// Copyright 2014 The Chromium OS Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Internal implementation of brillo::Any class.
#ifndef LIBBRILLO_BRILLO_ANY_INTERNAL_IMPL_H_
#define LIBBRILLO_BRILLO_ANY_INTERNAL_IMPL_H_
#include <type_traits>
#include <typeinfo>
#include <utility>
#include <base/logging.h>
#include <brillo/dbus/data_serialization.h>
#include <brillo/type_name_undecorate.h>
namespace brillo {
namespace internal_details {
// An extension to std::is_convertible to allow conversion from an enum to
// an integral type which std::is_convertible does not indicate as supported.
template <typename From, typename To>
struct IsConvertible
: public std::integral_constant<
bool,
std::is_convertible<From, To>::value ||
(std::is_enum<From>::value && std::is_integral<To>::value)> {};
// TryConvert is a helper function that does a safe compile-time conditional
// type cast between data types that may not be always convertible.
// From and To are the source and destination types.
// The function returns true if conversion was possible/successful.
template <typename From, typename To>
inline typename std::enable_if<IsConvertible<From, To>::value, bool>::type
TryConvert(const From& in, To* out) {
*out = static_cast<To>(in);
return true;
}
template <typename From, typename To>
inline typename std::enable_if<!IsConvertible<From, To>::value, bool>::type
TryConvert(const From& /* in */, To* /* out */) {
return false;
}
//////////////////////////////////////////////////////////////////////////////
// Provide a way to compare values of unspecified types without compiler errors
// when no operator==() is provided for a given type. This is important to
// allow Any class to have operator==(), yet still allowing arbitrary types
// (not necessarily comparable) to be placed inside Any without resulting in
// compile-time error.
//
// We achieve this in two ways. First, we provide a IsEqualityComparable<T>
// class that can be used in compile-time conditions to determine if there is
// operator==() defined that takes values of type T (or which can be implicitly
// converted to type T). Secondly, this allows us to specialize a helper
// compare function EqCompare<T>(v1, v2) to use operator==() for types that
// are comparable, and just return false for those that are not.
//
// IsEqualityComparableHelper<T> is a helper class for implementing an
// an STL-compatible IsEqualityComparable<T> containing a Boolean member |value|
// which evaluates to true for comparable types and false otherwise.
template<typename T>
struct IsEqualityComparableHelper {
struct IntWrapper {
// A special structure that provides a constructor that takes an int.
// This way, an int argument passed to a function will be favored over
// IntWrapper when both overloads are provided.
// Also this constructor must NOT be explicit.
// NOLINTNEXTLINE(runtime/explicit)
IntWrapper(int /* dummy */) {} // do nothing
};
// Here is an obscure trick to determine if a type U has operator==().
// We are providing two function prototypes for TriggerFunction. One that
// takes an argument of type IntWrapper (which is implicitly convertible from
// an int), and returns an std::false_type. This is a fall-back mechanism.
template<typename U>
static std::false_type TriggerFunction(IntWrapper dummy);
// The second overload of TriggerFunction takes an int (explicitly) and
// returns std::true_type. If both overloads are available, this one will be
// chosen when referencing it as TriggerFunction(0), since it is a better
// (more specific) match.
//
// However this overload is available only for types that support operator==.
// This is achieved by employing SFINAE mechanism inside a template function
// overload that refers to operator==() for two values of types U&. This is
// used inside decltype(), so no actual code is executed. If the types
// are not comparable, reference to "==" would fail and the compiler will
// simply ignore this overload due to SFIANE.
//
// The final little trick used here is the reliance on operator comma inside
// the decltype() expression. The result of the expression is always
// std::true_type(). The expression on the left of comma is just evaluated and
// discarded. If it evaluates successfully (i.e. the type has operator==), the
// return value of the function is set to be std::true_value. If it fails,
// the whole function prototype is discarded and is not available in the
// IsEqualityComparableHelper<T> class.
//
// Here we use std::declval<U&>() to make sure we have operator==() that takes
// lvalue references to type U which is not necessarily default-constructible.
template<typename U>
static decltype((std::declval<U&>() == std::declval<U&>()), std::true_type())
TriggerFunction(int dummy);
// Finally, use the return type of the overload of TriggerFunction that
// matches the argument (int) to be aliased to type |type|. If T is
// comparable, there will be two overloads and the more specific (int) will
// be chosen which returns std::true_value. If the type is non-comparable,
// there will be only one version of TriggerFunction available which
// returns std::false_value.
using type = decltype(TriggerFunction<T>(0));
};
// IsEqualityComparable<T> is simply a class that derives from either
// std::true_value, if type T is comparable, or from std::false_value, if the
// type is non-comparable. We just use |type| alias from
// IsEqualityComparableHelper<T> as the base class.
template<typename T>
struct IsEqualityComparable : IsEqualityComparableHelper<T>::type {};
// EqCompare() overload for non-comparable types. Always returns false.
template<typename T>
inline typename std::enable_if<!IsEqualityComparable<T>::value, bool>::type
EqCompare(const T& /* v1 */, const T& /* v2 */) {
return false;
}
// EqCompare overload for comparable types. Calls operator==(v1, v2) to compare.
template<typename T>
inline typename std::enable_if<IsEqualityComparable<T>::value, bool>::type
EqCompare(const T& v1, const T& v2) {
return (v1 == v2);
}
//////////////////////////////////////////////////////////////////////////////
class Buffer; // Forward declaration of data buffer container.
// Abstract base class for contained variant data.
struct Data {
virtual ~Data() {}
// Returns the type tag (name) for the contained data.
virtual const char* GetTypeTag() const = 0;
// Copies the contained data to the output |buffer|.
virtual void CopyTo(Buffer* buffer) const = 0;
// Moves the contained data to the output |buffer|.
virtual void MoveTo(Buffer* buffer) = 0;
// Checks if the contained data is an integer type (not necessarily an 'int').
virtual bool IsConvertibleToInteger() const = 0;
// Gets the contained integral value as an integer.
virtual intmax_t GetAsInteger() const = 0;
// Writes the contained value to the D-Bus message buffer.
virtual void AppendToDBusMessage(dbus::MessageWriter* writer) const = 0;
// Compares if the two data containers have objects of the same value.
virtual bool CompareEqual(const Data* other_data) const = 0;
};
// Concrete implementation of variant data of type T.
template<typename T>
struct TypedData : public Data {
explicit TypedData(const T& value) : value_(value) {}
// NOLINTNEXTLINE(build/c++11)
explicit TypedData(T&& value) : value_(std::move(value)) {}
const char* GetTypeTag() const override { return brillo::GetTypeTag<T>(); }
void CopyTo(Buffer* buffer) const override;
void MoveTo(Buffer* buffer) override;
bool IsConvertibleToInteger() const override {
return std::is_integral<T>::value || std::is_enum<T>::value;
}
intmax_t GetAsInteger() const override {
intmax_t int_val = 0;
bool converted = TryConvert(value_, &int_val);
CHECK(converted) << "Unable to convert value of type '"
<< GetUndecoratedTypeName<T>() << "' to integer";
return int_val;
}
template<typename U>
static typename std::enable_if<dbus_utils::IsTypeSupported<U>::value>::type
AppendValueHelper(dbus::MessageWriter* writer, const U& value) {
brillo::dbus_utils::AppendValueToWriterAsVariant(writer, value);
}
template<typename U>
static typename std::enable_if<!dbus_utils::IsTypeSupported<U>::value>::type
AppendValueHelper(dbus::MessageWriter* /* writer */, const U& /* value */) {
LOG(FATAL) << "Type '" << GetUndecoratedTypeName<U>()
<< "' is not supported by D-Bus";
}
void AppendToDBusMessage(dbus::MessageWriter* writer) const override {
return AppendValueHelper(writer, value_);
}
bool CompareEqual(const Data* other_data) const override {
return EqCompare<T>(value_,
static_cast<const TypedData<T>*>(other_data)->value_);
}
// Special methods to copy/move data of the same type
// without reallocating the buffer.
void FastAssign(const T& source) { value_ = source; }
// NOLINTNEXTLINE(build/c++11)
void FastAssign(T&& source) { value_ = std::move(source); }
T value_;
};
// Buffer class that stores the contained variant data.
// To improve performance and reduce memory fragmentation, small variants
// are stored in pre-allocated memory buffers that are part of the Any class.
// If the memory requirements are larger than the set limit or the type is
// non-trivially copyable, then the contained class is allocated in a separate
// memory block and the pointer to that memory is contained within this memory
// buffer class.
class Buffer final {
public:
enum StorageType { kExternal, kContained };
Buffer() : external_ptr_(nullptr), storage_(kExternal) {}
~Buffer() { Clear(); }
Buffer(const Buffer& rhs) : Buffer() { rhs.CopyTo(this); }
// NOLINTNEXTLINE(build/c++11)
Buffer(Buffer&& rhs) : Buffer() { rhs.MoveTo(this); }
Buffer& operator=(const Buffer& rhs) {
rhs.CopyTo(this);
return *this;
}
// NOLINTNEXTLINE(build/c++11)
Buffer& operator=(Buffer&& rhs) {
rhs.MoveTo(this);
return *this;
}
// Returns the underlying pointer to contained data. Uses either the pointer
// or the raw data depending on |storage_| type.
inline Data* GetDataPtr() {
return (storage_ == kExternal) ? external_ptr_
: reinterpret_cast<Data*>(contained_buffer_);
}
inline const Data* GetDataPtr() const {
return (storage_ == kExternal)
? external_ptr_
: reinterpret_cast<const Data*>(contained_buffer_);
}
// Destroys the contained object (and frees memory if needed).
void Clear() {
Data* data = GetDataPtr();
if (storage_ == kExternal) {
delete data;
} else {
// Call the destructor manually, since the object was constructed inline
// in the pre-allocated buffer. We still need to call the destructor
// to free any associated resources, but we can't call delete |data| here.
data->~Data();
}
external_ptr_ = nullptr;
storage_ = kExternal;
}
// Stores a value of type T.
template<typename T>
void Assign(T&& value) { // NOLINT(build/c++11)
using Type = typename std::decay<T>::type;
using DataType = TypedData<Type>;
Data* ptr = GetDataPtr();
if (ptr && strcmp(ptr->GetTypeTag(), GetTypeTag<Type>()) == 0) {
// We assign the data to the variant container, which already
// has the data of the same type. Do fast copy/move with no memory
// reallocation.
DataType* typed_ptr = static_cast<DataType*>(ptr);
// NOLINTNEXTLINE(build/c++11)
typed_ptr->FastAssign(std::forward<T>(value));
} else {
Clear();
// TODO(avakulenko): [see crbug.com/379833]
// Unfortunately, GCC doesn't support std::is_trivially_copyable<T> yet,
// so using std::is_trivial instead, which is a bit more restrictive.
// Once GCC has support for is_trivially_copyable, update the following.
if (!std::is_trivial<Type>::value ||
sizeof(DataType) > sizeof(contained_buffer_)) {
// If it is too big or not trivially copyable, allocate it separately.
// NOLINTNEXTLINE(build/c++11)
external_ptr_ = new DataType(std::forward<T>(value));
storage_ = kExternal;
} else {
// Otherwise just use the pre-allocated buffer.
DataType* address = reinterpret_cast<DataType*>(contained_buffer_);
// Make sure we still call the copy/move constructor.
// Call the constructor manually by using placement 'new'.
// NOLINTNEXTLINE(build/c++11)
new (address) DataType(std::forward<T>(value));
storage_ = kContained;
}
}
}
// Helper methods to retrieve a reference to contained data.
// These assume that type checking has already been performed by Any
// so the type cast is valid and will succeed.
template<typename T>
const T& GetData() const {
using DataType = internal_details::TypedData<typename std::decay<T>::type>;
return static_cast<const DataType*>(GetDataPtr())->value_;
}
template<typename T>
T& GetData() {
using DataType = internal_details::TypedData<typename std::decay<T>::type>;
return static_cast<DataType*>(GetDataPtr())->value_;
}
// Returns true if the buffer has no contained data.
bool IsEmpty() const {
return (storage_ == kExternal && external_ptr_ == nullptr);
}
// Copies the data from the current buffer into the |destination|.
void CopyTo(Buffer* destination) const {
if (IsEmpty()) {
destination->Clear();
} else {
GetDataPtr()->CopyTo(destination);
}
}
// Moves the data from the current buffer into the |destination|.
void MoveTo(Buffer* destination) {
if (IsEmpty()) {
destination->Clear();
} else {
if (storage_ == kExternal) {
destination->Clear();
destination->storage_ = kExternal;
destination->external_ptr_ = external_ptr_;
external_ptr_ = nullptr;
} else {
GetDataPtr()->MoveTo(destination);
}
}
}
union {
// |external_ptr_| is a pointer to a larger object allocated in
// a separate memory block.
Data* external_ptr_;
// |contained_buffer_| is a pre-allocated buffer for smaller/simple objects.
// Pre-allocate enough memory to store objects as big as "double".
unsigned char contained_buffer_[sizeof(TypedData<double>)];
};
// Depending on a value of |storage_|, either |external_ptr_| or
// |contained_buffer_| above is used to get a pointer to memory containing
// the variant data.
StorageType storage_; // Declare after the union to eliminate member padding.
};
template <typename T>
void TypedData<T>::CopyTo(Buffer* buffer) const {
buffer->Assign(value_);
}
template <typename T>
void TypedData<T>::MoveTo(Buffer* buffer) {
buffer->Assign(std::move(value_));
}
} // namespace internal_details
} // namespace brillo
#endif // LIBBRILLO_BRILLO_ANY_INTERNAL_IMPL_H_