/*
* Copyright (C) 2003-2014, International Business Machines Corporation
* and others. All Rights Reserved.
******************************************************************************
*
* File INDIANCAL.CPP
*****************************************************************************
*/
#include "indiancal.h"
#include <stdlib.h>
#if !UCONFIG_NO_FORMATTING
#include "mutex.h"
#include <float.h>
#include "gregoimp.h" // Math
#include "astro.h" // CalendarAstronomer
#include "uhash.h"
// Debugging
#ifdef U_DEBUG_INDIANCAL
#include <stdio.h>
#include <stdarg.h>
#endif
U_NAMESPACE_BEGIN
// Implementation of the IndianCalendar class
//-------------------------------------------------------------------------
// Constructors...
//-------------------------------------------------------------------------
Calendar* IndianCalendar::clone() const {
return new IndianCalendar(*this);
}
IndianCalendar::IndianCalendar(const Locale& aLocale, UErrorCode& success)
: Calendar(TimeZone::createDefault(), aLocale, success)
{
setTimeInMillis(getNow(), success); // Call this again now that the vtable is set up properly.
}
IndianCalendar::IndianCalendar(const IndianCalendar& other) : Calendar(other) {
}
IndianCalendar::~IndianCalendar()
{
}
const char *IndianCalendar::getType() const {
return "indian";
}
static const int32_t LIMITS[UCAL_FIELD_COUNT][4] = {
// Minimum Greatest Least Maximum
// Minimum Maximum
{ 0, 0, 0, 0}, // ERA
{ -5000000, -5000000, 5000000, 5000000}, // YEAR
{ 0, 0, 11, 11}, // MONTH
{ 1, 1, 52, 53}, // WEEK_OF_YEAR
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH
{ 1, 1, 30, 31}, // DAY_OF_MONTH
{ 1, 1, 365, 366}, // DAY_OF_YEAR
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK
{ -1, -1, 5, 5}, // DAY_OF_WEEK_IN_MONTH
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET
{ -5000000, -5000000, 5000000, 5000000}, // YEAR_WOY
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL
{ -5000000, -5000000, 5000000, 5000000}, // EXTENDED_YEAR
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY
{/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH
};
static const double JULIAN_EPOCH = 1721425.5;
static const int32_t INDIAN_ERA_START = 78;
static const int32_t INDIAN_YEAR_START = 80;
int32_t IndianCalendar::handleGetLimit(UCalendarDateFields field, ELimitType limitType) const {
return LIMITS[field][limitType];
}
/*
* Determine whether the given gregorian year is a Leap year
*/
static UBool isGregorianLeap(int32_t year)
{
return ((year % 4) == 0) && (!(((year % 100) == 0) && ((year % 400) != 0)));
}
//----------------------------------------------------------------------
// Calendar framework
//----------------------------------------------------------------------
/*
* Return the length (in days) of the given month.
*
* @param eyear The year in Saka Era
* @param month The month(0-based) in Indian calendar
*/
int32_t IndianCalendar::handleGetMonthLength(int32_t eyear, int32_t month) const {
if (month < 0 || month > 11) {
eyear += ClockMath::floorDivide(month, 12, month);
}
if (isGregorianLeap(eyear + INDIAN_ERA_START) && month == 0) {
return 31;
}
if (month >= 1 && month <= 5) {
return 31;
}
return 30;
}
/*
* Return the number of days in the given Indian year
*
* @param eyear The year in Saka Era.
*/
int32_t IndianCalendar::handleGetYearLength(int32_t eyear) const {
return isGregorianLeap(eyear + INDIAN_ERA_START) ? 366 : 365;
}
/*
* Returns the Julian Day corresponding to gregorian date
*
* @param year The Gregorian year
* @param month The month in Gregorian Year
* @param date The date in Gregorian day in month
*/
static double gregorianToJD(int32_t year, int32_t month, int32_t date) {
double julianDay = (JULIAN_EPOCH - 1) +
(365 * (year - 1)) +
uprv_floor((year - 1) / 4) +
(-uprv_floor((year - 1) / 100)) +
uprv_floor((year - 1) / 400) +
uprv_floor((((367 * month) - 362) / 12) +
((month <= 2) ? 0 :
(isGregorianLeap(year) ? -1 : -2)
) +
date);
return julianDay;
}
/*
* Returns the Gregorian Date corresponding to a given Julian Day
* @param jd The Julian Day
*/
static int32_t* jdToGregorian(double jd, int32_t gregorianDate[3]) {
double wjd, depoch, quadricent, dqc, cent, dcent, quad, dquad, yindex, yearday, leapadj;
int32_t year, month, day;
wjd = uprv_floor(jd - 0.5) + 0.5;
depoch = wjd - JULIAN_EPOCH;
quadricent = uprv_floor(depoch / 146097);
dqc = (int32_t)uprv_floor(depoch) % 146097;
cent = uprv_floor(dqc / 36524);
dcent = (int32_t)uprv_floor(dqc) % 36524;
quad = uprv_floor(dcent / 1461);
dquad = (int32_t)uprv_floor(dcent) % 1461;
yindex = uprv_floor(dquad / 365);
year = (int32_t)((quadricent * 400) + (cent * 100) + (quad * 4) + yindex);
if (!((cent == 4) || (yindex == 4))) {
year++;
}
yearday = wjd - gregorianToJD(year, 1, 1);
leapadj = ((wjd < gregorianToJD(year, 3, 1)) ? 0
:
(isGregorianLeap(year) ? 1 : 2)
);
month = (int32_t)uprv_floor((((yearday + leapadj) * 12) + 373) / 367);
day = (int32_t)(wjd - gregorianToJD(year, month, 1)) + 1;
gregorianDate[0] = year;
gregorianDate[1] = month;
gregorianDate[2] = day;
return gregorianDate;
}
//-------------------------------------------------------------------------
// Functions for converting from field values to milliseconds....
//-------------------------------------------------------------------------
static double IndianToJD(int32_t year, int32_t month, int32_t date) {
int32_t leapMonth, gyear, m;
double start, jd;
gyear = year + INDIAN_ERA_START;
if(isGregorianLeap(gyear)) {
leapMonth = 31;
start = gregorianToJD(gyear, 3, 21);
}
else {
leapMonth = 30;
start = gregorianToJD(gyear, 3, 22);
}
if (month == 1) {
jd = start + (date - 1);
} else {
jd = start + leapMonth;
m = month - 2;
//m = Math.min(m, 5);
if (m > 5) {
m = 5;
}
jd += m * 31;
if (month >= 8) {
m = month - 7;
jd += m * 30;
}
jd += date - 1;
}
return jd;
}
/*
* Return JD of start of given month/year of Indian Calendar
* @param eyear The year in Indian Calendar measured from Saka Era (78 AD).
* @param month The month in Indian calendar
*/
int32_t IndianCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, UBool /* useMonth */ ) const {
//month is 0 based; converting it to 1-based
int32_t imonth;
// If the month is out of range, adjust it into range, and adjust the extended eyar accordingly
if (month < 0 || month > 11) {
eyear += (int32_t)ClockMath::floorDivide(month, 12, month);
}
if(month == 12){
imonth = 1;
} else {
imonth = month + 1;
}
double jd = IndianToJD(eyear ,imonth, 1);
return (int32_t)jd;
}
//-------------------------------------------------------------------------
// Functions for converting from milliseconds to field values
//-------------------------------------------------------------------------
int32_t IndianCalendar::handleGetExtendedYear() {
int32_t year;
if (newerField(UCAL_EXTENDED_YEAR, UCAL_YEAR) == UCAL_EXTENDED_YEAR) {
year = internalGet(UCAL_EXTENDED_YEAR, 1); // Default to year 1
} else {
year = internalGet(UCAL_YEAR, 1); // Default to year 1
}
return year;
}
/*
* Override Calendar to compute several fields specific to the Indian
* calendar system. These are:
*
* <ul><li>ERA
* <li>YEAR
* <li>MONTH
* <li>DAY_OF_MONTH
* <li>EXTENDED_YEAR</ul>
*
* The DAY_OF_WEEK and DOW_LOCAL fields are already set when this
* method is called. The getGregorianXxx() methods return Gregorian
* calendar equivalents for the given Julian day.
*/
void IndianCalendar::handleComputeFields(int32_t julianDay, UErrorCode& /* status */) {
double jdAtStartOfGregYear;
int32_t leapMonth, IndianYear, yday, IndianMonth, IndianDayOfMonth, mday;
int32_t gregorianYear; // Stores gregorian date corresponding to Julian day;
int32_t gd[3];
gregorianYear = jdToGregorian(julianDay, gd)[0]; // Gregorian date for Julian day
IndianYear = gregorianYear - INDIAN_ERA_START; // Year in Saka era
jdAtStartOfGregYear = gregorianToJD(gregorianYear, 1, 1); // JD at start of Gregorian year
yday = (int32_t)(julianDay - jdAtStartOfGregYear); // Day number in Gregorian year (starting from 0)
if (yday < INDIAN_YEAR_START) {
// Day is at the end of the preceding Saka year
IndianYear -= 1;
leapMonth = isGregorianLeap(gregorianYear - 1) ? 31 : 30; // Days in leapMonth this year, previous Gregorian year
yday += leapMonth + (31 * 5) + (30 * 3) + 10;
} else {
leapMonth = isGregorianLeap(gregorianYear) ? 31 : 30; // Days in leapMonth this year
yday -= INDIAN_YEAR_START;
}
if (yday < leapMonth) {
IndianMonth = 0;
IndianDayOfMonth = yday + 1;
} else {
mday = yday - leapMonth;
if (mday < (31 * 5)) {
IndianMonth = (int32_t)uprv_floor(mday / 31) + 1;
IndianDayOfMonth = (mday % 31) + 1;
} else {
mday -= 31 * 5;
IndianMonth = (int32_t)uprv_floor(mday / 30) + 6;
IndianDayOfMonth = (mday % 30) + 1;
}
}
internalSet(UCAL_ERA, 0);
internalSet(UCAL_EXTENDED_YEAR, IndianYear);
internalSet(UCAL_YEAR, IndianYear);
internalSet(UCAL_MONTH, IndianMonth);
internalSet(UCAL_DAY_OF_MONTH, IndianDayOfMonth);
internalSet(UCAL_DAY_OF_YEAR, yday + 1); // yday is 0-based
}
UBool
IndianCalendar::inDaylightTime(UErrorCode& status) const
{
// copied from GregorianCalendar
if (U_FAILURE(status) || !getTimeZone().useDaylightTime()) {
return FALSE;
}
// Force an update of the state of the Calendar.
((IndianCalendar*)this)->complete(status); // cast away const
return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FALSE);
}
// default century
const UDate IndianCalendar::fgSystemDefaultCentury = DBL_MIN;
const int32_t IndianCalendar::fgSystemDefaultCenturyYear = -1;
UDate IndianCalendar::fgSystemDefaultCenturyStart = DBL_MIN;
int32_t IndianCalendar::fgSystemDefaultCenturyStartYear = -1;
UBool IndianCalendar::haveDefaultCentury() const
{
return TRUE;
}
UDate IndianCalendar::defaultCenturyStart() const
{
return internalGetDefaultCenturyStart();
}
int32_t IndianCalendar::defaultCenturyStartYear() const
{
return internalGetDefaultCenturyStartYear();
}
UDate
IndianCalendar::internalGetDefaultCenturyStart() const
{
// lazy-evaluate systemDefaultCenturyStart
UBool needsUpdate;
{
Mutex m;
needsUpdate = (fgSystemDefaultCenturyStart == fgSystemDefaultCentury);
}
if (needsUpdate) {
initializeSystemDefaultCentury();
}
// use defaultCenturyStart unless it's the flag value;
// then use systemDefaultCenturyStart
return fgSystemDefaultCenturyStart;
}
int32_t
IndianCalendar::internalGetDefaultCenturyStartYear() const
{
// lazy-evaluate systemDefaultCenturyStartYear
UBool needsUpdate;
{
Mutex m;
needsUpdate = (fgSystemDefaultCenturyStart == fgSystemDefaultCentury);
}
if (needsUpdate) {
initializeSystemDefaultCentury();
}
// use defaultCenturyStart unless it's the flag value;
// then use systemDefaultCenturyStartYear
return fgSystemDefaultCenturyStartYear;
}
void
IndianCalendar::initializeSystemDefaultCentury()
{
// initialize systemDefaultCentury and systemDefaultCenturyYear based
// on the current time. They'll be set to 80 years before
// the current time.
// No point in locking as it should be idempotent.
if (fgSystemDefaultCenturyStart == fgSystemDefaultCentury) {
UErrorCode status = U_ZERO_ERROR;
IndianCalendar calendar(Locale("@calendar=Indian"),status);
if (U_SUCCESS(status)) {
calendar.setTime(Calendar::getNow(), status);
calendar.add(UCAL_YEAR, -80, status);
UDate newStart = calendar.getTime(status);
int32_t newYear = calendar.get(UCAL_YEAR, status);
{
Mutex m;
fgSystemDefaultCenturyStart = newStart;
fgSystemDefaultCenturyStartYear = newYear;
}
}
// We have no recourse upon failure unless we want to propagate the failure
// out.
}
}
UOBJECT_DEFINE_RTTI_IMPLEMENTATION(IndianCalendar)
U_NAMESPACE_END
#endif