/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <jni.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
/* Code from now to qsort_local all copied from bionic source.
* The code is duplicated here to remove dependency on optimized bionic
*/
static __inline char *med3(char *, char *, char *, int (*)(const void *, const void *));
static __inline void swapfunc(char *, char *, int, int);
#define min(a, b) (a) < (b) ? a : b
/*
* Qsort routine from Bentley & McIlroy's "Engineering a Sort Function".
*/
#define swapcode(TYPE, parmi, parmj, n) { \
long i = (n) / sizeof (TYPE); \
TYPE *pi = (TYPE *) (parmi); \
TYPE *pj = (TYPE *) (parmj); \
do { \
TYPE t = *pi; \
*pi++ = *pj; \
*pj++ = t; \
} while (--i > 0); \
}
#define SWAPINIT(a, es) swaptype = ((char *)a - (char *)0) % sizeof(long) || \
es % sizeof(long) ? 2 : es == sizeof(long)? 0 : 1;
static __inline void
swapfunc(char *a, char *b, int n, int swaptype)
{
if (swaptype <= 1)
swapcode(long, a, b, n)
else
swapcode(char, a, b, n)
}
#define swap(a, b) \
if (swaptype == 0) { \
long t = *(long *)(a); \
*(long *)(a) = *(long *)(b); \
*(long *)(b) = t; \
} else \
swapfunc(a, b, es, swaptype)
#define vecswap(a, b, n) if ((n) > 0) swapfunc(a, b, n, swaptype)
static __inline char *
med3(char *a, char *b, char *c, int (*cmp)(const void *, const void *))
{
return cmp(a, b) < 0 ?
(cmp(b, c) < 0 ? b : (cmp(a, c) < 0 ? c : a ))
:(cmp(b, c) > 0 ? b : (cmp(a, c) < 0 ? a : c ));
}
void
qsort_local(void *aa, size_t n, size_t es, int (*cmp)(const void *, const void *))
{
char *pa, *pb, *pc, *pd, *pl, *pm, *pn;
int d, r, swaptype, swap_cnt;
char *a = (char*)aa;
loop: SWAPINIT(a, es);
swap_cnt = 0;
if (n < 7) {
for (pm = (char *)a + es; pm < (char *) a + n * es; pm += es)
for (pl = pm; pl > (char *) a && cmp(pl - es, pl) > 0;
pl -= es)
swap(pl, pl - es);
return;
}
pm = (char *)a + (n / 2) * es;
if (n > 7) {
pl = (char *)a;
pn = (char *)a + (n - 1) * es;
if (n > 40) {
d = (n / 8) * es;
pl = med3(pl, pl + d, pl + 2 * d, cmp);
pm = med3(pm - d, pm, pm + d, cmp);
pn = med3(pn - 2 * d, pn - d, pn, cmp);
}
pm = med3(pl, pm, pn, cmp);
}
swap(a, pm);
pa = pb = (char *)a + es;
pc = pd = (char *)a + (n - 1) * es;
for (;;) {
while (pb <= pc && (r = cmp(pb, a)) <= 0) {
if (r == 0) {
swap_cnt = 1;
swap(pa, pb);
pa += es;
}
pb += es;
}
while (pb <= pc && (r = cmp(pc, a)) >= 0) {
if (r == 0) {
swap_cnt = 1;
swap(pc, pd);
pd -= es;
}
pc -= es;
}
if (pb > pc)
break;
swap(pb, pc);
swap_cnt = 1;
pb += es;
pc -= es;
}
if (swap_cnt == 0) { /* Switch to insertion sort */
for (pm = (char *) a + es; pm < (char *) a + n * es; pm += es)
for (pl = pm; pl > (char *) a && cmp(pl - es, pl) > 0;
pl -= es)
swap(pl, pl - es);
return;
}
pn = (char *)a + n * es;
r = min(pa - (char *)a, pb - pa);
vecswap(a, pb - r, r);
r = min(pd - pc, pn - pd - (int)es);
vecswap(pb, pn - r, r);
if ((r = pb - pa) > (int)es)
qsort_local(a, r / es, es, cmp);
if ((r = pd - pc) > (int)es) {
/* Iterate rather than recurse to save stack space */
a = pn - r;
n = r / es;
goto loop;
}
/* qsort(pn - r, r / es, es, cmp); */
}
/* code duplication ends here */
/**
* Util for getting time stamp
*/
double currentTimeMillis()
{
struct timeval tv;
gettimeofday(&tv, (struct timezone *) NULL);
return tv.tv_sec * 1000.0 + tv.tv_usec / 1000.0;
}
/**
* Initialize given array randomly for the given seed
*/
template <typename T> void randomInitArray(T* array, int len, unsigned int seed)
{
srand(seed);
for (int i = 0; i < len; i++) {
array[i] = (T) rand();
}
}
/**
* comparison function for int, for qsort
*/
int cmpint(const void* p1, const void* p2)
{
return *(int*)p1 - *(int*)p2;
}
extern "C" JNIEXPORT jdouble JNICALL Java_android_simplecpu_cts_CpuNative_runSort(JNIEnv* env,
jclass clazz, jint numberElements, jint repetition)
{
int* data = new int[numberElements];
if (data == NULL) {
env->ThrowNew(env->FindClass("java/lang/OutOfMemoryError"), "No memory");
return -1;
}
double totalTime = 0;
for (int i = 0; i < repetition; i++) {
randomInitArray<int>(data, numberElements, 0);
double start = currentTimeMillis();
qsort_local(data, numberElements, sizeof(int), cmpint);
double end = currentTimeMillis();
totalTime += (end - start);
}
delete[] data;
return totalTime;
}
/**
* Do matrix multiplication, C = A x B with all matrices having dimension of n x n
* The implementation is not in the most efficient, but it is good enough for benchmarking purpose.
* @param n should be multiple of 8
*/
void doMatrixMultiplication(float* A, float* B, float* C, int n)
{
// batch size
const int M = 8;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j += M) {
float sum[M];
for (int k = 0; k < M; k++) {
sum[k] = 0;
}
// re-use the whole cache line for accessing B.
// otherwise, the whole line will be read and only one value will be used.
for (int k = 0; k < n; k++) {
float a = A[i * n + k];
sum[0] += a * B[k * n + j];
sum[1] += a * B[k * n + j + 1];
sum[2] += a * B[k * n + j + 2];
sum[3] += a * B[k * n + j + 3];
sum[4] += a * B[k * n + j + 4];
sum[5] += a * B[k * n + j + 5];
sum[6] += a * B[k * n + j + 6];
sum[7] += a * B[k * n + j + 7];
}
for (int k = 0; k < M; k++) {
C[i * n + j + k] = sum[k];
}
}
}
}
extern "C" JNIEXPORT jdouble JNICALL Java_android_simplecpu_cts_CpuNative_runMatrixMultiplication(
JNIEnv* env, jclass clazz, jint n, jint repetition)
{
// C = A x B
float* A = new float[n * n];
float* B = new float[n * n];
float* C = new float[n * n];
if ((A == NULL) || (B == NULL) || (C == NULL)) {
delete[] A;
delete[] B;
delete[] C;
env->ThrowNew(env->FindClass("java/lang/OutOfMemoryError"), "No memory");
return -1;
}
double totalTime = 0;
for (int i = 0; i < repetition; i++) {
randomInitArray<float>(A, n * n, 0);
randomInitArray<float>(B, n * n, 1);
double start = currentTimeMillis();
doMatrixMultiplication(A, B, C, n);
double end = currentTimeMillis();
totalTime += (end - start);
}
delete[] A;
delete[] B;
delete[] C;
return totalTime;
}