadFromOffset(kLoadWord, temp2, value, class_offset);
          // If heap poisoning is enabled, no need to unpoison `temp1`
          // nor `temp2`, as we are comparing two poisoned references.
          __ cmp(temp1, ShifterOperand(temp2));

          if (instruction->StaticTypeOfArrayIsObjectArray()) {
            Label do_put;
            __ b(&do_put, EQ);
            // If heap poisoning is enabled, the `temp1` reference has
            // not been unpoisoned yet; unpoison it now.
            __ MaybeUnpoisonHeapReference(temp1);

            // /* HeapReference<Class> */ temp1 = temp1->super_class_
            __ LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
            // If heap poisoning is enabled, no need to unpoison
            // `temp1`, as we are comparing against null below.
            __ CompareAndBranchIfNonZero(temp1, slow_path->GetEntryLabel());
            __ Bind(&do_put);
          } else {
            __ b(slow_path->GetEntryLabel(), NE);
          }
        }
      }

      if (kPoisonHeapReferences) {
        // Note that in the case where `value` is a null reference,
        // we do not enter this block, as a null reference does not
        // need poisoning.
        DCHECK_EQ(value_type, Primitive::kPrimNot);
        __ Mov(temp1, value);
        __ PoisonHeapReference(temp1);
        source = temp1;
      }

      if (index.IsConstant()) {
        size_t offset =
            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
        __ StoreToOffset(kStoreWord, source, array, offset);
      } else {
        DCHECK(index.IsRegister()) << index;
        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
        __ StoreToOffset(kStoreWord, source, IP, data_offset);
      }

      if (!may_need_runtime_call_for_type_check) {
        codegen_->MaybeRecordImplicitNullCheck(instruction);
      }

      codegen_->MarkGCCard(temp1, temp2, array, value, instruction->GetValueCanBeNull());

      if (done.IsLinked()) {
        __ Bind(&done);
      }

      if (slow_path != nullptr) {
        __ Bind(slow_path->GetExitLabel());
      }

      break;
    }

    case Primitive::kPrimInt: {
      uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
      Register value = locations->InAt(2).AsRegister<Register>();
      if (index.IsConstant()) {
        size_t offset =
            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
        __ StoreToOffset(kStoreWord, value, array, offset);
      } else {
        DCHECK(index.IsRegister()) << index;
        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
        __ StoreToOffset(kStoreWord, value, IP, data_offset);
      }
      break;
    }

    case Primitive::kPrimLong: {
      uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
      Location value = locations->InAt(2);
      if (index.IsConstant()) {
        size_t offset =
            (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
        __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), array, offset);
      } else {
        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
        __ StoreToOffset(kStoreWordPair, value.AsRegisterPairLow<Register>(), IP, data_offset);
      }
      break;
    }

    case Primitive::kPrimFloat: {
      uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
      Location value = locations->InAt(2);
      DCHECK(value.IsFpuRegister());
      if (index.IsConstant()) {
        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
        __ StoreSToOffset(value.AsFpuRegister<SRegister>(), array, offset);
      } else {
        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
        __ StoreSToOffset(value.AsFpuRegister<SRegister>(), IP, data_offset);
      }
      break;
    }

    case Primitive::kPrimDouble: {
      uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
      Location value = locations->InAt(2);
      DCHECK(value.IsFpuRegisterPair());
      if (index.IsConstant()) {
        size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
        __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), array, offset);
      } else {
        __ add(IP, array, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_8));
        __ StoreDToOffset(FromLowSToD(value.AsFpuRegisterPairLow<SRegister>()), IP, data_offset);
      }

      break;
    }

    case Primitive::kPrimVoid:
      LOG(FATAL) << "Unreachable type " << value_type;
      UNREACHABLE();
  }

  // Objects are handled in the switch.
  if (value_type != Primitive::kPrimNot) {
    codegen_->MaybeRecordImplicitNullCheck(instruction);
  }
}

void LocationsBuilderARM::VisitArrayLength(HArrayLength* instruction) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
  locations->SetInAt(0, Location::RequiresRegister());
  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}

void InstructionCodeGeneratorARM::VisitArrayLength(HArrayLength* instruction) {
  LocationSummary* locations = instruction->GetLocations();
  uint32_t offset = mirror::Array::LengthOffset().Uint32Value();
  Register obj = locations->InAt(0).AsRegister<Register>();
  Register out = locations->Out().AsRegister<Register>();
  __ LoadFromOffset(kLoadWord, out, obj, offset);
  codegen_->MaybeRecordImplicitNullCheck(instruction);
}

void LocationsBuilderARM::VisitBoundsCheck(HBoundsCheck* instruction) {
  LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
      ? LocationSummary::kCallOnSlowPath
      : LocationSummary::kNoCall;
  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
  locations->SetInAt(0, Location::RequiresRegister());
  locations->SetInAt(1, Location::RequiresRegister());
  if (instruction->HasUses()) {
    locations->SetOut(Location::SameAsFirstInput());
  }
}

void InstructionCodeGeneratorARM::VisitBoundsCheck(HBoundsCheck* instruction) {
  LocationSummary* locations = instruction->GetLocations();
  SlowPathCode* slow_path =
      new (GetGraph()->GetArena()) BoundsCheckSlowPathARM(instruction);
  codegen_->AddSlowPath(slow_path);

  Register index = locations->InAt(0).AsRegister<Register>();
  Register length = locations->InAt(1).AsRegister<Register>();

  __ cmp(index, ShifterOperand(length));
  __ b(slow_path->GetEntryLabel(), HS);
}

void CodeGeneratorARM::MarkGCCard(Register temp,
                                  Register card,
                                  Register object,
                                  Register value,
                                  bool can_be_null) {
  Label is_null;
  if (can_be_null) {
    __ CompareAndBranchIfZero(value, &is_null);
  }
  __ LoadFromOffset(kLoadWord, card, TR, Thread::CardTableOffset<kArmWordSize>().Int32Value());
  __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
  __ strb(card, Address(card, temp));
  if (can_be_null) {
    __ Bind(&is_null);
  }
}

void LocationsBuilderARM::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
  LOG(FATAL) << "Unreachable";
}

void InstructionCodeGeneratorARM::VisitParallelMove(HParallelMove* instruction) {
  codegen_->GetMoveResolver()->EmitNativeCode(instruction);
}

void LocationsBuilderARM::VisitSuspendCheck(HSuspendCheck* instruction) {
  new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
}

void InstructionCodeGeneratorARM::VisitSuspendCheck(HSuspendCheck* instruction) {
  HBasicBlock* block = instruction->GetBlock();
  if (block->GetLoopInformation() != nullptr) {
    DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
    // The back edge will generate the suspend check.
    return;
  }
  if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
    // The goto will generate the suspend check.
    return;
  }
  GenerateSuspendCheck(instruction, nullptr);
}

void InstructionCodeGeneratorARM::GenerateSuspendCheck(HSuspendCheck* instruction,
                                                       HBasicBlock* successor) {
  SuspendCheckSlowPathARM* slow_path =
      down_cast<SuspendCheckSlowPathARM*>(instruction->GetSlowPath());
  if (slow_path == nullptr) {
    slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM(instruction, successor);
    instruction->SetSlowPath(slow_path);
    codegen_->AddSlowPath(slow_path);
    if (successor != nullptr) {
      DCHECK(successor->IsLoopHeader());
      codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
    }
  } else {
    DCHECK_EQ(slow_path->GetSuccessor(), successor);
  }

  __ LoadFromOffset(
      kLoadUnsignedHalfword, IP, TR, Thread::ThreadFlagsOffset<kArmWordSize>().Int32Value());
  if (successor == nullptr) {
    __ CompareAndBranchIfNonZero(IP, slow_path->GetEntryLabel());
    __ Bind(slow_path->GetReturnLabel());
  } else {
    __ CompareAndBranchIfZero(IP, codegen_->GetLabelOf(successor));
    __ b(slow_path->GetEntryLabel());
  }
}

ArmAssembler* ParallelMoveResolverARM::GetAssembler() const {
  return codegen_->GetAssembler();
}

void ParallelMoveResolverARM::EmitMove(size_t index) {
  MoveOperands* move = moves_[index];
  Location source = move->GetSource();
  Location destination = move->GetDestination();

  if (source.IsRegister()) {
    if (destination.IsRegister()) {
      __ Mov(destination.AsRegister<Register>(), source.AsRegister<Register>());
    } else if (destination.IsFpuRegister()) {
      __ vmovsr(destination.AsFpuRegister<SRegister>(), source.AsRegister<Register>());
    } else {
      DCHECK(destination.IsStackSlot());
      __ StoreToOffset(kStoreWord, source.AsRegister<Register>(),
                       SP, destination.GetStackIndex());
    }
  } else if (source.IsStackSlot()) {
    if (destination.IsRegister()) {
      __ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(),
                        SP, source.GetStackIndex());
    } else if (destination.IsFpuRegister()) {
      __ LoadSFromOffset(destination.AsFpuRegister<SRegister>(), SP, source.GetStackIndex());
    } else {
      DCHECK(destination.IsStackSlot());
      __ LoadFromOffset(kLoadWord, IP, SP, source.GetStackIndex());
      __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
    }
  } else if (source.IsFpuRegister()) {
    if (destination.IsRegister()) {
      __ vmovrs(destination.AsRegister<Register>(), source.AsFpuRegister<SRegister>());
    } else if (destination.IsFpuRegister()) {
      __ vmovs(destination.AsFpuRegister<SRegister>(), source.AsFpuRegister<SRegister>());
    } else {
      DCHECK(destination.IsStackSlot());
      __ StoreSToOffset(source.AsFpuRegister<SRegister>(), SP, destination.GetStackIndex());
    }
  } else if (source.IsDoubleStackSlot()) {
    if (destination.IsDoubleStackSlot()) {
      __ LoadDFromOffset(DTMP, SP, source.GetStackIndex());
      __ StoreDToOffset(DTMP, SP, destination.GetStackIndex());
    } else if (destination.IsRegisterPair()) {
      DCHECK(ExpectedPairLayout(destination));
      __ LoadFromOffset(
          kLoadWordPair, destination.AsRegisterPairLow<Register>(), SP, source.GetStackIndex());
    } else {
      DCHECK(destination.IsFpuRegisterPair()) << destination;
      __ LoadDFromOffset(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
                         SP,
                         source.GetStackIndex());
    }
  } else if (source.IsRegisterPair()) {
    if (destination.IsRegisterPair()) {
      __ Mov(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>());
      __ Mov(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>());
    } else if (destination.IsFpuRegisterPair()) {
      __ vmovdrr(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
                 source.AsRegisterPairLow<Register>(),
                 source.AsRegisterPairHigh<Register>());
    } else {
      DCHECK(destination.IsDoubleStackSlot()) << destination;
      DCHECK(ExpectedPairLayout(source));
      __ StoreToOffset(
          kStoreWordPair, source.AsRegisterPairLow<Register>(), SP, destination.GetStackIndex());
    }
  } else if (source.IsFpuRegisterPair()) {
    if (destination.IsRegisterPair()) {
      __ vmovrrd(destination.AsRegisterPairLow<Register>(),
                 destination.AsRegisterPairHigh<Register>(),
                 FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
    } else if (destination.IsFpuRegisterPair()) {
      __ vmovd(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()),
               FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()));
    } else {
      DCHECK(destination.IsDoubleStackSlot()) << destination;
      __ StoreDToOffset(FromLowSToD(source.AsFpuRegisterPairLow<SRegister>()),
                        SP,
                        destination.GetStackIndex());
    }
  } else {
    DCHECK(source.IsConstant()) << source;
    HConstant* constant = source.GetConstant();
    if (constant->IsIntConstant() || constant->IsNullConstant()) {
      int32_t value = CodeGenerator::GetInt32ValueOf(constant);
      if (destination.IsRegister()) {
        __ LoadImmediate(destination.AsRegister<Register>(), value);
      } else {
        DCHECK(destination.IsStackSlot());
        __ LoadImmediate(IP, value);
        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
      }
    } else if (constant->IsLongConstant()) {
      int64_t value = constant->AsLongConstant()->GetValue();
      if (destination.IsRegisterPair()) {
        __ LoadImmediate(destination.AsRegisterPairLow<Register>(), Low32Bits(value));
        __ LoadImmediate(destination.AsRegisterPairHigh<Register>(), High32Bits(value));
      } else {
        DCHECK(destination.IsDoubleStackSlot()) << destination;
        __ LoadImmediate(IP, Low32Bits(value));
        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
        __ LoadImmediate(IP, High32Bits(value));
        __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize));
      }
    } else if (constant->IsDoubleConstant()) {
      double value = constant->AsDoubleConstant()->GetValue();
      if (destination.IsFpuRegisterPair()) {
        __ LoadDImmediate(FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>()), value);
      } else {
        DCHECK(destination.IsDoubleStackSlot()) << destination;
        uint64_t int_value = bit_cast<uint64_t, double>(value);
        __ LoadImmediate(IP, Low32Bits(int_value));
        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
        __ LoadImmediate(IP, High32Bits(int_value));
        __ StoreToOffset(kStoreWord, IP, SP, destination.GetHighStackIndex(kArmWordSize));
      }
    } else {
      DCHECK(constant->IsFloatConstant()) << constant->DebugName();
      float value = constant->AsFloatConstant()->GetValue();
      if (destination.IsFpuRegister()) {
        __ LoadSImmediate(destination.AsFpuRegister<SRegister>(), value);
      } else {
        DCHECK(destination.IsStackSlot());
        __ LoadImmediate(IP, bit_cast<int32_t, float>(value));
        __ StoreToOffset(kStoreWord, IP, SP, destination.GetStackIndex());
      }
    }
  }
}

void ParallelMoveResolverARM::Exchange(Register reg, int mem) {
  __ Mov(IP, reg);
  __ LoadFromOffset(kLoadWord, reg, SP, mem);
  __ StoreToOffset(kStoreWord, IP, SP, mem);
}

void ParallelMoveResolverARM::Exchange(int mem1, int mem2) {
  ScratchRegisterScope ensure_scratch(this, IP, R0, codegen_->GetNumberOfCoreRegisters());
  int stack_offset = ensure_scratch.IsSpilled() ? kArmWordSize : 0;
  __ LoadFromOffset(kLoadWord, static_cast<Register>(ensure_scratch.GetRegister()),
                    SP, mem1 + stack_offset);
  __ LoadFromOffset(kLoadWord, IP, SP, mem2 + stack_offset);
  __ StoreToOffset(kStoreWord, static_cast<Register>(ensure_scratch.GetRegister()),
                   SP, mem2 + stack_offset);
  __ StoreToOffset(kStoreWord, IP, SP, mem1 + stack_offset);
}

void ParallelMoveResolverARM::EmitSwap(size_t index) {
  MoveOperands* move = moves_[index];
  Location source = move->GetSource();
  Location destination = move->GetDestination();

  if (source.IsRegister() && destination.IsRegister()) {
    DCHECK_NE(source.AsRegister<Register>(), IP);
    DCHECK_NE(destination.AsRegister<Register>(), IP);
    __ Mov(IP, source.AsRegister<Register>());
    __ Mov(source.AsRegister<Register>(), destination.AsRegister<Register>());
    __ Mov(destination.AsRegister<Register>(), IP);
  } else if (source.IsRegister() && destination.IsStackSlot()) {
    Exchange(source.AsRegister<Register>(), destination.GetStackIndex());
  } else if (source.IsStackSlot() && destination.IsRegister()) {
    Exchange(destination.AsRegister<Register>(), source.GetStackIndex());
  } else if (source.IsStackSlot() && destination.IsStackSlot()) {
    Exchange(source.GetStackIndex(), destination.GetStackIndex());
  } else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
    __ vmovrs(IP, source.AsFpuRegister<SRegister>());
    __ vmovs(source.AsFpuRegister<SRegister>(), destination.AsFpuRegister<SRegister>());
    __ vmovsr(destination.AsFpuRegister<SRegister>(), IP);
  } else if (source.IsRegisterPair() && destination.IsRegisterPair()) {
    __ vmovdrr(DTMP, source.AsRegisterPairLow<Register>(), source.AsRegisterPairHigh<Register>());
    __ Mov(source.AsRegisterPairLow<Register>(), destination.AsRegisterPairLow<Register>());
    __ Mov(source.AsRegisterPairHigh<Register>(), destination.AsRegisterPairHigh<Register>());
    __ vmovrrd(destination.AsRegisterPairLow<Register>(),
               destination.AsRegisterPairHigh<Register>(),
               DTMP);
  } else if (source.IsRegisterPair() || destination.IsRegisterPair()) {
    Register low_reg = source.IsRegisterPair()
        ? source.AsRegisterPairLow<Register>()
        : destination.AsRegisterPairLow<Register>();
    int mem = source.IsRegisterPair()
        ? destination.GetStackIndex()
        : source.GetStackIndex();
    DCHECK(ExpectedPairLayout(source.IsRegisterPair() ? source : destination));
    __ vmovdrr(DTMP, low_reg, static_cast<Register>(low_reg + 1));
    __ LoadFromOffset(kLoadWordPair, low_reg, SP, mem);
    __ StoreDToOffset(DTMP, SP, mem);
  } else if (source.IsFpuRegisterPair() && destination.IsFpuRegisterPair()) {
    DRegister first = FromLowSToD(source.AsFpuRegisterPairLow<SRegister>());
    DRegister second = FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>());
    __ vmovd(DTMP, first);
    __ vmovd(first, second);
    __ vmovd(second, DTMP);
  } else if (source.IsFpuRegisterPair() || destination.IsFpuRegisterPair()) {
    DRegister reg = source.IsFpuRegisterPair()
        ? FromLowSToD(source.AsFpuRegisterPairLow<SRegister>())
        : FromLowSToD(destination.AsFpuRegisterPairLow<SRegister>());
    int mem = source.IsFpuRegisterPair()
        ? destination.GetStackIndex()
        : source.GetStackIndex();
    __ vmovd(DTMP, reg);
    __ LoadDFromOffset(reg, SP, mem);
    __ StoreDToOffset(DTMP, SP, mem);
  } else if (source.IsFpuRegister() || destination.IsFpuRegister()) {
    SRegister reg = source.IsFpuRegister() ? source.AsFpuRegister<SRegister>()
                                           : destination.AsFpuRegister<SRegister>();
    int mem = source.IsFpuRegister()
        ? destination.GetStackIndex()
        : source.GetStackIndex();

    __ vmovrs(IP, reg);
    __ LoadSFromOffset(reg, SP, mem);
    __ StoreToOffset(kStoreWord, IP, SP, mem);
  } else if (source.IsDoubleStackSlot() && destination.IsDoubleStackSlot()) {
    Exchange(source.GetStackIndex(), destination.GetStackIndex());
    Exchange(source.GetHighStackIndex(kArmWordSize), destination.GetHighStackIndex(kArmWordSize));
  } else {
    LOG(FATAL) << "Unimplemented" << source << " <-> " << destination;
  }
}

void ParallelMoveResolverARM::SpillScratch(int reg) {
  __ Push(static_cast<Register>(reg));
}

void ParallelMoveResolverARM::RestoreScratch(int reg) {
  __ Pop(static_cast<Register>(reg));
}

void LocationsBuilderARM::VisitLoadClass(HLoadClass* cls) {
  InvokeRuntimeCallingConvention calling_convention;
  CodeGenerator::CreateLoadClassLocationSummary(
      cls,
      Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
      Location::RegisterLocation(R0),
      /* code_generator_supports_read_barrier */ true);
}

void InstructionCodeGeneratorARM::VisitLoadClass(HLoadClass* cls) {
  LocationSummary* locations = cls->GetLocations();
  if (cls->NeedsAccessCheck()) {
    codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex());
    codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess),
                            cls,
                            cls->GetDexPc(),
                            nullptr);
    CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
    return;
  }

  Location out_loc = locations->Out();
  Register out = out_loc.AsRegister<Register>();
  Register current_method = locations->InAt(0).AsRegister<Register>();

  if (cls->IsReferrersClass()) {
    DCHECK(!cls->CanCallRuntime());
    DCHECK(!cls->MustGenerateClinitCheck());
    // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
    GenerateGcRootFieldLoad(
        cls, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value());
  } else {
    // /* GcRoot<mirror::Class>[] */ out =
    //        current_method.ptr_sized_fields_->dex_cache_resolved_types_
    __ LoadFromOffset(kLoadWord,
                      out,
                      current_method,
                      ArtMethod::DexCacheResolvedTypesOffset(kArmPointerSize).Int32Value());
    // /* GcRoot<mirror::Class> */ out = out[type_index]
    GenerateGcRootFieldLoad(cls, out_loc, out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex()));

    if (!cls->IsInDexCache() || cls->MustGenerateClinitCheck()) {
      DCHECK(cls->CanCallRuntime());
      SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM(
          cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
      codegen_->AddSlowPath(slow_path);
      if (!cls->IsInDexCache()) {
        __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
      }
      if (cls->MustGenerateClinitCheck()) {
        GenerateClassInitializationCheck(slow_path, out);
      } else {
        __ Bind(slow_path->GetExitLabel());
      }
    }
  }
}

void LocationsBuilderARM::VisitClinitCheck(HClinitCheck* check) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
  locations->SetInAt(0, Location::RequiresRegister());
  if (check->HasUses()) {
    locations->SetOut(Location::SameAsFirstInput());
  }
}

void InstructionCodeGeneratorARM::VisitClinitCheck(HClinitCheck* check) {
  // We assume the class is not null.
  SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM(
      check->GetLoadClass(), check, check->GetDexPc(), true);
  codegen_->AddSlowPath(slow_path);
  GenerateClassInitializationCheck(slow_path,
                                   check->GetLocations()->InAt(0).AsRegister<Register>());
}

void InstructionCodeGeneratorARM::GenerateClassInitializationCheck(
    SlowPathCode* slow_path, Register class_reg) {
  __ LoadFromOffset(kLoadWord, IP, class_reg, mirror::Class::StatusOffset().Int32Value());
  __ cmp(IP, ShifterOperand(mirror::Class::kStatusInitialized));
  __ b(slow_path->GetEntryLabel(), LT);
  // Even if the initialized flag is set, we may be in a situation where caches are not synced
  // properly. Therefore, we do a memory fence.
  __ dmb(ISH);
  __ Bind(slow_path->GetExitLabel());
}

HLoadString::LoadKind CodeGeneratorARM::GetSupportedLoadStringKind(
    HLoadString::LoadKind desired_string_load_kind) {
  if (kEmitCompilerReadBarrier) {
    switch (desired_string_load_kind) {
      case HLoadString::LoadKind::kBootImageLinkTimeAddress:
      case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
      case HLoadString::LoadKind::kBootImageAddress:
        // TODO: Implement for read barrier.
        return HLoadString::LoadKind::kDexCacheViaMethod;
      default:
        break;
    }
  }
  switch (desired_string_load_kind) {
    case HLoadString::LoadKind::kBootImageLinkTimeAddress:
      DCHECK(!GetCompilerOptions().GetCompilePic());
      break;
    case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
      DCHECK(GetCompilerOptions().GetCompilePic());
      break;
    case HLoadString::LoadKind::kBootImageAddress:
      break;
    case HLoadString::LoadKind::kDexCacheAddress:
      DCHECK(Runtime::Current()->UseJitCompilation());
      break;
    case HLoadString::LoadKind::kDexCachePcRelative:
      DCHECK(!Runtime::Current()->UseJitCompilation());
      // We disable pc-relative load when there is an irreducible loop, as the optimization
      // is incompatible with it.
      // TODO: Create as many ArmDexCacheArraysBase instructions as needed for methods
      // with irreducible loops.
      if (GetGraph()->HasIrreducibleLoops()) {
        return HLoadString::LoadKind::kDexCacheViaMethod;
      }
      break;
    case HLoadString::LoadKind::kDexCacheViaMethod:
      break;
  }
  return desired_string_load_kind;
}

void LocationsBuilderARM::VisitLoadString(HLoadString* load) {
  LocationSummary::CallKind call_kind = (load->NeedsEnvironment() || kEmitCompilerReadBarrier)
      ? LocationSummary::kCallOnSlowPath
      : LocationSummary::kNoCall;
  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
  HLoadString::LoadKind load_kind = load->GetLoadKind();
  if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod ||
      load_kind == HLoadString::LoadKind::kDexCachePcRelative) {
    locations->SetInAt(0, Location::RequiresRegister());
  }
  locations->SetOut(Location::RequiresRegister());
}

void InstructionCodeGeneratorARM::VisitLoadString(HLoadString* load) {
  LocationSummary* locations = load->GetLocations();
  Location out_loc = locations->Out();
  Register out = out_loc.AsRegister<Register>();

  switch (load->GetLoadKind()) {
    case HLoadString::LoadKind::kBootImageLinkTimeAddress: {
      DCHECK(!kEmitCompilerReadBarrier);
      __ LoadLiteral(out, codegen_->DeduplicateBootImageStringLiteral(load->GetDexFile(),
                                                                      load->GetStringIndex()));
      return;  // No dex cache slow path.
    }
    case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
      DCHECK(!kEmitCompilerReadBarrier);
      CodeGeneratorARM::PcRelativePatchInfo* labels =
          codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
      __ BindTrackedLabel(&labels->movw_label);
      __ movw(out, /* placeholder */ 0u);
      __ BindTrackedLabel(&labels->movt_label);
      __ movt(out, /* placeholder */ 0u);
      __ BindTrackedLabel(&labels->add_pc_label);
      __ add(out, out, ShifterOperand(PC));
      return;  // No dex cache slow path.
    }
    case HLoadString::LoadKind::kBootImageAddress: {
      DCHECK(!kEmitCompilerReadBarrier);
      DCHECK_NE(load->GetAddress(), 0u);
      uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress());
      __ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address));
      return;  // No dex cache slow path.
    }
    case HLoadString::LoadKind::kDexCacheAddress: {
      DCHECK_NE(load->GetAddress(), 0u);
      uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress());
      // 16-bit LDR immediate has a 5-bit offset multiplied by the size and that gives
      // a 128B range. To try and reduce the number of literals if we load multiple strings,
      // simply split the dex cache address to a 128B aligned base loaded from a literal
      // and the remaining offset embedded in the load.
      static_assert(sizeof(GcRoot<mirror::String>) == 4u, "Expected GC root to be 4 bytes.");
      DCHECK_ALIGNED(load->GetAddress(), 4u);
      constexpr size_t offset_bits = /* encoded bits */ 5 + /* scale */ 2;
      uint32_t base_address = address & ~MaxInt<uint32_t>(offset_bits);
      uint32_t offset = address & MaxInt<uint32_t>(offset_bits);
      __ LoadLiteral(out, codegen_->DeduplicateDexCacheAddressLiteral(base_address));
      GenerateGcRootFieldLoad(load, out_loc, out, offset);
      break;
    }
    case HLoadString::LoadKind::kDexCachePcRelative: {
      Register base_reg = locations->InAt(0).AsRegister<Register>();
      HArmDexCacheArraysBase* base = load->InputAt(0)->AsArmDexCacheArraysBase();
      int32_t offset = load->GetDexCacheElementOffset() - base->GetElementOffset();
      GenerateGcRootFieldLoad(load, out_loc, base_reg, offset);
      break;
    }
    case HLoadString::LoadKind::kDexCacheViaMethod: {
      Register current_method = locations->InAt(0).AsRegister<Register>();

      // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
      GenerateGcRootFieldLoad(
          load, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value());
      // /* GcRoot<mirror::String>[] */ out = out->dex_cache_strings_
      __ LoadFromOffset(kLoadWord, out, out, mirror::Class::DexCacheStringsOffset().Int32Value());
      // /* GcRoot<mirror::String> */ out = out[string_index]
      GenerateGcRootFieldLoad(
          load, out_loc, out, CodeGenerator::GetCacheOffset(load->GetStringIndex()));
      break;
    }
    default:
      LOG(FATAL) << "Unexpected load kind: " << load->GetLoadKind();
      UNREACHABLE();
  }

  if (!load->IsInDexCache()) {
    SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM(load);
    codegen_->AddSlowPath(slow_path);
    __ CompareAndBranchIfZero(out, slow_path->GetEntryLabel());
    __ Bind(slow_path->GetExitLabel());
  }
}

static int32_t GetExceptionTlsOffset() {
  return Thread::ExceptionOffset<kArmWordSize>().Int32Value();
}

void LocationsBuilderARM::VisitLoadException(HLoadException* load) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
  locations->SetOut(Location::RequiresRegister());
}

void InstructionCodeGeneratorARM::VisitLoadException(HLoadException* load) {
  Register out = load->GetLocations()->Out().AsRegister<Register>();
  __ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset());
}

void LocationsBuilderARM::VisitClearException(HClearException* clear) {
  new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
}

void InstructionCodeGeneratorARM::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
  __ LoadImmediate(IP, 0);
  __ StoreToOffset(kStoreWord, IP, TR, GetExceptionTlsOffset());
}

void LocationsBuilderARM::VisitThrow(HThrow* instruction) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
  InvokeRuntimeCallingConvention calling_convention;
  locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}

void InstructionCodeGeneratorARM::VisitThrow(HThrow* instruction) {
  codegen_->InvokeRuntime(
      QUICK_ENTRY_POINT(pDeliverException), instruction, instruction->GetDexPc(), nullptr);
  CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
}

static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) {
  return kEmitCompilerReadBarrier &&
      (kUseBakerReadBarrier ||
       type_check_kind == TypeCheckKind::kAbstractClassCheck ||
       type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
       type_check_kind == TypeCheckKind::kArrayObjectCheck);
}

void LocationsBuilderARM::VisitInstanceOf(HInstanceOf* instruction) {
  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
  switch (type_check_kind) {
    case TypeCheckKind::kExactCheck:
    case TypeCheckKind::kAbstractClassCheck:
    case TypeCheckKind::kClassHierarchyCheck:
    case TypeCheckKind::kArrayObjectCheck:
      call_kind =
          kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
      break;
    case TypeCheckKind::kArrayCheck:
    case TypeCheckKind::kUnresolvedCheck:
    case TypeCheckKind::kInterfaceCheck:
      call_kind = LocationSummary::kCallOnSlowPath;
      break;
  }

  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
  locations->SetInAt(0, Location::RequiresRegister());
  locations->SetInAt(1, Location::RequiresRegister());
  // The "out" register is used as a temporary, so it overlaps with the inputs.
  // Note that TypeCheckSlowPathARM uses this register too.
  locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
  // When read barriers are enabled, we need a temporary register for
  // some cases.
  if (TypeCheckNeedsATemporary(type_check_kind)) {
    locations->AddTemp(Location::RequiresRegister());
  }
}

void InstructionCodeGeneratorARM::VisitInstanceOf(HInstanceOf* instruction) {
  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
  LocationSummary* locations = instruction->GetLocations();
  Location obj_loc = locations->InAt(0);
  Register obj = obj_loc.AsRegister<Register>();
  Register cls = locations->InAt(1).AsRegister<Register>();
  Location out_loc = locations->Out();
  Register out = out_loc.AsRegister<Register>();
  Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ?
      locations->GetTemp(0) :
      Location::NoLocation();
  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
  uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
  uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
  uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
  Label done, zero;
  SlowPathCode* slow_path = nullptr;

  // Return 0 if `obj` is null.
  // avoid null check if we know obj is not null.
  if (instruction->MustDoNullCheck()) {
    __ CompareAndBranchIfZero(obj, &zero);
  }

  // /* HeapReference<Class> */ out = obj->klass_
  GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc);

  switch (type_check_kind) {
    case TypeCheckKind::kExactCheck: {
      __ cmp(out, ShifterOperand(cls));
      // Classes must be equal for the instanceof to succeed.
      __ b(&zero, NE);
      __ LoadImmediate(out, 1);
      __ b(&done);
      break;
    }

    case TypeCheckKind::kAbstractClassCheck: {
      // If the class is abstract, we eagerly fetch the super class of the
      // object to avoid doing a comparison we know will fail.
      Label loop;
      __ Bind(&loop);
      // /* HeapReference<Class> */ out = out->super_class_
      GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
      // If `out` is null, we use it for the result, and jump to `done`.
      __ CompareAndBranchIfZero(out, &done);
      __ cmp(out, ShifterOperand(cls));
      __ b(&loop, NE);
      __ LoadImmediate(out, 1);
      if (zero.IsLinked()) {
        __ b(&done);
      }
      break;
    }

    case TypeCheckKind::kClassHierarchyCheck: {
      // Walk over the class hierarchy to find a match.
      Label loop, success;
      __ Bind(&loop);
      __ cmp(out, ShifterOperand(cls));
      __ b(&success, EQ);
      // /* HeapReference<Class> */ out = out->super_class_
      GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
      __ CompareAndBranchIfNonZero(out, &loop);
      // If `out` is null, we use it for the result, and jump to `done`.
      __ b(&done);
      __ Bind(&success);
      __ LoadImmediate(out, 1);
      if (zero.IsLinked()) {
        __ b(&done);
      }
      break;
    }

    case TypeCheckKind::kArrayObjectCheck: {
      // Do an exact check.
      Label exact_check;
      __ cmp(out, ShifterOperand(cls));
      __ b(&exact_check, EQ);
      // Otherwise, we need to check that the object's class is a non-primitive array.
      // /* HeapReference<Class> */ out = out->component_type_
      GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc);
      // If `out` is null, we use it for the result, and jump to `done`.
      __ CompareAndBranchIfZero(out, &done);
      __ LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset);
      static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
      __ CompareAndBranchIfNonZero(out, &zero);
      __ Bind(&exact_check);
      __ LoadImmediate(out, 1);
      __ b(&done);
      break;
    }

    case TypeCheckKind::kArrayCheck: {
      __ cmp(out, ShifterOperand(cls));
      DCHECK(locations->OnlyCallsOnSlowPath());
      slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
                                                                    /* is_fatal */ false);
      codegen_->AddSlowPath(slow_path);
      __ b(slow_path->GetEntryLabel(), NE);
      __ LoadImmediate(out, 1);
      if (zero.IsLinked()) {
        __ b(&done);
      }
      break;
    }

    case TypeCheckKind::kUnresolvedCheck:
    case TypeCheckKind::kInterfaceCheck: {
      // Note that we indeed only call on slow path, but we always go
      // into the slow path for the unresolved and interface check
      // cases.
      //
      // We cannot directly call the InstanceofNonTrivial runtime
      // entry point without resorting to a type checking slow path
      // here (i.e. by calling InvokeRuntime directly), as it would
      // require to assign fixed registers for the inputs of this
      // HInstanceOf instruction (following the runtime calling
      // convention), which might be cluttered by the potential first
      // read barrier emission at the beginning of this method.
      //
      // TODO: Introduce a new runtime entry point taking the object
      // to test (instead of its class) as argument, and let it deal
      // with the read barrier issues. This will let us refactor this
      // case of the `switch` code as it was previously (with a direct
      // call to the runtime not using a type checking slow path).
      // This should also be beneficial for the other cases above.
      DCHECK(locations->OnlyCallsOnSlowPath());
      slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
                                                                    /* is_fatal */ false);
      codegen_->AddSlowPath(slow_path);
      __ b(slow_path->GetEntryLabel());
      if (zero.IsLinked()) {
        __ b(&done);
      }
      break;
    }
  }

  if (zero.IsLinked()) {
    __ Bind(&zero);
    __ LoadImmediate(out, 0);
  }

  if (done.IsLinked()) {
    __ Bind(&done);
  }

  if (slow_path != nullptr) {
    __ Bind(slow_path->GetExitLabel());
  }
}

void LocationsBuilderARM::VisitCheckCast(HCheckCast* instruction) {
  LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
  bool throws_into_catch = instruction->CanThrowIntoCatchBlock();

  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
  switch (type_check_kind) {
    case TypeCheckKind::kExactCheck:
    case TypeCheckKind::kAbstractClassCheck:
    case TypeCheckKind::kClassHierarchyCheck:
    case TypeCheckKind::kArrayObjectCheck:
      call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
          LocationSummary::kCallOnSlowPath :
          LocationSummary::kNoCall;  // In fact, call on a fatal (non-returning) slow path.
      break;
    case TypeCheckKind::kArrayCheck:
    case TypeCheckKind::kUnresolvedCheck:
    case TypeCheckKind::kInterfaceCheck:
      call_kind = LocationSummary::kCallOnSlowPath;
      break;
  }

  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
  locations->SetInAt(0, Location::RequiresRegister());
  locations->SetInAt(1, Location::RequiresRegister());
  // Note that TypeCheckSlowPathARM uses this "temp" register too.
  locations->AddTemp(Location::RequiresRegister());
  // When read barriers are enabled, we need an additional temporary
  // register for some cases.
  if (TypeCheckNeedsATemporary(type_check_kind)) {
    locations->AddTemp(Location::RequiresRegister());
  }
}

void InstructionCodeGeneratorARM::VisitCheckCast(HCheckCast* instruction) {
  TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
  LocationSummary* locations = instruction->GetLocations();
  Location obj_loc = locations->InAt(0);
  Register obj = obj_loc.AsRegister<Register>();
  Register cls = locations->InAt(1).AsRegister<Register>();
  Location temp_loc = locations->GetTemp(0);
  Register temp = temp_loc.AsRegister<Register>();
  Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ?
      locations->GetTemp(1) :
      Location::NoLocation();
  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
  uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
  uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
  uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();

  bool is_type_check_slow_path_fatal =
      (type_check_kind == TypeCheckKind::kExactCheck ||
       type_check_kind == TypeCheckKind::kAbstractClassCheck ||
       type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
       type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
      !instruction->CanThrowIntoCatchBlock();
  SlowPathCode* type_check_slow_path =
      new (GetGraph()->GetArena()) TypeCheckSlowPathARM(instruction,
                                                        is_type_check_slow_path_fatal);
  codegen_->AddSlowPath(type_check_slow_path);

  Label done;
  // Avoid null check if we know obj is not null.
  if (instruction->MustDoNullCheck()) {
    __ CompareAndBranchIfZero(obj, &done);
  }

  // /* HeapReference<Class> */ temp = obj->klass_
  GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);

  switch (type_check_kind) {
    case TypeCheckKind::kExactCheck:
    case TypeCheckKind::kArrayCheck: {
      __ cmp(temp, ShifterOperand(cls));
      // Jump to slow path for throwing the exception or doing a
      // more involved array check.
      __ b(type_check_slow_path->GetEntryLabel(), NE);
      break;
    }

    case TypeCheckKind::kAbstractClassCheck: {
      // If the class is abstract, we eagerly fetch the super class of the
      // object to avoid doing a comparison we know will fail.
      Label loop, compare_classes;
      __ Bind(&loop);
      // /* HeapReference<Class> */ temp = temp->super_class_
      GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);

      // If the class reference currently in `temp` is not null, jump
      // to the `compare_classes` label to compare it with the checked
      // class.
      __ CompareAndBranchIfNonZero(temp, &compare_classes);
      // Otherwise, jump to the slow path to throw the exception.
      //
      // But before, move back the object's class into `temp` before
      // going into the slow path, as it has been overwritten in the
      // meantime.
      // /* HeapReference<Class> */ temp = obj->klass_
      GenerateReferenceLoadTwoRegisters(
          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
      __ b(type_check_slow_path->GetEntryLabel());

      __ Bind(&compare_classes);
      __ cmp(temp, ShifterOperand(cls));
      __ b(&loop, NE);
      break;
    }

    case TypeCheckKind::kClassHierarchyCheck: {
      // Walk over the class hierarchy to find a match.
      Label loop;
      __ Bind(&loop);
      __ cmp(temp, ShifterOperand(cls));
      __ b(&done, EQ);

      // /* HeapReference<Class> */ temp = temp->super_class_
      GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);

      // If the class reference currently in `temp` is not null, jump
      // back at the beginning of the loop.
      __ CompareAndBranchIfNonZero(temp, &loop);
      // Otherwise, jump to the slow path to throw the exception.
      //
      // But before, move back the object's class into `temp` before
      // going into the slow path, as it has been overwritten in the
      // meantime.
      // /* HeapReference<Class> */ temp = obj->klass_
      GenerateReferenceLoadTwoRegisters(
          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
      __ b(type_check_slow_path->GetEntryLabel());
      break;
    }

    case TypeCheckKind::kArrayObjectCheck: {
      // Do an exact check.
      Label check_non_primitive_component_type;
      __ cmp(temp, ShifterOperand(cls));
      __ b(&done, EQ);

      // Otherwise, we need to check that the object's class is a non-primitive array.
      // /* HeapReference<Class> */ temp = temp->component_type_
      GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc);

      // If the component type is not null (i.e. the object is indeed
      // an array), jump to label `check_non_primitive_component_type`
      // to further check that this component type is not a primitive
      // type.
      __ CompareAndBranchIfNonZero(temp, &check_non_primitive_component_type);
      // Otherwise, jump to the slow path to throw the exception.
      //
      // But before, move back the object's class into `temp` before
      // going into the slow path, as it has been overwritten in the
      // meantime.
      // /* HeapReference<Class> */ temp = obj->klass_
      GenerateReferenceLoadTwoRegisters(
          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
      __ b(type_check_slow_path->GetEntryLabel());

      __ Bind(&check_non_primitive_component_type);
      __ LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset);
      static_assert(Primitive::kPrimNot == 0, "Expected 0 for art::Primitive::kPrimNot");
      __ CompareAndBranchIfZero(temp, &done);
      // Same comment as above regarding `temp` and the slow path.
      // /* HeapReference<Class> */ temp = obj->klass_
      GenerateReferenceLoadTwoRegisters(
          instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
      __ b(type_check_slow_path->GetEntryLabel());
      break;
    }

    case TypeCheckKind::kUnresolvedCheck:
    case TypeCheckKind::kInterfaceCheck:
      // We always go into the type check slow path for the unresolved
      // and interface check cases.
      //
      // We cannot directly call the CheckCast runtime entry point
      // without resorting to a type checking slow path here (i.e. by
      // calling InvokeRuntime directly), as it would require to
      // assign fixed registers for the inputs of this HInstanceOf
      // instruction (following the runtime calling convention), which
      // might be cluttered by the potential first read barrier
      // emission at the beginning of this method.
      //
      // TODO: Introduce a new runtime entry point taking the object
      // to test (instead of its class) as argument, and let it deal
      // with the read barrier issues. This will let us refactor this
      // case of the `switch` code as it was previously (with a direct
      // call to the runtime not using a type checking slow path).
      // This should also be beneficial for the other cases above.
      __ b(type_check_slow_path->GetEntryLabel());
      break;
  }
  __ Bind(&done);

  __ Bind(type_check_slow_path->GetExitLabel());
}

void LocationsBuilderARM::VisitMonitorOperation(HMonitorOperation* instruction) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
  InvokeRuntimeCallingConvention calling_convention;
  locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}

void InstructionCodeGeneratorARM::VisitMonitorOperation(HMonitorOperation* instruction) {
  codegen_->InvokeRuntime(instruction->IsEnter()
        ? QUICK_ENTRY_POINT(pLockObject) : QUICK_ENTRY_POINT(pUnlockObject),
      instruction,
      instruction->GetDexPc(),
      nullptr);
  if (instruction->IsEnter()) {
    CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
  } else {
    CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
  }
}

void LocationsBuilderARM::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction, AND); }
void LocationsBuilderARM::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction, ORR); }
void LocationsBuilderARM::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction, EOR); }

void LocationsBuilderARM::HandleBitwiseOperation(HBinaryOperation* instruction, Opcode opcode) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
  DCHECK(instruction->GetResultType() == Primitive::kPrimInt
         || instruction->GetResultType() == Primitive::kPrimLong);
  // Note: GVN reorders commutative operations to have the constant on the right hand side.
  locations->SetInAt(0, Location::RequiresRegister());
  locations->SetInAt(1, ArmEncodableConstantOrRegister(instruction->InputAt(1), opcode));
  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}

void InstructionCodeGeneratorARM::VisitAnd(HAnd* instruction) {
  HandleBitwiseOperation(instruction);
}

void InstructionCodeGeneratorARM::VisitOr(HOr* instruction) {
  HandleBitwiseOperation(instruction);
}

void InstructionCodeGeneratorARM::VisitXor(HXor* instruction) {
  HandleBitwiseOperation(instruction);
}


void LocationsBuilderARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
  DCHECK(instruction->GetResultType() == Primitive::kPrimInt
         || instruction->GetResultType() == Primitive::kPrimLong);

  locations->SetInAt(0, Location::RequiresRegister());
  locations->SetInAt(1, Location::RequiresRegister());
  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}

void InstructionCodeGeneratorARM::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instruction) {
  LocationSummary* locations = instruction->GetLocations();
  Location first = locations->InAt(0);
  Location second = locations->InAt(1);
  Location out = locations->Out();

  if (instruction->GetResultType() == Primitive::kPrimInt) {
    Register first_reg = first.AsRegister<Register>();
    ShifterOperand second_reg(second.AsRegister<Register>());
    Register out_reg = out.AsRegister<Register>();

    switch (instruction->GetOpKind()) {
      case HInstruction::kAnd:
        __ bic(out_reg, first_reg, second_reg);
        break;
      case HInstruction::kOr:
        __ orn(out_reg, first_reg, second_reg);
        break;
      // There is no EON on arm.
      case HInstruction::kXor:
      default:
        LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
        UNREACHABLE();
    }
    return;

  } else {
    DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
    Register first_low = first.AsRegisterPairLow<Register>();
    Register first_high = first.AsRegisterPairHigh<Register>();
    ShifterOperand second_low(second.AsRegisterPairLow<Register>());
    ShifterOperand second_high(second.AsRegisterPairHigh<Register>());
    Register out_low = out.AsRegisterPairLow<Register>();
    Register out_high = out.AsRegisterPairHigh<Register>();

    switch (instruction->GetOpKind()) {
      case HInstruction::kAnd:
        __ bic(out_low, first_low, second_low);
        __ bic(out_high, first_high, second_high);
        break;
      case HInstruction::kOr:
        __ orn(out_low, first_low, second_low);
        __ orn(out_high, first_high, second_high);
        break;
      // There is no EON on arm.
      case HInstruction::kXor:
      default:
        LOG(FATAL) << "Unexpected instruction " << instruction->DebugName();
        UNREACHABLE();
    }
  }
}

void InstructionCodeGeneratorARM::GenerateAndConst(Register out, Register first, uint32_t value) {
  // Optimize special cases for individual halfs of `and-long` (`and` is simplified earlier).
  if (value == 0xffffffffu) {
    if (out != first) {
      __ mov(out, ShifterOperand(first));
    }
    return;
  }
  if (value == 0u) {
    __ mov(out, ShifterOperand(0));
    return;
  }
  ShifterOperand so;
  if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, AND, value, &so)) {
    __ and_(out, first, so);
  } else {
    DCHECK(__ ShifterOperandCanHold(kNoRegister, kNoRegister, BIC, ~value, &so));
    __ bic(out, first, ShifterOperand(~value));
  }
}

void InstructionCodeGeneratorARM::GenerateOrrConst(Register out, Register first, uint32_t value) {
  // Optimize special cases for individual halfs of `or-long` (`or` is simplified earlier).
  if (value == 0u) {
    if (out != first) {
      __ mov(out, ShifterOperand(first));
    }
    return;
  }
  if (value == 0xffffffffu) {
    __ mvn(out, ShifterOperand(0));
    return;
  }
  ShifterOperand so;
  if (__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORR, value, &so)) {
    __ orr(out, first, so);
  } else {
    DCHECK(__ ShifterOperandCanHold(kNoRegister, kNoRegister, ORN, ~value, &so));
    __ orn(out, first, ShifterOperand(~value));
  }
}

void InstructionCodeGeneratorARM::GenerateEorConst(Register out, Register first, uint32_t value) {
  // Optimize special case for individual halfs of `xor-long` (`xor` is simplified earlier).
  if (value == 0u) {
    if (out != first) {
      __ mov(out, ShifterOperand(first));
    }
    return;
  }
  __ eor(out, first, ShifterOperand(value));
}

void InstructionCodeGeneratorARM::HandleBitwiseOperation(HBinaryOperation* instruction) {
  LocationSummary* locations = instruction->GetLocations();
  Location first = locations->InAt(0);
  Location second = locations->InAt(1);
  Location out = locations->Out();

  if (second.IsConstant()) {
    uint64_t value = static_cast<uint64_t>(Int64FromConstant(second.GetConstant()));
    uint32_t value_low = Low32Bits(value);
    if (instruction->GetResultType() == Primitive::kPrimInt) {
      Register first_reg = first.AsRegister<Register>();
      Register out_reg = out.AsRegister<Register>();
      if (instruction->IsAnd()) {
        GenerateAndConst(out_reg, first_reg, value_low);
      } else if (instruction->IsOr()) {
        GenerateOrrConst(out_reg, first_reg, value_low);
      } else {
        DCHECK(instruction->IsXor());
        GenerateEorConst(out_reg, first_reg, value_low);
      }
    } else {
      DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
      uint32_t value_high = High32Bits(value);
      Register first_low = first.AsRegisterPairLow<Register>();
      Register first_high = first.AsRegisterPairHigh<Register>();
      Register out_low = out.AsRegisterPairLow<Register>();
      Register out_high = out.AsRegisterPairHigh<Register>();
      if (instruction->IsAnd()) {
        GenerateAndConst(out_low, first_low, value_low);
        GenerateAndConst(out_high, first_high, value_high);
      } else if (instruction->IsOr()) {
        GenerateOrrConst(out_low, first_low, value_low);
        GenerateOrrConst(out_high, first_high, value_high);
      } else {
        DCHECK(instruction->IsXor());
        GenerateEorConst(out_low, first_low, value_low);
        GenerateEorConst(out_high, first_high, value_high);
      }
    }
    return;
  }

  if (instruction->GetResultType() == Primitive::kPrimInt) {
    Register first_reg = first.AsRegister<Register>();
    ShifterOperand second_reg(second.AsRegister<Register>());
    Register out_reg = out.AsRegister<Register>();
    if (instruction->IsAnd()) {
      __ and_(out_reg, first_reg, second_reg);
    } else if (instruction->IsOr()) {
      __ orr(out_reg, first_reg, second_reg);
    } else {
      DCHECK(instruction->IsXor());
      __ eor(out_reg, first_reg, second_reg);
    }
  } else {
    DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
    Register first_low = first.AsRegisterPairLow<Register>();
    Register first_high = first.AsRegisterPairHigh<Register>();
    ShifterOperand second_low(second.AsRegisterPairLow<Register>());
    ShifterOperand second_high(second.AsRegisterPairHigh<Register>());
    Register out_low = out.AsRegisterPairLow<Register>();
    Register out_high = out.AsRegisterPairHigh<Register>();
    if (instruction->IsAnd()) {
      __ and_(out_low, first_low, second_low);
      __ and_(out_high, first_high, second_high);
    } else if (instruction->IsOr()) {
      __ orr(out_low, first_low, second_low);
      __ orr(out_high, first_high, second_high);
    } else {
      DCHECK(instruction->IsXor());
      __ eor(out_low, first_low, second_low);
      __ eor(out_high, first_high, second_high);
    }
  }
}

void InstructionCodeGeneratorARM::GenerateReferenceLoadOneRegister(HInstruction* instruction,
                                                                   Location out,
                                                                   uint32_t offset,
                                                                   Location maybe_temp) {
  Register out_reg = out.AsRegister<Register>();
  if (kEmitCompilerReadBarrier) {
    DCHECK(maybe_temp.IsRegister()) << maybe_temp;
    if (kUseBakerReadBarrier) {
      // Load with fast path based Baker's read barrier.
      // /* HeapReference<Object> */ out = *(out + offset)
      codegen_->GenerateFieldLoadWithBakerReadBarrier(
          instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false);
    } else {
      // Load with slow path based read barrier.
      // Save the value of `out` into `maybe_temp` before overwriting it
      // in the following move operation, as we will need it for the
      // read barrier below.
      __ Mov(maybe_temp.AsRegister<Register>(), out_reg);
      // /* HeapReference<Object> */ out = *(out + offset)
      __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
      codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
    }
  } else {
    // Plain load with no read barrier.
    // /* HeapReference<Object> */ out = *(out + offset)
    __ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
    __ MaybeUnpoisonHeapReference(out_reg);
  }
}

void InstructionCodeGeneratorARM::GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
                                                                    Location out,
                                                                    Location obj,
                                                                    uint32_t offset,
                                                                    Location maybe_temp) {
  Register out_reg = out.AsRegister<Register>();
  Register obj_reg = obj.AsRegister<Register>();
  if (kEmitCompilerReadBarrier) {
    if (kUseBakerReadBarrier) {
      DCHECK(maybe_temp.IsRegister()) << maybe_temp;
      // Load with fast path based Baker's read barrier.
      // /* HeapReference<Object> */ out = *(obj + offset)
      codegen_->GenerateFieldLoadWithBakerReadBarrier(
          instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false);
    } else {
      // Load with slow path based read barrier.
      // /* HeapReference<Object> */ out = *(obj + offset)
      __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
      codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
    }
  } else {
    // Plain load with no read barrier.
    // /* HeapReference<Object> */ out = *(obj + offset)
    __ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
    __ MaybeUnpoisonHeapReference(out_reg);
  }
}

void InstructionCodeGeneratorARM::GenerateGcRootFieldLoad(HInstruction* instruction,
                                                          Location root,
                                                          Register obj,
                                                          uint32_t offset) {
  Register root_reg = root.AsRegister<Register>();
  if (kEmitCompilerReadBarrier) {
    if (kUseBakerReadBarrier) {
      // Fast path implementation of art::ReadBarrier::BarrierForRoot when
      // Baker's read barrier are used:
      //
      //   root = obj.field;
      //   if (Thread::Current()->GetIsGcMarking()) {
      //     root = ReadBarrier::Mark(root)
      //   }

      // /* GcRoot<mirror::Object> */ root = *(obj + offset)
      __ LoadFromOffset(kLoadWord, root_reg, obj, offset);
      static_assert(
          sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
          "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
          "have different sizes.");
      static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
                    "art::mirror::CompressedReference<mirror::Object> and int32_t "
                    "have different sizes.");

      // Slow path used to mark the GC root `root`.
      SlowPathCode* slow_path =
          new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM(instruction, root, root);
      codegen_->AddSlowPath(slow_path);

      // IP = Thread::Current()->GetIsGcMarking()
      __ LoadFromOffset(
          kLoadWord, IP, TR, Thread::IsGcMarkingOffset<kArmWordSize>().Int32Value());
      __ CompareAndBranchIfNonZero(IP, slow_path->GetEntryLabel());
      __ Bind(slow_path->GetExitLabel());
    } else {
      // GC root loaded through a slow path for read barriers other
      // than Baker's.
      // /* GcRoot<mirror::Object>* */ root = obj + offset
      __ AddConstant(root_reg, obj, offset);
      // /* mirror::Object* */ root = root->Read()
      codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
    }
  } else {
    // Plain GC root load with no read barrier.
    // /* GcRoot<mirror::Object> */ root = *(obj + offset)
    __ LoadFromOffset(kLoadWord, root_reg, obj, offset);
    // Note that GC roots are not affected by heap poisoning, thus we
    // do not have to unpoison `root_reg` here.
  }
}

void CodeGeneratorARM::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
                                                             Location ref,
                                                             Register obj,
                                                             uint32_t offset,
                                                             Location temp,
                                                             bool needs_null_check) {
  DCHECK(kEmitCompilerReadBarrier);
  DCHECK(kUseBakerReadBarrier);

  // /* HeapReference<Object> */ ref = *(obj + offset)
  Location no_index = Location::NoLocation();
  GenerateReferenceLoadWithBakerReadBarrier(
      instruction, ref, obj, offset, no_index, temp, needs_null_check);
}

void CodeGeneratorARM::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
                                                             Location ref,
                                                             Register obj,
                                                             uint32_t data_offset,
                                                             Location index,
                                                             Location temp,
                                                             bool needs_null_check) {
  DCHECK(kEmitCompilerReadBarrier);
  DCHECK(kUseBakerReadBarrier);

  // /* HeapReference<Object> */ ref =
  //     *(obj + data_offset + index * sizeof(HeapReference<Object>))
  GenerateReferenceLoadWithBakerReadBarrier(
      instruction, ref, obj, data_offset, index, temp, needs_null_check);
}

void CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
                                                                 Location ref,
                                                                 Register obj,
                                                                 uint32_t offset,
                                                                 Location index,
                                                                 Location temp,
                                                                 bool needs_null_check) {
  DCHECK(kEmitCompilerReadBarrier);
  DCHECK(kUseBakerReadBarrier);

  // In slow path based read barriers, the read barrier call is
  // inserted after the original load. However, in fast path based
  // Baker's read barriers, we need to perform the load of
  // mirror::Object::monitor_ *before* the original reference load.
  // This load-load ordering is required by the read barrier.
  // The fast path/slow path (for Baker's algorithm) should look like:
  //
  //   uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
  //   lfence;  // Load fence or artificial data dependency to prevent load-load reordering
  //   HeapReference<Object> ref = *src;  // Original reference load.
  //   bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
  //   if (is_gray) {
  //     ref = ReadBarrier::Mark(ref);  // Performed by runtime entrypoint slow path.
  //   }
  //
  // Note: the original implementation in ReadBarrier::Barrier is
  // slightly more complex as it performs additional checks that we do
  // not do here for performance reasons.

  Register ref_reg = ref.AsRegister<Register>();
  Register temp_reg = temp.AsRegister<Register>();
  uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();

  // /* int32_t */ monitor = obj->monitor_
  __ LoadFromOffset(kLoadWord, temp_reg, obj, monitor_offset);
  if (needs_null_check) {
    MaybeRecordImplicitNullCheck(instruction);
  }
  // /* LockWord */ lock_word = LockWord(monitor)
  static_assert(sizeof(LockWord) == sizeof(int32_t),
                "art::LockWord and int32_t have different sizes.");
  // /* uint32_t */ rb_state = lock_word.ReadBarrierState()
  __ Lsr(temp_reg, temp_reg, LockWord::kReadBarrierStateShift);
  __ and_(temp_reg, temp_reg, ShifterOperand(LockWord::kReadBarrierStateMask));
  static_assert(
      LockWord::kReadBarrierStateMask == ReadBarrier::rb_ptr_mask_,
      "art::LockWord::kReadBarrierStateMask is not equal to art::ReadBarrier::rb_ptr_mask_.");

  // Introduce a dependency on the high bits of rb_state, which shall
  // be all zeroes, to prevent load-load reordering, and without using
  // a memory barrier (which would be more expensive).
  // IP = rb_state & ~LockWord::kReadBarrierStateMask = 0
  __ bic(IP, temp_reg, ShifterOperand(LockWord::kReadBarrierStateMask));
  // obj is unchanged by this operation, but its value now depends on
  // IP, which depends on temp_reg.
  __ add(obj, obj, ShifterOperand(IP));

  // The actual reference load.
  if (index.IsValid()) {
    static_assert(
        sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
        "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
    // /* HeapReference<Object> */ ref =
    //     *(obj + offset + index * sizeof(HeapReference<Object>))
    if (index.IsConstant()) {
      size_t computed_offset =
          (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset;
      __ LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset);
    } else {
      __ add(IP, obj, ShifterOperand(index.AsRegister<Register>(), LSL, TIMES_4));
      __ LoadFromOffset(kLoadWord, ref_reg, IP, offset);
    }
  } else {
    // /* HeapReference<Object> */ ref = *(obj + offset)
    __ LoadFromOffset(kLoadWord, ref_reg, obj, offset);
  }

  // Object* ref = ref_addr->AsMirrorPtr()
  __ MaybeUnpoisonHeapReference(ref_reg);

  // Slow path used to mark the object `ref` when it is gray.
  SlowPathCode* slow_path =
      new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM(instruction, ref, ref);
  AddSlowPath(slow_path);

  // if (rb_state == ReadBarrier::gray_ptr_)
  //   ref = ReadBarrier::Mark(ref);
  __ cmp(temp_reg, ShifterOperand(ReadBarrier::gray_ptr_));
  __ b(slow_path->GetEntryLabel(), EQ);
  __ Bind(slow_path->GetExitLabel());
}

void CodeGeneratorARM::GenerateReadBarrierSlow(HInstruction* instruction,
                                               Location out,
                                               Location ref,
                                               Location obj,
                                               uint32_t offset,
                                               Location index) {
  DCHECK(kEmitCompilerReadBarrier);

  // Insert a slow path based read barrier *after* the reference load.
  //
  // If heap poisoning is enabled, the unpoisoning of the loaded
  // reference will be carried out by the runtime within the slow
  // path.
  //
  // Note that `ref` currently does not get unpoisoned (when heap
  // poisoning is enabled), which is alright as the `ref` argument is
  // not used by the artReadBarrierSlow entry point.
  //
  // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
  SlowPathCode* slow_path = new (GetGraph()->GetArena())
      ReadBarrierForHeapReferenceSlowPathARM(instruction, out, ref, obj, offset, index);
  AddSlowPath(slow_path);

  __ b(slow_path->GetEntryLabel());
  __ Bind(slow_path->GetExitLabel());
}

void CodeGeneratorARM::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
                                                    Location out,
                                                    Location ref,
                                                    Location obj,
                                                    uint32_t offset,
                                                    Location index) {
  if (kEmitCompilerReadBarrier) {
    // Baker's read barriers shall be handled by the fast path
    // (CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier).
    DCHECK(!kUseBakerReadBarrier);
    // If heap poisoning is enabled, unpoisoning will be taken care of
    // by the runtime within the slow path.
    GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
  } else if (kPoisonHeapReferences) {
    __ UnpoisonHeapReference(out.AsRegister<Register>());
  }
}

void CodeGeneratorARM::GenerateReadBarrierForRootSlow(HInstruction* instruction,
                                                      Location out,
                                                      Location root) {
  DCHECK(kEmitCompilerReadBarrier);

  // Insert a slow path based read barrier *after* the GC root load.
  //
  // Note that GC roots are not affected by heap poisoning, so we do
  // not need to do anything special for this here.
  SlowPathCode* slow_path =
      new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARM(instruction, out, root);
  AddSlowPath(slow_path);

  __ b(slow_path->GetEntryLabel());
  __ Bind(slow_path->GetExitLabel());
}

HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM::GetSupportedInvokeStaticOrDirectDispatch(
      const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
      MethodReference target_method) {
  HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info;
  // We disable pc-relative load when there is an irreducible loop, as the optimization
  // is incompatible with it.
  // TODO: Create as many ArmDexCacheArraysBase instructions as needed for methods
  // with irreducible loops.
  if (GetGraph()->HasIrreducibleLoops() &&
      (dispatch_info.method_load_kind ==
          HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative)) {
    dispatch_info.method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod;
  }

  if (dispatch_info.code_ptr_location == HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative) {
    const DexFile& outer_dex_file = GetGraph()->GetDexFile();
    if (&outer_dex_file != target_method.dex_file) {
      // Calls across dex files are more likely to exceed the available BL range,
      // so use absolute patch with fixup if available and kCallArtMethod otherwise.
      HInvokeStaticOrDirect::CodePtrLocation code_ptr_location =
          (desired_dispatch_info.method_load_kind ==
           HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup)
          ? HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup
          : HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod;
      return HInvokeStaticOrDirect::DispatchInfo {
        dispatch_info.method_load_kind,
        code_ptr_location,
        dispatch_info.method_load_data,
        0u
      };
    }
  }
  return dispatch_info;
}

Register CodeGeneratorARM::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
                                                                 Register temp) {
  DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
  Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
  if (!invoke->GetLocations()->Intrinsified()) {
    return location.AsRegister<Register>();
  }
  // For intrinsics we allow any location, so it may be on the stack.
  if (!location.IsRegister()) {
    __ LoadFromOffset(kLoadWord, temp, SP, location.GetStackIndex());
    return temp;
  }
  // For register locations, check if the register was saved. If so, get it from the stack.
  // Note: There is a chance that the register was saved but not overwritten, so we could
  // save one load. However, since this is just an intrinsic slow path we prefer this
  // simple and more robust approach rather that trying to determine if that's the case.
  SlowPathCode* slow_path = GetCurrentSlowPath();
  DCHECK(slow_path != nullptr);  // For intrinsified invokes the call is emitted on the slow path.
  if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
    int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
    __ LoadFromOffset(kLoadWord, temp, SP, stack_offset);
    return temp;
  }
  return location.AsRegister<Register>();
}

void CodeGeneratorARM::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
  // For better instruction scheduling we load the direct code pointer before the method pointer.
  switch (invoke->GetCodePtrLocation()) {
    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
      // LR = code address from literal pool with link-time patch.
      __ LoadLiteral(LR, DeduplicateMethodCodeLiteral(invoke->GetTargetMethod()));
      break;
    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
      // LR = invoke->GetDirectCodePtr();
      __ LoadImmediate(LR, invoke->GetDirectCodePtr());
      break;
    default:
      break;
  }

  Location callee_method = temp;  // For all kinds except kRecursive, callee will be in temp.
  switch (invoke->GetMethodLoadKind()) {
    case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
      // temp = thread->string_init_entrypoint
      __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, invoke->GetStringInitOffset());
      break;
    case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
      callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
      break;
    case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
      __ LoadImmediate(temp.AsRegister<Register>(), invoke->GetMethodAddress());
      break;
    case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
      __ LoadLiteral(temp.AsRegister<Register>(),
                     DeduplicateMethodAddressLiteral(invoke->GetTargetMethod()));
      break;
    case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
      HArmDexCacheArraysBase* base =
          invoke->InputAt(invoke->GetSpecialInputIndex())->AsArmDexCacheArraysBase();
      Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke,
                                                                temp.AsRegister<Register>());
      int32_t offset = invoke->GetDexCacheArrayOffset() - base->GetElementOffset();
      __ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), base_reg, offset);
      break;
    }
    case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
      Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
      Register method_reg;
      Register reg = temp.AsRegister<Register>();
      if (current_method.IsRegister()) {
        method_reg = current_method.AsRegister<Register>();
      } else {
        DCHECK(invoke->GetLocations()->Intrinsified());
        DCHECK(!current_method.IsValid());
        method_reg = reg;
        __ LoadFromOffset(kLoadWord, reg, SP, kCurrentMethodStackOffset);
      }
      // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_;
      __ LoadFromOffset(kLoadWord,
                        reg,
                        method_reg,
                        ArtMethod::DexCacheResolvedMethodsOffset(kArmPointerSize).Int32Value());
      // temp = temp[index_in_cache];
      // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
      uint32_t index_in_cache = invoke->GetDexMethodIndex();
      __ LoadFromOffset(kLoadWord, reg, reg, CodeGenerator::GetCachePointerOffset(index_in_cache));
      break;
    }
  }

  switch (invoke->GetCodePtrLocation()) {
    case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
      __ bl(GetFrameEntryLabel());
      break;
    case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative:
      relative_call_patches_.emplace_back(invoke->GetTargetMethod());
      __ BindTrackedLabel(&relative_call_patches_.back().label);
      // Arbitrarily branch to the BL itself, override at link time.
      __ bl(&relative_call_patches_.back().label);
      break;
    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
    case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
      // LR prepared above for better instruction scheduling.
      // LR()
      __ blx(LR);
      break;
    case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
      // LR = callee_method->entry_point_from_quick_compiled_code_
      __ LoadFromOffset(
          kLoadWord, LR, callee_method.AsRegister<Register>(),
          ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArmWordSize).Int32Value());
      // LR()
      __ blx(LR);
      break;
  }

  DCHECK(!IsLeafMethod());
}

void CodeGeneratorARM::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_location) {
  Register temp = temp_location.AsRegister<Register>();
  uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
      invoke->GetVTableIndex(), kArmPointerSize).Uint32Value();

  // Use the calling convention instead of the location of the receiver, as
  // intrinsics may have put the receiver in a different register. In the intrinsics
  // slow path, the arguments have been moved to the right place, so here we are
  // guaranteed that the receiver is the first register of the calling convention.
  InvokeDexCallingConvention calling_convention;
  Register receiver = calling_convention.GetRegisterAt(0);
  uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
  // /* HeapReference<Class> */ temp = receiver->klass_
  __ LoadFromOffset(kLoadWord, temp, receiver, class_offset);
  MaybeRecordImplicitNullCheck(invoke);
  // Instead of simply (possibly) unpoisoning `temp` here, we should
  // emit a read barrier for the previous class reference load.
  // However this is not required in practice, as this is an
  // intermediate/temporary reference and because the current
  // concurrent copying collector keeps the from-space memory
  // intact/accessible until the end of the marking phase (the
  // concurrent copying collector may not in the future).
  __ MaybeUnpoisonHeapReference(temp);
  // temp = temp->GetMethodAt(method_offset);
  uint32_t entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
      kArmWordSize).Int32Value();
  __ LoadFromOffset(kLoadWord, temp, temp, method_offset);
  // LR = temp->GetEntryPoint();
  __ LoadFromOffset(kLoadWord, LR, temp, entry_point);
  // LR();
  __ blx(LR);
}

CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeStringPatch(
    const DexFile& dex_file, uint32_t string_index) {
  return NewPcRelativePatch(dex_file, string_index, &pc_relative_string_patches_);
}

CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativeDexCacheArrayPatch(
    const DexFile& dex_file, uint32_t element_offset) {
  return NewPcRelativePatch(dex_file, element_offset, &pc_relative_dex_cache_patches_);
}

CodeGeneratorARM::PcRelativePatchInfo* CodeGeneratorARM::NewPcRelativePatch(
    const DexFile& dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) {
  patches->emplace_back(dex_file, offset_or_index);
  return &patches->back();
}

Literal* CodeGeneratorARM::DeduplicateBootImageStringLiteral(const DexFile& dex_file,
                                                             uint32_t string_index) {
  return boot_image_string_patches_.GetOrCreate(
      StringReference(&dex_file, string_index),
      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
}

Literal* CodeGeneratorARM::DeduplicateBootImageAddressLiteral(uint32_t address) {
  bool needs_patch = GetCompilerOptions().GetIncludePatchInformation();
  Uint32ToLiteralMap* map = needs_patch ? &boot_image_address_patches_ : &uint32_literals_;
  return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), map);
}

Literal* CodeGeneratorARM::DeduplicateDexCacheAddressLiteral(uint32_t address) {
  return DeduplicateUint32Literal(address, &uint32_literals_);
}

void CodeGeneratorARM::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
  DCHECK(linker_patches->empty());
  size_t size =
      method_patches_.size() +
      call_patches_.size() +
      relative_call_patches_.size() +
      /* MOVW+MOVT for each base */ 2u * pc_relative_dex_cache_patches_.size() +
      boot_image_string_patches_.size() +
      /* MOVW+MOVT for each base */ 2u * pc_relative_string_patches_.size() +
      boot_image_address_patches_.size();
  linker_patches->reserve(size);
  for (const auto& entry : method_patches_) {
    const MethodReference& target_method = entry.first;
    Literal* literal = entry.second;
    DCHECK(literal->GetLabel()->IsBound());
    uint32_t literal_offset = literal->GetLabel()->Position();
    linker_patches->push_back(LinkerPatch::MethodPatch(literal_offset,
                                                       target_method.dex_file,
                                                       target_method.dex_method_index));
  }
  for (const auto& entry : call_patches_) {
    const MethodReference& target_method = entry.first;
    Literal* literal = entry.second;
    DCHECK(literal->GetLabel()->IsBound());
    uint32_t literal_offset = literal->GetLabel()->Position();
    linker_patches->push_back(LinkerPatch::CodePatch(literal_offset,
                                                     target_method.dex_file,
                                                     target_method.dex_method_index));
  }
  for (const MethodPatchInfo<Label>& info : relative_call_patches_) {
    uint32_t literal_offset = info.label.Position();
    linker_patches->push_back(LinkerPatch::RelativeCodePatch(literal_offset,
                                                             info.target_method.dex_file,
                                                             info.target_method.dex_method_index));
  }
  for (const PcRelativePatchInfo& info : pc_relative_dex_cache_patches_) {
    const DexFile& dex_file = info.target_dex_file;
    size_t base_element_offset = info.offset_or_index;
    DCHECK(info.add_pc_label.IsBound());
    uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.Position());
    // Add MOVW patch.
    DCHECK(info.movw_label.IsBound());
    uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.Position());
    linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(movw_offset,
                                                              &dex_file,
                                                              add_pc_offset,
                                                              base_element_offset));
    // Add MOVT patch.
    DCHECK(info.movt_label.IsBound());
    uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.Position());
    linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(movt_offset,
                                                              &dex_file,
                                                              add_pc_offset,
                                                              base_element_offset));
  }
  for (const auto& entry : boot_image_string_patches_) {
    const StringReference& target_string = entry.first;
    Literal* literal = entry.second;
    DCHECK(literal->GetLabel()->IsBound());
    uint32_t literal_offset = literal->GetLabel()->Position();
    linker_patches->push_back(LinkerPatch::StringPatch(literal_offset,
                                                       target_string.dex_file,
                                                       target_string.string_index));
  }
  for (const PcRelativePatchInfo& info : pc_relative_string_patches_) {
    const DexFile& dex_file = info.target_dex_file;
    uint32_t string_index = info.offset_or_index;
    DCHECK(info.add_pc_label.IsBound());
    uint32_t add_pc_offset = dchecked_integral_cast<uint32_t>(info.add_pc_label.Position());
    // Add MOVW patch.
    DCHECK(info.movw_label.IsBound());
    uint32_t movw_offset = dchecked_integral_cast<uint32_t>(info.movw_label.Position());
    linker_patches->push_back(LinkerPatch::RelativeStringPatch(movw_offset,
                                                               &dex_file,
                                                               add_pc_offset,
                                                               string_index));
    // Add MOVT patch.
    DCHECK(info.movt_label.IsBound());
    uint32_t movt_offset = dchecked_integral_cast<uint32_t>(info.movt_label.Position());
    linker_patches->push_back(LinkerPatch::RelativeStringPatch(movt_offset,
                                                               &dex_file,
                                                               add_pc_offset,
                                                               string_index));
  }
  for (const auto& entry : boot_image_address_patches_) {
    DCHECK(GetCompilerOptions().GetIncludePatchInformation());
    Literal* literal = entry.second;
    DCHECK(literal->GetLabel()->IsBound());
    uint32_t literal_offset = literal->GetLabel()->Position();
    linker_patches->push_back(LinkerPatch::RecordPosition(literal_offset));
  }
}

Literal* CodeGeneratorARM::DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map) {
  return map->GetOrCreate(
      value,
      [this, value]() { return __ NewLiteral<uint32_t>(value); });
}

Literal* CodeGeneratorARM::DeduplicateMethodLiteral(MethodReference target_method,
                                                    MethodToLiteralMap* map) {
  return map->GetOrCreate(
      target_method,
      [this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
}

Literal* CodeGeneratorARM::DeduplicateMethodAddressLiteral(MethodReference target_method) {
  return DeduplicateMethodLiteral(target_method, &method_patches_);
}

Literal* CodeGeneratorARM::DeduplicateMethodCodeLiteral(MethodReference target_method) {
  return DeduplicateMethodLiteral(target_method, &call_patches_);
}

void LocationsBuilderARM::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall);
  locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
                     Location::RequiresRegister());
  locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
  locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
  locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}

void InstructionCodeGeneratorARM::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
  LocationSummary* locations = instr->GetLocations();
  Register res = locations->Out().AsRegister<Register>();
  Register accumulator =
      locations->InAt(HMultiplyAccumulate::kInputAccumulatorIndex).AsRegister<Register>();
  Register mul_left =
      locations->InAt(HMultiplyAccumulate::kInputMulLeftIndex).AsRegister<Register>();
  Register mul_right =
      locations->InAt(HMultiplyAccumulate::kInputMulRightIndex).AsRegister<Register>();

  if (instr->GetOpKind() == HInstruction::kAdd) {
    __ mla(res, mul_left, mul_right, accumulator);
  } else {
    __ mls(res, mul_left, mul_right, accumulator);
  }
}

void LocationsBuilderARM::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
  // Nothing to do, this should be removed during prepare for register allocator.
  LOG(FATAL) << "Unreachable";
}

void InstructionCodeGeneratorARM::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
  // Nothing to do, this should be removed during prepare for register allocator.
  LOG(FATAL) << "Unreachable";
}

// Simple implementation of packed switch - generate cascaded compare/jumps.
void LocationsBuilderARM::VisitPackedSwitch(HPackedSwitch* switch_instr) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
  locations->SetInAt(0, Location::RequiresRegister());
  if (switch_instr->GetNumEntries() > kPackedSwitchCompareJumpThreshold &&
      codegen_->GetAssembler()->IsThumb()) {
    locations->AddTemp(Location::RequiresRegister());  // We need a temp for the table base.
    if (switch_instr->GetStartValue() != 0) {
      locations->AddTemp(Location::RequiresRegister());  // We need a temp for the bias.
    }
  }
}

void InstructionCodeGeneratorARM::VisitPackedSwitch(HPackedSwitch* switch_instr) {
  int32_t lower_bound = switch_instr->GetStartValue();
  uint32_t num_entries = switch_instr->GetNumEntries();
  LocationSummary* locations = switch_instr->GetLocations();
  Register value_reg = locations->InAt(0).AsRegister<Register>();
  HBasicBlock* default_block = switch_instr->GetDefaultBlock();

  if (num_entries <= kPackedSwitchCompareJumpThreshold || !codegen_->GetAssembler()->IsThumb()) {
    // Create a series of compare/jumps.
    Register temp_reg = IP;
    // Note: It is fine for the below AddConstantSetFlags() using IP register to temporarily store
    // the immediate, because IP is used as the destination register. For the other
    // AddConstantSetFlags() and GenerateCompareWithImmediate(), the immediate values are constant,
    // and they can be encoded in the instruction without making use of IP register.
    __ AddConstantSetFlags(temp_reg, value_reg, -lower_bound);

    const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
    // Jump to successors[0] if value == lower_bound.
    __ b(codegen_->GetLabelOf(successors[0]), EQ);
    int32_t last_index = 0;
    for (; num_entries - last_index > 2; last_index += 2) {
      __ AddConstantSetFlags(temp_reg, temp_reg, -2);
      // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
      __ b(codegen_->GetLabelOf(successors[last_index + 1]), LO);
      // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
      __ b(codegen_->GetLabelOf(successors[last_index + 2]), EQ);
    }
    if (num_entries - last_index == 2) {
      // The last missing case_value.
      __ CmpConstant(temp_reg, 1);
      __ b(codegen_->GetLabelOf(successors[last_index + 1]), EQ);
    }

    // And the default for any other value.
    if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
      __ b(codegen_->GetLabelOf(default_block));
    }
  } else {
    // Create a table lookup.
    Register temp_reg = locations->GetTemp(0).AsRegister<Register>();

    // Materialize a pointer to the switch table
    std::vector<Label*> labels(num_entries);
    const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
    for (uint32_t i = 0; i < num_entries; i++) {
      labels[i] = codegen_->GetLabelOf(successors[i]);
    }
    JumpTable* table = __ CreateJumpTable(std::move(labels), temp_reg);

    // Remove the bias.
    Register key_reg;
    if (lower_bound != 0) {
      key_reg = locations->GetTemp(1).AsRegister<Register>();
      __ AddConstant(key_reg, value_reg, -lower_bound);
    } else {
      key_reg = value_reg;
    }

    // Check whether the value is in the table, jump to default block if not.
    __ CmpConstant(key_reg, num_entries - 1);
    __ b(codegen_->GetLabelOf(default_block), Condition::HI);

    // Load the displacement from the table.
    __ ldr(temp_reg, Address(temp_reg, key_reg, Shift::LSL, 2));

    // Dispatch is a direct add to the PC (for Thumb2).
    __ EmitJumpTableDispatch(table, temp_reg);
  }
}

void LocationsBuilderARM::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) {
  LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(base);
  locations->SetOut(Location::RequiresRegister());
}

void InstructionCodeGeneratorARM::VisitArmDexCacheArraysBase(HArmDexCacheArraysBase* base) {
  Register base_reg = base->GetLocations()->Out().AsRegister<Register>();
  CodeGeneratorARM::PcRelativePatchInfo* labels =
      codegen_->NewPcRelativeDexCacheArrayPatch(base->GetDexFile(), base->GetElementOffset());
  __ BindTrackedLabel(&labels->movw_label);
  __ movw(base_reg, /* placeholder */ 0u);
  __ BindTrackedLabel(&labels->movt_label);
  __ movt(base_reg, /* placeholder */ 0u);
  __ BindTrackedLabel(&labels->add_pc_label);
  __ add(base_reg, base_reg, ShifterOperand(PC));
}

void CodeGeneratorARM::MoveFromReturnRegister(Location trg, Primitive::Type type) {
  if (!trg.IsValid()) {
    DCHECK_EQ(type, Primitive::kPrimVoid);
    return;
  }

  DCHECK_NE(type, Primitive::kPrimVoid);

  Location return_loc = InvokeDexCallingConventionVisitorARM().GetReturnLocation(type);
  if (return_loc.Equals(trg)) {
    return;
  }

  // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged
  //       with the last branch.
  if (type == Primitive::kPrimLong) {
    HParallelMove parallel_move(GetGraph()->GetArena());
    parallel_move.AddMove(return_loc.ToLow(), trg.ToLow(), Primitive::kPrimInt, nullptr);
    parallel_move.AddMove(return_loc.ToHigh(), trg.ToHigh(), Primitive::kPrimInt, nullptr);
    GetMoveResolver()->EmitNativeCode(&parallel_move);
  } else if (type == Primitive::kPrimDouble) {
    HParallelMove parallel_move(GetGraph()->GetArena());
    parallel_move.AddMove(return_loc.ToLow(), trg.ToLow(), Primitive::kPrimFloat, nullptr);
    parallel_move.AddMove(return_loc.ToHigh(), trg.ToHigh(), Primitive::kPrimFloat, nullptr);
    GetMoveResolver()->EmitNativeCode(&parallel_move);
  } else {
    // Let the parallel move resolver take care of all of this.
    HParallelMove parallel_move(GetGraph()->GetArena());
    parallel_move.AddMove(return_loc, trg, type, nullptr);
    GetMoveResolver()->EmitNativeCode(&parallel_move);
  }
}

void LocationsBuilderARM::VisitClassTableGet(HClassTableGet* instruction) {
  LocationSummary* locations =
      new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
  locations->SetInAt(0, Location::RequiresRegister());
  locations->SetOut(Location::RequiresRegister());
}

void InstructionCodeGeneratorARM::VisitClassTableGet(HClassTableGet* instruction) {
  LocationSummary* locations = instruction->GetLocations();
  if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
    uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
        instruction->GetIndex(), kArmPointerSize).SizeValue();
    __ LoadFromOffset(kLoadWord,
                      locations->Out().AsRegister<Register>(),
                      locations->InAt(0).AsRegister<Register>(),
                      method_offset);
  } else {
    uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
        instruction->GetIndex() % ImTable::kSize, kArmPointerSize));
    __ LoadFromOffset(kLoadWord,
                      locations->Out().AsRegister<Register>(),
                      locations->InAt(0).AsRegister<Register>(),
                      mirror::Class::ImtPtrOffset(kArmPointerSize).Uint32Value());
    __ LoadFromOffset(kLoadWord,
                      locations->Out().AsRegister<Register>(),
                      locations->Out().AsRegister<Register>(),
                      method_offset);
  }
}

#undef __
#undef QUICK_ENTRY_POINT

}  // namespace arm
}  // namespace art