/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "sensors"
// #defined LOG_NDEBUG 1
#include <utils/Log.h>
#include "hubconnection.h"
#include "sensorlist.h"
#include "sensors.h"
#include <errno.h>
#include <math.h>
#include <media/stagefright/foundation/ADebug.h>
#include <string.h>
using namespace android;
////////////////////////////////////////////////////////////////////////////////
SensorContext::SensorContext(const struct hw_module_t *module)
: mHubConnection(HubConnection::getInstance()) {
memset(&device, 0, sizeof(device));
device.common.tag = HARDWARE_DEVICE_TAG;
device.common.version = SENSORS_DEVICE_API_VERSION_1_3;
device.common.module = const_cast<hw_module_t *>(module);
device.common.close = CloseWrapper;
device.activate = ActivateWrapper;
device.setDelay = SetDelayWrapper;
device.poll = PollWrapper;
device.batch = BatchWrapper;
device.flush = FlushWrapper;
mHubAlive = (mHubConnection->initCheck() == OK
&& mHubConnection->getAliveCheck() == OK);
}
int SensorContext::close() {
ALOGI("close");
delete this;
return 0;
}
int SensorContext::activate(int handle, int enabled) {
ALOGI("activate");
mHubConnection->queueActivate(handle, enabled);
return 0;
}
int SensorContext::setDelay(int handle, int64_t delayNs) {
ALOGI("setDelay");
// clamp sample rate based on minDelay and maxDelay defined in kSensorList
int64_t delayNsClamped = delayNs;
for (size_t i = 0; i < kSensorCount; i++) {
sensor_t sensor = kSensorList[i];
if (sensor.handle != handle) {
continue;
}
if ((sensor.flags & REPORTING_MODE_MASK) == SENSOR_FLAG_CONTINUOUS_MODE) {
if ((delayNs/1000) < sensor.minDelay) {
delayNsClamped = sensor.minDelay * 1000;
} else if ((delayNs/1000) > sensor.maxDelay) {
delayNsClamped = sensor.maxDelay * 1000;
}
}
break;
}
mHubConnection->queueSetDelay(handle, delayNsClamped);
return 0;
}
int SensorContext::poll(sensors_event_t *data, int count) {
ALOGV("poll");
ssize_t n = mHubConnection->read(data, count);
if (n < 0) {
return -1;
}
return n;
}
int SensorContext::batch(
int handle,
int64_t sampling_period_ns,
int64_t max_report_latency_ns) {
ALOGI("batch");
// clamp sample rate based on minDelay and maxDelay defined in kSensorList
int64_t sampling_period_ns_clamped = sampling_period_ns;
for (size_t i = 0; i < kSensorCount; i++) {
sensor_t sensor = kSensorList[i];
if (sensor.handle != handle) {
continue;
}
if ((sensor.flags & REPORTING_MODE_MASK) == SENSOR_FLAG_CONTINUOUS_MODE) {
if ((sampling_period_ns/1000) < sensor.minDelay) {
sampling_period_ns_clamped = sensor.minDelay * 1000;
} else if ((sampling_period_ns/1000) > sensor.maxDelay) {
sampling_period_ns_clamped = sensor.maxDelay * 1000;
}
}
break;
}
mHubConnection->queueBatch(handle, sampling_period_ns_clamped,
max_report_latency_ns);
return 0;
}
int SensorContext::flush(int handle) {
ALOGI("flush");
mHubConnection->queueFlush(handle);
return 0;
}
// static
int SensorContext::CloseWrapper(struct hw_device_t *dev) {
return reinterpret_cast<SensorContext *>(dev)->close();
}
// static
int SensorContext::ActivateWrapper(
struct sensors_poll_device_t *dev, int handle, int enabled) {
return reinterpret_cast<SensorContext *>(dev)->activate(handle, enabled);
}
// static
int SensorContext::SetDelayWrapper(
struct sensors_poll_device_t *dev, int handle, int64_t delayNs) {
return reinterpret_cast<SensorContext *>(dev)->setDelay(handle, delayNs);
}
// static
int SensorContext::PollWrapper(
struct sensors_poll_device_t *dev, sensors_event_t *data, int count) {
return reinterpret_cast<SensorContext *>(dev)->poll(data, count);
}
// static
int SensorContext::BatchWrapper(
struct sensors_poll_device_1 *dev,
int handle,
int flags,
int64_t sampling_period_ns,
int64_t max_report_latency_ns) {
(void) flags;
return reinterpret_cast<SensorContext *>(dev)->batch(
handle, sampling_period_ns, max_report_latency_ns);
}
// static
int SensorContext::FlushWrapper(struct sensors_poll_device_1 *dev, int handle) {
return reinterpret_cast<SensorContext *>(dev)->flush(handle);
}
bool SensorContext::getHubAlive() {
return mHubAlive;
}
////////////////////////////////////////////////////////////////////////////////
static bool gHubAlive;
static int open_sensors(
const struct hw_module_t *module,
const char *,
struct hw_device_t **dev) {
ALOGI("open_sensors");
SensorContext *ctx = new SensorContext(module);
gHubAlive = ctx->getHubAlive();
*dev = &ctx->device.common;
return 0;
}
static struct hw_module_methods_t sensors_module_methods = {
.open = open_sensors
};
static int get_sensors_list(
struct sensors_module_t *,
struct sensor_t const **list) {
ALOGI("get_sensors_list");
if (gHubAlive) {
*list = kSensorList;
return kSensorCount;
} else {
*list = {};
return 0;
}
}
static int set_operation_mode(unsigned int mode) {
ALOGI("set_operation_mode");
return (mode) ? -EINVAL : 0;
}
struct sensors_module_t HAL_MODULE_INFO_SYM = {
.common = {
.tag = HARDWARE_MODULE_TAG,
.version_major = 1,
.version_minor = 0,
.id = SENSORS_HARDWARE_MODULE_ID,
.name = "Google Sensor module",
.author = "Google",
.methods = &sensors_module_methods,
.dso = NULL,
.reserved = {0},
},
.get_sensors_list = get_sensors_list,
.set_operation_mode = set_operation_mode,
};