/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_X86_H_
#define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_X86_H_
#include "arch/x86/instruction_set_features_x86.h"
#include "code_generator.h"
#include "dex/compiler_enums.h"
#include "driver/compiler_options.h"
#include "nodes.h"
#include "parallel_move_resolver.h"
#include "utils/x86/assembler_x86.h"
namespace art {
namespace x86 {
// Use a local definition to prevent copying mistakes.
static constexpr size_t kX86WordSize = kX86PointerSize;
class CodeGeneratorX86;
static constexpr Register kParameterCoreRegisters[] = { ECX, EDX, EBX };
static constexpr RegisterPair kParameterCorePairRegisters[] = { ECX_EDX, EDX_EBX };
static constexpr size_t kParameterCoreRegistersLength = arraysize(kParameterCoreRegisters);
static constexpr XmmRegister kParameterFpuRegisters[] = { XMM0, XMM1, XMM2, XMM3 };
static constexpr size_t kParameterFpuRegistersLength = arraysize(kParameterFpuRegisters);
static constexpr Register kRuntimeParameterCoreRegisters[] = { EAX, ECX, EDX, EBX };
static constexpr size_t kRuntimeParameterCoreRegistersLength =
arraysize(kRuntimeParameterCoreRegisters);
static constexpr XmmRegister kRuntimeParameterFpuRegisters[] = { XMM0, XMM1, XMM2, XMM3 };
static constexpr size_t kRuntimeParameterFpuRegistersLength =
arraysize(kRuntimeParameterFpuRegisters);
class InvokeRuntimeCallingConvention : public CallingConvention<Register, XmmRegister> {
public:
InvokeRuntimeCallingConvention()
: CallingConvention(kRuntimeParameterCoreRegisters,
kRuntimeParameterCoreRegistersLength,
kRuntimeParameterFpuRegisters,
kRuntimeParameterFpuRegistersLength,
kX86PointerSize) {}
private:
DISALLOW_COPY_AND_ASSIGN(InvokeRuntimeCallingConvention);
};
class InvokeDexCallingConvention : public CallingConvention<Register, XmmRegister> {
public:
InvokeDexCallingConvention() : CallingConvention(
kParameterCoreRegisters,
kParameterCoreRegistersLength,
kParameterFpuRegisters,
kParameterFpuRegistersLength,
kX86PointerSize) {}
RegisterPair GetRegisterPairAt(size_t argument_index) {
DCHECK_LT(argument_index + 1, GetNumberOfRegisters());
return kParameterCorePairRegisters[argument_index];
}
private:
DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConvention);
};
class InvokeDexCallingConventionVisitorX86 : public InvokeDexCallingConventionVisitor {
public:
InvokeDexCallingConventionVisitorX86() {}
virtual ~InvokeDexCallingConventionVisitorX86() {}
Location GetNextLocation(Primitive::Type type) OVERRIDE;
Location GetReturnLocation(Primitive::Type type) const OVERRIDE;
Location GetMethodLocation() const OVERRIDE;
private:
InvokeDexCallingConvention calling_convention;
DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitorX86);
};
class FieldAccessCallingConventionX86 : public FieldAccessCallingConvention {
public:
FieldAccessCallingConventionX86() {}
Location GetObjectLocation() const OVERRIDE {
return Location::RegisterLocation(ECX);
}
Location GetFieldIndexLocation() const OVERRIDE {
return Location::RegisterLocation(EAX);
}
Location GetReturnLocation(Primitive::Type type) const OVERRIDE {
return Primitive::Is64BitType(type)
? Location::RegisterPairLocation(EAX, EDX)
: Location::RegisterLocation(EAX);
}
Location GetSetValueLocation(Primitive::Type type, bool is_instance) const OVERRIDE {
return Primitive::Is64BitType(type)
? Location::RegisterPairLocation(EDX, EBX)
: (is_instance
? Location::RegisterLocation(EDX)
: Location::RegisterLocation(ECX));
}
Location GetFpuLocation(Primitive::Type type ATTRIBUTE_UNUSED) const OVERRIDE {
return Location::FpuRegisterLocation(XMM0);
}
private:
DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConventionX86);
};
class ParallelMoveResolverX86 : public ParallelMoveResolverWithSwap {
public:
ParallelMoveResolverX86(ArenaAllocator* allocator, CodeGeneratorX86* codegen)
: ParallelMoveResolverWithSwap(allocator), codegen_(codegen) {}
void EmitMove(size_t index) OVERRIDE;
void EmitSwap(size_t index) OVERRIDE;
void SpillScratch(int reg) OVERRIDE;
void RestoreScratch(int reg) OVERRIDE;
X86Assembler* GetAssembler() const;
private:
void Exchange(Register reg, int mem);
void Exchange(int mem1, int mem2);
void Exchange32(XmmRegister reg, int mem);
void MoveMemoryToMemory32(int dst, int src);
void MoveMemoryToMemory64(int dst, int src);
CodeGeneratorX86* const codegen_;
DISALLOW_COPY_AND_ASSIGN(ParallelMoveResolverX86);
};
class LocationsBuilderX86 : public HGraphVisitor {
public:
LocationsBuilderX86(HGraph* graph, CodeGeneratorX86* codegen)
: HGraphVisitor(graph), codegen_(codegen) {}
#define DECLARE_VISIT_INSTRUCTION(name, super) \
void Visit##name(H##name* instr) OVERRIDE;
FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_X86(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
void VisitInstruction(HInstruction* instruction) OVERRIDE {
LOG(FATAL) << "Unreachable instruction " << instruction->DebugName()
<< " (id " << instruction->GetId() << ")";
}
private:
void HandleBitwiseOperation(HBinaryOperation* instruction);
void HandleInvoke(HInvoke* invoke);
void HandleCondition(HCondition* condition);
void HandleShift(HBinaryOperation* instruction);
void HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info);
void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info);
CodeGeneratorX86* const codegen_;
InvokeDexCallingConventionVisitorX86 parameter_visitor_;
DISALLOW_COPY_AND_ASSIGN(LocationsBuilderX86);
};
class InstructionCodeGeneratorX86 : public InstructionCodeGenerator {
public:
InstructionCodeGeneratorX86(HGraph* graph, CodeGeneratorX86* codegen);
#define DECLARE_VISIT_INSTRUCTION(name, super) \
void Visit##name(H##name* instr) OVERRIDE;
FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_X86(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
void VisitInstruction(HInstruction* instruction) OVERRIDE {
LOG(FATAL) << "Unreachable instruction " << instruction->DebugName()
<< " (id " << instruction->GetId() << ")";
}
X86Assembler* GetAssembler() const { return assembler_; }
// The compare/jump sequence will generate about (1.5 * num_entries) instructions. A jump
// table version generates 7 instructions and num_entries literals. Compare/jump sequence will
// generates less code/data with a small num_entries.
static constexpr uint32_t kPackedSwitchJumpTableThreshold = 5;
private:
// Generate code for the given suspend check. If not null, `successor`
// is the block to branch to if the suspend check is not needed, and after
// the suspend call.
void GenerateSuspendCheck(HSuspendCheck* check, HBasicBlock* successor);
void GenerateClassInitializationCheck(SlowPathCode* slow_path, Register class_reg);
void HandleBitwiseOperation(HBinaryOperation* instruction);
void GenerateDivRemIntegral(HBinaryOperation* instruction);
void DivRemOneOrMinusOne(HBinaryOperation* instruction);
void DivByPowerOfTwo(HDiv* instruction);
void GenerateDivRemWithAnyConstant(HBinaryOperation* instruction);
void GenerateRemFP(HRem* rem);
void HandleCondition(HCondition* condition);
void HandleShift(HBinaryOperation* instruction);
void GenerateShlLong(const Location& loc, Register shifter);
void GenerateShrLong(const Location& loc, Register shifter);
void GenerateUShrLong(const Location& loc, Register shifter);
void GenerateShlLong(const Location& loc, int shift);
void GenerateShrLong(const Location& loc, int shift);
void GenerateUShrLong(const Location& loc, int shift);
void HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info,
bool value_can_be_null);
void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info);
// Generate a heap reference load using one register `out`:
//
// out <- *(out + offset)
//
// while honoring heap poisoning and/or read barriers (if any).
//
// Location `maybe_temp` is used when generating a read barrier and
// shall be a register in that case; it may be an invalid location
// otherwise.
void GenerateReferenceLoadOneRegister(HInstruction* instruction,
Location out,
uint32_t offset,
Location maybe_temp);
// Generate a heap reference load using two different registers
// `out` and `obj`:
//
// out <- *(obj + offset)
//
// while honoring heap poisoning and/or read barriers (if any).
//
// Location `maybe_temp` is used when generating a Baker's (fast
// path) read barrier and shall be a register in that case; it may
// be an invalid location otherwise.
void GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
Location out,
Location obj,
uint32_t offset,
Location maybe_temp);
// Generate a GC root reference load:
//
// root <- *address
//
// while honoring read barriers (if any).
void GenerateGcRootFieldLoad(HInstruction* instruction,
Location root,
const Address& address,
Label* fixup_label = nullptr);
// Push value to FPU stack. `is_fp` specifies whether the value is floating point or not.
// `is_wide` specifies whether it is long/double or not.
void PushOntoFPStack(Location source, uint32_t temp_offset,
uint32_t stack_adjustment, bool is_fp, bool is_wide);
template<class LabelType>
void GenerateTestAndBranch(HInstruction* instruction,
size_t condition_input_index,
LabelType* true_target,
LabelType* false_target);
template<class LabelType>
void GenerateCompareTestAndBranch(HCondition* condition,
LabelType* true_target,
LabelType* false_target);
template<class LabelType>
void GenerateFPJumps(HCondition* cond, LabelType* true_label, LabelType* false_label);
template<class LabelType>
void GenerateLongComparesAndJumps(HCondition* cond,
LabelType* true_label,
LabelType* false_label);
void HandleGoto(HInstruction* got, HBasicBlock* successor);
void GenPackedSwitchWithCompares(Register value_reg,
int32_t lower_bound,
uint32_t num_entries,
HBasicBlock* switch_block,
HBasicBlock* default_block);
void GenerateFPCompare(Location lhs, Location rhs, HInstruction* insn, bool is_double);
void GenerateIntCompare(Location lhs, Location rhs);
X86Assembler* const assembler_;
CodeGeneratorX86* const codegen_;
DISALLOW_COPY_AND_ASSIGN(InstructionCodeGeneratorX86);
};
class JumpTableRIPFixup;
class CodeGeneratorX86 : public CodeGenerator {
public:
CodeGeneratorX86(HGraph* graph,
const X86InstructionSetFeatures& isa_features,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats = nullptr);
virtual ~CodeGeneratorX86() {}
void GenerateFrameEntry() OVERRIDE;
void GenerateFrameExit() OVERRIDE;
void Bind(HBasicBlock* block) OVERRIDE;
void MoveConstant(Location destination, int32_t value) OVERRIDE;
void MoveLocation(Location dst, Location src, Primitive::Type dst_type) OVERRIDE;
void AddLocationAsTemp(Location location, LocationSummary* locations) OVERRIDE;
size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) OVERRIDE;
size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) OVERRIDE;
size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) OVERRIDE;
size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) OVERRIDE;
// Generate code to invoke a runtime entry point.
void InvokeRuntime(QuickEntrypointEnum entrypoint,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path) OVERRIDE;
void InvokeRuntime(int32_t entry_point_offset,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path);
size_t GetWordSize() const OVERRIDE {
return kX86WordSize;
}
size_t GetFloatingPointSpillSlotSize() const OVERRIDE {
// 8 bytes == 2 words for each spill.
return 2 * kX86WordSize;
}
HGraphVisitor* GetLocationBuilder() OVERRIDE {
return &location_builder_;
}
HGraphVisitor* GetInstructionVisitor() OVERRIDE {
return &instruction_visitor_;
}
X86Assembler* GetAssembler() OVERRIDE {
return &assembler_;
}
const X86Assembler& GetAssembler() const OVERRIDE {
return assembler_;
}
uintptr_t GetAddressOf(HBasicBlock* block) OVERRIDE {
return GetLabelOf(block)->Position();
}
void SetupBlockedRegisters() const OVERRIDE;
void DumpCoreRegister(std::ostream& stream, int reg) const OVERRIDE;
void DumpFloatingPointRegister(std::ostream& stream, int reg) const OVERRIDE;
// Blocks all register pairs made out of blocked core registers.
void UpdateBlockedPairRegisters() const;
ParallelMoveResolverX86* GetMoveResolver() OVERRIDE {
return &move_resolver_;
}
InstructionSet GetInstructionSet() const OVERRIDE {
return InstructionSet::kX86;
}
// Helper method to move a 32bits value between two locations.
void Move32(Location destination, Location source);
// Helper method to move a 64bits value between two locations.
void Move64(Location destination, Location source);
// Check if the desired_string_load_kind is supported. If it is, return it,
// otherwise return a fall-back kind that should be used instead.
HLoadString::LoadKind GetSupportedLoadStringKind(
HLoadString::LoadKind desired_string_load_kind) OVERRIDE;
// Check if the desired_dispatch_info is supported. If it is, return it,
// otherwise return a fall-back info that should be used instead.
HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch(
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
MethodReference target_method) OVERRIDE;
// Generate a call to a static or direct method.
void GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) OVERRIDE;
// Generate a call to a virtual method.
void GenerateVirtualCall(HInvokeVirtual* invoke, Location temp) OVERRIDE;
void RecordSimplePatch();
void RecordStringPatch(HLoadString* load_string);
Label* NewPcRelativeDexCacheArrayPatch(const DexFile& dex_file, uint32_t element_offset);
void MoveFromReturnRegister(Location trg, Primitive::Type type) OVERRIDE;
// Emit linker patches.
void EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) OVERRIDE;
// Emit a write barrier.
void MarkGCCard(Register temp,
Register card,
Register object,
Register value,
bool value_can_be_null);
void GenerateMemoryBarrier(MemBarrierKind kind);
Label* GetLabelOf(HBasicBlock* block) const {
return CommonGetLabelOf<Label>(block_labels_, block);
}
void Initialize() OVERRIDE {
block_labels_ = CommonInitializeLabels<Label>();
}
bool NeedsTwoRegisters(Primitive::Type type) const OVERRIDE {
return type == Primitive::kPrimLong;
}
bool ShouldSplitLongMoves() const OVERRIDE { return true; }
Label* GetFrameEntryLabel() { return &frame_entry_label_; }
const X86InstructionSetFeatures& GetInstructionSetFeatures() const {
return isa_features_;
}
void SetMethodAddressOffset(int32_t offset) {
method_address_offset_ = offset;
}
int32_t GetMethodAddressOffset() const {
return method_address_offset_;
}
int32_t ConstantAreaStart() const {
return constant_area_start_;
}
Address LiteralDoubleAddress(double v, Register reg);
Address LiteralFloatAddress(float v, Register reg);
Address LiteralInt32Address(int32_t v, Register reg);
Address LiteralInt64Address(int64_t v, Register reg);
// Load a 32-bit value into a register in the most efficient manner.
void Load32BitValue(Register dest, int32_t value);
// Compare a register with a 32-bit value in the most efficient manner.
void Compare32BitValue(Register dest, int32_t value);
Address LiteralCaseTable(HX86PackedSwitch* switch_instr, Register reg, Register value);
void Finalize(CodeAllocator* allocator) OVERRIDE;
// Fast path implementation of ReadBarrier::Barrier for a heap
// reference field load when Baker's read barriers are used.
void GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
uint32_t offset,
Location temp,
bool needs_null_check);
// Fast path implementation of ReadBarrier::Barrier for a heap
// reference array load when Baker's read barriers are used.
void GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
uint32_t data_offset,
Location index,
Location temp,
bool needs_null_check);
// Generate a read barrier for a heap reference within `instruction`
// using a slow path.
//
// A read barrier for an object reference read from the heap is
// implemented as a call to the artReadBarrierSlow runtime entry
// point, which is passed the values in locations `ref`, `obj`, and
// `offset`:
//
// mirror::Object* artReadBarrierSlow(mirror::Object* ref,
// mirror::Object* obj,
// uint32_t offset);
//
// The `out` location contains the value returned by
// artReadBarrierSlow.
//
// When `index` is provided (i.e. for array accesses), the offset
// value passed to artReadBarrierSlow is adjusted to take `index`
// into account.
void GenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index = Location::NoLocation());
// If read barriers are enabled, generate a read barrier for a heap
// reference using a slow path. If heap poisoning is enabled, also
// unpoison the reference in `out`.
void MaybeGenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index = Location::NoLocation());
// Generate a read barrier for a GC root within `instruction` using
// a slow path.
//
// A read barrier for an object reference GC root is implemented as
// a call to the artReadBarrierForRootSlow runtime entry point,
// which is passed the value in location `root`:
//
// mirror::Object* artReadBarrierForRootSlow(GcRoot<mirror::Object>* root);
//
// The `out` location contains the value returned by
// artReadBarrierForRootSlow.
void GenerateReadBarrierForRootSlow(HInstruction* instruction, Location out, Location root);
// Ensure that prior stores complete to memory before subsequent loads.
// The locked add implementation will avoid serializing device memory, but will
// touch (but not change) the top of the stack.
// The 'non_temporal' parameter should be used to ensure ordering of non-temporal stores.
void MemoryFence(bool non_temporal = false) {
if (!non_temporal && isa_features_.PrefersLockedAddSynchronization()) {
assembler_.lock()->addl(Address(ESP, 0), Immediate(0));
} else {
assembler_.mfence();
}
}
void GenerateNop();
void GenerateImplicitNullCheck(HNullCheck* instruction);
void GenerateExplicitNullCheck(HNullCheck* instruction);
// When we don't know the proper offset for the value, we use kDummy32BitOffset.
// The correct value will be inserted when processing Assembler fixups.
static constexpr int32_t kDummy32BitOffset = 256;
private:
// Factored implementation of GenerateFieldLoadWithBakerReadBarrier
// and GenerateArrayLoadWithBakerReadBarrier.
void GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
Register obj,
const Address& src,
Location temp,
bool needs_null_check);
Register GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke, Register temp);
struct PcRelativeDexCacheAccessInfo {
PcRelativeDexCacheAccessInfo(const DexFile& dex_file, uint32_t element_off)
: target_dex_file(dex_file), element_offset(element_off), label() { }
const DexFile& target_dex_file;
uint32_t element_offset;
// NOTE: Label is bound to the end of the instruction that has an embedded 32-bit offset.
Label label;
};
// Labels for each block that will be compiled.
Label* block_labels_; // Indexed by block id.
Label frame_entry_label_;
LocationsBuilderX86 location_builder_;
InstructionCodeGeneratorX86 instruction_visitor_;
ParallelMoveResolverX86 move_resolver_;
X86Assembler assembler_;
const X86InstructionSetFeatures& isa_features_;
// Method patch info. Using ArenaDeque<> which retains element addresses on push/emplace_back().
ArenaDeque<MethodPatchInfo<Label>> method_patches_;
ArenaDeque<MethodPatchInfo<Label>> relative_call_patches_;
// PC-relative DexCache access info.
ArenaDeque<PcRelativeDexCacheAccessInfo> pc_relative_dex_cache_patches_;
// Patch locations for patchoat where the linker doesn't do any other work.
ArenaDeque<Label> simple_patches_;
// String patch locations.
ArenaDeque<StringPatchInfo<Label>> string_patches_;
// Offset to the start of the constant area in the assembled code.
// Used for fixups to the constant area.
int32_t constant_area_start_;
// Fixups for jump tables that need to be patched after the constant table is generated.
ArenaVector<JumpTableRIPFixup*> fixups_to_jump_tables_;
// If there is a HX86ComputeBaseMethodAddress instruction in the graph
// (which shall be the sole instruction of this kind), subtracting this offset
// from the value contained in the out register of this HX86ComputeBaseMethodAddress
// instruction gives the address of the start of this method.
int32_t method_address_offset_;
DISALLOW_COPY_AND_ASSIGN(CodeGeneratorX86);
};
} // namespace x86
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_X86_H_