//===-- sanitizer_common.h --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is shared between run-time libraries of sanitizers.
//
// It declares common functions and classes that are used in both runtimes.
// Implementation of some functions are provided in sanitizer_common, while
// others must be defined by run-time library itself.
//===----------------------------------------------------------------------===//
#ifndef SANITIZER_COMMON_H
#define SANITIZER_COMMON_H
#include "sanitizer_flags.h"
#include "sanitizer_interface_internal.h"
#include "sanitizer_internal_defs.h"
#include "sanitizer_libc.h"
#include "sanitizer_list.h"
#include "sanitizer_mutex.h"
#ifdef _MSC_VER
extern "C" void _ReadWriteBarrier();
#pragma intrinsic(_ReadWriteBarrier)
#endif
namespace __sanitizer {
struct StackTrace;
struct AddressInfo;
// Constants.
const uptr kWordSize = SANITIZER_WORDSIZE / 8;
const uptr kWordSizeInBits = 8 * kWordSize;
#if defined(__powerpc__) || defined(__powerpc64__)
const uptr kCacheLineSize = 128;
#else
const uptr kCacheLineSize = 64;
#endif
const uptr kMaxPathLength = 4096;
// 16K loaded modules should be enough for everyone.
static const uptr kMaxNumberOfModules = 1 << 14;
const uptr kMaxThreadStackSize = 1 << 30; // 1Gb
static const uptr kErrorMessageBufferSize = 1 << 16;
// Denotes fake PC values that come from JIT/JAVA/etc.
// For such PC values __tsan_symbolize_external() will be called.
const u64 kExternalPCBit = 1ULL << 60;
extern const char *SanitizerToolName; // Can be changed by the tool.
extern atomic_uint32_t current_verbosity;
INLINE void SetVerbosity(int verbosity) {
atomic_store(¤t_verbosity, verbosity, memory_order_relaxed);
}
INLINE int Verbosity() {
return atomic_load(¤t_verbosity, memory_order_relaxed);
}
uptr GetPageSize();
uptr GetPageSizeCached();
uptr GetMmapGranularity();
uptr GetMaxVirtualAddress();
// Threads
uptr GetTid();
uptr GetThreadSelf();
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
uptr *stack_bottom);
void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
uptr *tls_addr, uptr *tls_size);
// Memory management
void *MmapOrDie(uptr size, const char *mem_type, bool raw_report = false);
INLINE void *MmapOrDieQuietly(uptr size, const char *mem_type) {
return MmapOrDie(size, mem_type, /*raw_report*/ true);
}
void UnmapOrDie(void *addr, uptr size);
void *MmapFixedNoReserve(uptr fixed_addr, uptr size,
const char *name = nullptr);
void *MmapNoReserveOrDie(uptr size, const char *mem_type);
void *MmapFixedOrDie(uptr fixed_addr, uptr size);
void *MmapNoAccess(uptr fixed_addr, uptr size, const char *name = nullptr);
// Map aligned chunk of address space; size and alignment are powers of two.
void *MmapAlignedOrDie(uptr size, uptr alignment, const char *mem_type);
// Disallow access to a memory range. Use MmapNoAccess to allocate an
// unaccessible memory.
bool MprotectNoAccess(uptr addr, uptr size);
// Used to check if we can map shadow memory to a fixed location.
bool MemoryRangeIsAvailable(uptr range_start, uptr range_end);
void FlushUnneededShadowMemory(uptr addr, uptr size);
void IncreaseTotalMmap(uptr size);
void DecreaseTotalMmap(uptr size);
uptr GetRSS();
void NoHugePagesInRegion(uptr addr, uptr length);
void DontDumpShadowMemory(uptr addr, uptr length);
// Check if the built VMA size matches the runtime one.
void CheckVMASize();
// InternalScopedBuffer can be used instead of large stack arrays to
// keep frame size low.
// FIXME: use InternalAlloc instead of MmapOrDie once
// InternalAlloc is made libc-free.
template<typename T>
class InternalScopedBuffer {
public:
explicit InternalScopedBuffer(uptr cnt) {
cnt_ = cnt;
ptr_ = (T*)MmapOrDie(cnt * sizeof(T), "InternalScopedBuffer");
}
~InternalScopedBuffer() {
UnmapOrDie(ptr_, cnt_ * sizeof(T));
}
T &operator[](uptr i) { return ptr_[i]; }
T *data() { return ptr_; }
uptr size() { return cnt_ * sizeof(T); }
private:
T *ptr_;
uptr cnt_;
// Disallow evil constructors.
InternalScopedBuffer(const InternalScopedBuffer&);
void operator=(const InternalScopedBuffer&);
};
class InternalScopedString : public InternalScopedBuffer<char> {
public:
explicit InternalScopedString(uptr max_length)
: InternalScopedBuffer<char>(max_length), length_(0) {
(*this)[0] = '\0';
}
uptr length() { return length_; }
void clear() {
(*this)[0] = '\0';
length_ = 0;
}
void append(const char *format, ...);
private:
uptr length_;
};
// Simple low-level (mmap-based) allocator for internal use. Doesn't have
// constructor, so all instances of LowLevelAllocator should be
// linker initialized.
class LowLevelAllocator {
public:
// Requires an external lock.
void *Allocate(uptr size);
private:
char *allocated_end_;
char *allocated_current_;
};
typedef void (*LowLevelAllocateCallback)(uptr ptr, uptr size);
// Allows to register tool-specific callbacks for LowLevelAllocator.
// Passing NULL removes the callback.
void SetLowLevelAllocateCallback(LowLevelAllocateCallback callback);
// IO
void RawWrite(const char *buffer);
bool ColorizeReports();
void RemoveANSIEscapeSequencesFromString(char *buffer);
void Printf(const char *format, ...);
void Report(const char *format, ...);
void SetPrintfAndReportCallback(void (*callback)(const char *));
#define VReport(level, ...) \
do { \
if ((uptr)Verbosity() >= (level)) Report(__VA_ARGS__); \
} while (0)
#define VPrintf(level, ...) \
do { \
if ((uptr)Verbosity() >= (level)) Printf(__VA_ARGS__); \
} while (0)
// Can be used to prevent mixing error reports from different sanitizers.
extern StaticSpinMutex CommonSanitizerReportMutex;
struct ReportFile {
void Write(const char *buffer, uptr length);
bool SupportsColors();
void SetReportPath(const char *path);
// Don't use fields directly. They are only declared public to allow
// aggregate initialization.
// Protects fields below.
StaticSpinMutex *mu;
// Opened file descriptor. Defaults to stderr. It may be equal to
// kInvalidFd, in which case new file will be opened when necessary.
fd_t fd;
// Path prefix of report file, set via __sanitizer_set_report_path.
char path_prefix[kMaxPathLength];
// Full path to report, obtained as <path_prefix>.PID
char full_path[kMaxPathLength];
// PID of the process that opened fd. If a fork() occurs,
// the PID of child will be different from fd_pid.
uptr fd_pid;
private:
void ReopenIfNecessary();
};
extern ReportFile report_file;
extern uptr stoptheworld_tracer_pid;
extern uptr stoptheworld_tracer_ppid;
enum FileAccessMode {
RdOnly,
WrOnly,
RdWr
};
// Returns kInvalidFd on error.
fd_t OpenFile(const char *filename, FileAccessMode mode,
error_t *errno_p = nullptr);
void CloseFile(fd_t);
// Return true on success, false on error.
bool ReadFromFile(fd_t fd, void *buff, uptr buff_size,
uptr *bytes_read = nullptr, error_t *error_p = nullptr);
bool WriteToFile(fd_t fd, const void *buff, uptr buff_size,
uptr *bytes_written = nullptr, error_t *error_p = nullptr);
bool RenameFile(const char *oldpath, const char *newpath,
error_t *error_p = nullptr);
// Scoped file handle closer.
struct FileCloser {
explicit FileCloser(fd_t fd) : fd(fd) {}
~FileCloser() { CloseFile(fd); }
fd_t fd;
};
bool SupportsColoredOutput(fd_t fd);
// Opens the file 'file_name" and reads up to 'max_len' bytes.
// The resulting buffer is mmaped and stored in '*buff'.
// The size of the mmaped region is stored in '*buff_size'.
// The total number of read bytes is stored in '*read_len'.
// Returns true if file was successfully opened and read.
bool ReadFileToBuffer(const char *file_name, char **buff, uptr *buff_size,
uptr *read_len, uptr max_len = 1 << 26,
error_t *errno_p = nullptr);
// Maps given file to virtual memory, and returns pointer to it
// (or NULL if mapping fails). Stores the size of mmaped region
// in '*buff_size'.
void *MapFileToMemory(const char *file_name, uptr *buff_size);
void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset);
bool IsAccessibleMemoryRange(uptr beg, uptr size);
// Error report formatting.
const char *StripPathPrefix(const char *filepath,
const char *strip_file_prefix);
// Strip the directories from the module name.
const char *StripModuleName(const char *module);
// OS
uptr ReadBinaryName(/*out*/char *buf, uptr buf_len);
uptr ReadBinaryNameCached(/*out*/char *buf, uptr buf_len);
uptr ReadLongProcessName(/*out*/ char *buf, uptr buf_len);
const char *GetProcessName();
void UpdateProcessName();
void CacheBinaryName();
void DisableCoreDumperIfNecessary();
void DumpProcessMap();
bool FileExists(const char *filename);
const char *GetEnv(const char *name);
bool SetEnv(const char *name, const char *value);
const char *GetPwd();
char *FindPathToBinary(const char *name);
bool IsPathSeparator(const char c);
bool IsAbsolutePath(const char *path);
u32 GetUid();
void ReExec();
bool StackSizeIsUnlimited();
void SetStackSizeLimitInBytes(uptr limit);
bool AddressSpaceIsUnlimited();
void SetAddressSpaceUnlimited();
void AdjustStackSize(void *attr);
void PrepareForSandboxing(__sanitizer_sandbox_arguments *args);
void CovPrepareForSandboxing(__sanitizer_sandbox_arguments *args);
void SetSandboxingCallback(void (*f)());
void CoverageUpdateMapping();
void CovBeforeFork();
void CovAfterFork(int child_pid);
void InitializeCoverage(bool enabled, const char *coverage_dir);
void ReInitializeCoverage(bool enabled, const char *coverage_dir);
void InitTlsSize();
uptr GetTlsSize();
// Other
void SleepForSeconds(int seconds);
void SleepForMillis(int millis);
u64 NanoTime();
int Atexit(void (*function)(void));
void SortArray(uptr *array, uptr size);
bool TemplateMatch(const char *templ, const char *str);
// Exit
void NORETURN Abort();
void NORETURN Die();
void NORETURN
CheckFailed(const char *file, int line, const char *cond, u64 v1, u64 v2);
void NORETURN ReportMmapFailureAndDie(uptr size, const char *mem_type,
const char *mmap_type, error_t err,
bool raw_report = false);
// Set the name of the current thread to 'name', return true on succees.
// The name may be truncated to a system-dependent limit.
bool SanitizerSetThreadName(const char *name);
// Get the name of the current thread (no more than max_len bytes),
// return true on succees. name should have space for at least max_len+1 bytes.
bool SanitizerGetThreadName(char *name, int max_len);
// Specific tools may override behavior of "Die" and "CheckFailed" functions
// to do tool-specific job.
typedef void (*DieCallbackType)(void);
// It's possible to add several callbacks that would be run when "Die" is
// called. The callbacks will be run in the opposite order. The tools are
// strongly recommended to setup all callbacks during initialization, when there
// is only a single thread.
bool AddDieCallback(DieCallbackType callback);
bool RemoveDieCallback(DieCallbackType callback);
void SetUserDieCallback(DieCallbackType callback);
typedef void (*CheckFailedCallbackType)(const char *, int, const char *,
u64, u64);
void SetCheckFailedCallback(CheckFailedCallbackType callback);
// Callback will be called if soft_rss_limit_mb is given and the limit is
// exceeded (exceeded==true) or if rss went down below the limit
// (exceeded==false).
// The callback should be registered once at the tool init time.
void SetSoftRssLimitExceededCallback(void (*Callback)(bool exceeded));
// Functions related to signal handling.
typedef void (*SignalHandlerType)(int, void *, void *);
bool IsDeadlySignal(int signum);
void InstallDeadlySignalHandlers(SignalHandlerType handler);
// Alternative signal stack (POSIX-only).
void SetAlternateSignalStack();
void UnsetAlternateSignalStack();
// We don't want a summary too long.
const int kMaxSummaryLength = 1024;
// Construct a one-line string:
// SUMMARY: SanitizerToolName: error_message
// and pass it to __sanitizer_report_error_summary.
void ReportErrorSummary(const char *error_message);
// Same as above, but construct error_message as:
// error_type file:line[:column][ function]
void ReportErrorSummary(const char *error_type, const AddressInfo &info);
// Same as above, but obtains AddressInfo by symbolizing top stack trace frame.
void ReportErrorSummary(const char *error_type, StackTrace *trace);
// Math
#if SANITIZER_WINDOWS && !defined(__clang__) && !defined(__GNUC__)
extern "C" {
unsigned char _BitScanForward(unsigned long *index, unsigned long mask); // NOLINT
unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); // NOLINT
#if defined(_WIN64)
unsigned char _BitScanForward64(unsigned long *index, unsigned __int64 mask); // NOLINT
unsigned char _BitScanReverse64(unsigned long *index, unsigned __int64 mask); // NOLINT
#endif
}
#endif
INLINE uptr MostSignificantSetBitIndex(uptr x) {
CHECK_NE(x, 0U);
unsigned long up; // NOLINT
#if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
# ifdef _WIN64
up = SANITIZER_WORDSIZE - 1 - __builtin_clzll(x);
# else
up = SANITIZER_WORDSIZE - 1 - __builtin_clzl(x);
# endif
#elif defined(_WIN64)
_BitScanReverse64(&up, x);
#else
_BitScanReverse(&up, x);
#endif
return up;
}
INLINE uptr LeastSignificantSetBitIndex(uptr x) {
CHECK_NE(x, 0U);
unsigned long up; // NOLINT
#if !SANITIZER_WINDOWS || defined(__clang__) || defined(__GNUC__)
# ifdef _WIN64
up = __builtin_ctzll(x);
# else
up = __builtin_ctzl(x);
# endif
#elif defined(_WIN64)
_BitScanForward64(&up, x);
#else
_BitScanForward(&up, x);
#endif
return up;
}
INLINE bool IsPowerOfTwo(uptr x) {
return (x & (x - 1)) == 0;
}
INLINE uptr RoundUpToPowerOfTwo(uptr size) {
CHECK(size);
if (IsPowerOfTwo(size)) return size;
uptr up = MostSignificantSetBitIndex(size);
CHECK(size < (1ULL << (up + 1)));
CHECK(size > (1ULL << up));
return 1ULL << (up + 1);
}
INLINE uptr RoundUpTo(uptr size, uptr boundary) {
RAW_CHECK(IsPowerOfTwo(boundary));
return (size + boundary - 1) & ~(boundary - 1);
}
INLINE uptr RoundDownTo(uptr x, uptr boundary) {
return x & ~(boundary - 1);
}
INLINE bool IsAligned(uptr a, uptr alignment) {
return (a & (alignment - 1)) == 0;
}
INLINE uptr Log2(uptr x) {
CHECK(IsPowerOfTwo(x));
return LeastSignificantSetBitIndex(x);
}
// Don't use std::min, std::max or std::swap, to minimize dependency
// on libstdc++.
template<class T> T Min(T a, T b) { return a < b ? a : b; }
template<class T> T Max(T a, T b) { return a > b ? a : b; }
template<class T> void Swap(T& a, T& b) {
T tmp = a;
a = b;
b = tmp;
}
// Char handling
INLINE bool IsSpace(int c) {
return (c == ' ') || (c == '\n') || (c == '\t') ||
(c == '\f') || (c == '\r') || (c == '\v');
}
INLINE bool IsDigit(int c) {
return (c >= '0') && (c <= '9');
}
INLINE int ToLower(int c) {
return (c >= 'A' && c <= 'Z') ? (c + 'a' - 'A') : c;
}
// A low-level vector based on mmap. May incur a significant memory overhead for
// small vectors.
// WARNING: The current implementation supports only POD types.
template<typename T>
class InternalMmapVectorNoCtor {
public:
void Initialize(uptr initial_capacity) {
capacity_ = Max(initial_capacity, (uptr)1);
size_ = 0;
data_ = (T *)MmapOrDie(capacity_ * sizeof(T), "InternalMmapVectorNoCtor");
}
void Destroy() {
UnmapOrDie(data_, capacity_ * sizeof(T));
}
T &operator[](uptr i) {
CHECK_LT(i, size_);
return data_[i];
}
const T &operator[](uptr i) const {
CHECK_LT(i, size_);
return data_[i];
}
void push_back(const T &element) {
CHECK_LE(size_, capacity_);
if (size_ == capacity_) {
uptr new_capacity = RoundUpToPowerOfTwo(size_ + 1);
Resize(new_capacity);
}
data_[size_++] = element;
}
T &back() {
CHECK_GT(size_, 0);
return data_[size_ - 1];
}
void pop_back() {
CHECK_GT(size_, 0);
size_--;
}
uptr size() const {
return size_;
}
const T *data() const {
return data_;
}
T *data() {
return data_;
}
uptr capacity() const {
return capacity_;
}
void clear() { size_ = 0; }
bool empty() const { return size() == 0; }
private:
void Resize(uptr new_capacity) {
CHECK_GT(new_capacity, 0);
CHECK_LE(size_, new_capacity);
T *new_data = (T *)MmapOrDie(new_capacity * sizeof(T),
"InternalMmapVector");
internal_memcpy(new_data, data_, size_ * sizeof(T));
T *old_data = data_;
data_ = new_data;
UnmapOrDie(old_data, capacity_ * sizeof(T));
capacity_ = new_capacity;
}
T *data_;
uptr capacity_;
uptr size_;
};
template<typename T>
class InternalMmapVector : public InternalMmapVectorNoCtor<T> {
public:
explicit InternalMmapVector(uptr initial_capacity) {
InternalMmapVectorNoCtor<T>::Initialize(initial_capacity);
}
~InternalMmapVector() { InternalMmapVectorNoCtor<T>::Destroy(); }
// Disallow evil constructors.
InternalMmapVector(const InternalMmapVector&);
void operator=(const InternalMmapVector&);
};
// HeapSort for arrays and InternalMmapVector.
template<class Container, class Compare>
void InternalSort(Container *v, uptr size, Compare comp) {
if (size < 2)
return;
// Stage 1: insert elements to the heap.
for (uptr i = 1; i < size; i++) {
uptr j, p;
for (j = i; j > 0; j = p) {
p = (j - 1) / 2;
if (comp((*v)[p], (*v)[j]))
Swap((*v)[j], (*v)[p]);
else
break;
}
}
// Stage 2: swap largest element with the last one,
// and sink the new top.
for (uptr i = size - 1; i > 0; i--) {
Swap((*v)[0], (*v)[i]);
uptr j, max_ind;
for (j = 0; j < i; j = max_ind) {
uptr left = 2 * j + 1;
uptr right = 2 * j + 2;
max_ind = j;
if (left < i && comp((*v)[max_ind], (*v)[left]))
max_ind = left;
if (right < i && comp((*v)[max_ind], (*v)[right]))
max_ind = right;
if (max_ind != j)
Swap((*v)[j], (*v)[max_ind]);
else
break;
}
}
}
template<class Container, class Value, class Compare>
uptr InternalBinarySearch(const Container &v, uptr first, uptr last,
const Value &val, Compare comp) {
uptr not_found = last + 1;
while (last >= first) {
uptr mid = (first + last) / 2;
if (comp(v[mid], val))
first = mid + 1;
else if (comp(val, v[mid]))
last = mid - 1;
else
return mid;
}
return not_found;
}
// Represents a binary loaded into virtual memory (e.g. this can be an
// executable or a shared object).
class LoadedModule {
public:
LoadedModule() : full_name_(nullptr), base_address_(0) { ranges_.clear(); }
void set(const char *module_name, uptr base_address);
void clear();
void addAddressRange(uptr beg, uptr end, bool executable);
bool containsAddress(uptr address) const;
const char *full_name() const { return full_name_; }
uptr base_address() const { return base_address_; }
struct AddressRange {
AddressRange *next;
uptr beg;
uptr end;
bool executable;
AddressRange(uptr beg, uptr end, bool executable)
: next(nullptr), beg(beg), end(end), executable(executable) {}
};
typedef IntrusiveList<AddressRange>::ConstIterator Iterator;
Iterator ranges() const { return Iterator(&ranges_); }
private:
char *full_name_; // Owned.
uptr base_address_;
IntrusiveList<AddressRange> ranges_;
};
// OS-dependent function that fills array with descriptions of at most
// "max_modules" currently loaded modules. Returns the number of
// initialized modules. If filter is nonzero, ignores modules for which
// filter(full_name) is false.
typedef bool (*string_predicate_t)(const char *);
uptr GetListOfModules(LoadedModule *modules, uptr max_modules,
string_predicate_t filter);
// Callback type for iterating over a set of memory ranges.
typedef void (*RangeIteratorCallback)(uptr begin, uptr end, void *arg);
enum AndroidApiLevel {
ANDROID_NOT_ANDROID = 0,
ANDROID_KITKAT = 19,
ANDROID_LOLLIPOP_MR1 = 22,
ANDROID_POST_LOLLIPOP = 23
};
void WriteToSyslog(const char *buffer);
#if SANITIZER_MAC
void LogFullErrorReport(const char *buffer);
#else
INLINE void LogFullErrorReport(const char *buffer) {}
#endif
#if SANITIZER_LINUX || SANITIZER_MAC
void WriteOneLineToSyslog(const char *s);
#else
INLINE void WriteOneLineToSyslog(const char *s) {}
#endif
#if SANITIZER_LINUX
// Initialize Android logging. Any writes before this are silently lost.
void AndroidLogInit();
bool ShouldLogAfterPrintf();
#else
INLINE void AndroidLogInit() {}
INLINE bool ShouldLogAfterPrintf() { return false; }
#endif
#if SANITIZER_ANDROID
void SanitizerInitializeUnwinder();
AndroidApiLevel AndroidGetApiLevel();
#else
INLINE void AndroidLogWrite(const char *buffer_unused) {}
INLINE void SanitizerInitializeUnwinder() {}
INLINE AndroidApiLevel AndroidGetApiLevel() { return ANDROID_NOT_ANDROID; }
#endif
INLINE uptr GetPthreadDestructorIterations() {
#if SANITIZER_ANDROID
return (AndroidGetApiLevel() == ANDROID_LOLLIPOP_MR1) ? 8 : 4;
#elif SANITIZER_POSIX
return 4;
#else
// Unused on Windows.
return 0;
#endif
}
void *internal_start_thread(void(*func)(void*), void *arg);
void internal_join_thread(void *th);
void MaybeStartBackgroudThread();
// Make the compiler think that something is going on there.
// Use this inside a loop that looks like memset/memcpy/etc to prevent the
// compiler from recognising it and turning it into an actual call to
// memset/memcpy/etc.
static inline void SanitizerBreakOptimization(void *arg) {
#if _MSC_VER && !defined(__clang__)
_ReadWriteBarrier();
#else
__asm__ __volatile__("" : : "r" (arg) : "memory");
#endif
}
struct SignalContext {
void *context;
uptr addr;
uptr pc;
uptr sp;
uptr bp;
SignalContext(void *context, uptr addr, uptr pc, uptr sp, uptr bp) :
context(context), addr(addr), pc(pc), sp(sp), bp(bp) {
}
// Creates signal context in a platform-specific manner.
static SignalContext Create(void *siginfo, void *context);
};
void GetPcSpBp(void *context, uptr *pc, uptr *sp, uptr *bp);
void DisableReexec();
void MaybeReexec();
} // namespace __sanitizer
inline void *operator new(__sanitizer::operator_new_size_type size,
__sanitizer::LowLevelAllocator &alloc) {
return alloc.Allocate(size);
}
struct StackDepotStats {
uptr n_uniq_ids;
uptr allocated;
};
#endif // SANITIZER_COMMON_H