C++程序  |  394行  |  13.51 KB

#include "btMultiBodyConstraint.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "btMultiBodyPoint2Point.h"				//for testing (BTMBP2PCONSTRAINT_BLOCK_ANGULAR_MOTION_TEST macro)



btMultiBodyConstraint::btMultiBodyConstraint(btMultiBody* bodyA,btMultiBody* bodyB,int linkA, int linkB, int numRows, bool isUnilateral)
	:m_bodyA(bodyA),
	m_bodyB(bodyB),
	m_linkA(linkA),
	m_linkB(linkB),
	m_numRows(numRows),
	m_jacSizeA(0),
	m_jacSizeBoth(0),
	m_isUnilateral(isUnilateral),
	m_numDofsFinalized(-1),
	m_maxAppliedImpulse(100)
{

}

void btMultiBodyConstraint::updateJacobianSizes()
{
    if(m_bodyA)
	{
		if(m_bodyA->isMultiDof())
			m_jacSizeA = (6 + m_bodyA->getNumDofs());
		else
			m_jacSizeA = (6 + m_bodyA->getNumLinks());
	}

	if(m_bodyB)
	{
		if(m_bodyB->isMultiDof())
			m_jacSizeBoth = m_jacSizeA + 6 + m_bodyB->getNumDofs();
		else
			m_jacSizeBoth = m_jacSizeA + 6 + m_bodyB->getNumLinks();
	}
	else
		m_jacSizeBoth = m_jacSizeA;
}

void btMultiBodyConstraint::allocateJacobiansMultiDof()
{
	updateJacobianSizes();

	m_posOffset = ((1 + m_jacSizeBoth)*m_numRows);
	m_data.resize((2 + m_jacSizeBoth) * m_numRows);
}

btMultiBodyConstraint::~btMultiBodyConstraint()
{
}

void	btMultiBodyConstraint::applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
{
	for (int i = 0; i < ndof; ++i)
		data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
}

btScalar btMultiBodyConstraint::fillMultiBodyConstraint(	btMultiBodySolverConstraint& solverConstraint,
															btMultiBodyJacobianData& data,
															btScalar* jacOrgA, btScalar* jacOrgB,
															const btVector3& contactNormalOnB,
															const btVector3& posAworld, const btVector3& posBworld,
															btScalar posError,
															const btContactSolverInfo& infoGlobal,
															btScalar lowerLimit, btScalar upperLimit,
															btScalar relaxation,
															bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
{


	solverConstraint.m_multiBodyA = m_bodyA;
	solverConstraint.m_multiBodyB = m_bodyB;
	solverConstraint.m_linkA = m_linkA;
	solverConstraint.m_linkB = m_linkB;

	btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
	btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;

	btSolverBody* bodyA = multiBodyA ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdA);
	btSolverBody* bodyB = multiBodyB ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdB);

	btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
	btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;

	btVector3 rel_pos1, rel_pos2;				//these two used to be inited to posAworld and posBworld (respectively) but it does not seem necessary
	if (bodyA)
		rel_pos1 = posAworld - bodyA->getWorldTransform().getOrigin();
	if (bodyB)
		rel_pos2 = posBworld - bodyB->getWorldTransform().getOrigin();

	if (multiBodyA)
	{
		if (solverConstraint.m_linkA<0)
		{
			rel_pos1 = posAworld - multiBodyA->getBasePos();
		} else
		{
			rel_pos1 = posAworld - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
		}

		const int ndofA  = (multiBodyA->isMultiDof() ? multiBodyA->getNumDofs() : multiBodyA->getNumLinks()) + 6;

		solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();

		if (solverConstraint.m_deltaVelAindex <0)
		{
			solverConstraint.m_deltaVelAindex = data.m_deltaVelocities.size();
			multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
			data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofA);
		} else
		{
			btAssert(data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
		}

		//determine jacobian of this 1D constraint in terms of multibodyA's degrees of freedom
		//resize..
		solverConstraint.m_jacAindex = data.m_jacobians.size();
		data.m_jacobians.resize(data.m_jacobians.size()+ndofA);
		//copy/determine
		if(jacOrgA)
		{
			for (int i=0;i<ndofA;i++)
				data.m_jacobians[solverConstraint.m_jacAindex+i] = jacOrgA[i];
		}
		else
		{
			btScalar* jac1=&data.m_jacobians[solverConstraint.m_jacAindex];
			if(multiBodyA->isMultiDof())
				multiBodyA->fillContactJacobianMultiDof(solverConstraint.m_linkA, posAworld, contactNormalOnB, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
			else
				multiBodyA->fillContactJacobian(solverConstraint.m_linkA, posAworld, contactNormalOnB, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
		}

		//determine the velocity response of multibodyA to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
		//resize..
		data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofA);		//=> each constraint row has the constrained tree dofs allocated in m_deltaVelocitiesUnitImpulse
		btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
		btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
		//determine..
		if(multiBodyA->isMultiDof())
			multiBodyA->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacAindex],delta,data.scratch_r, data.scratch_v);
		else
			multiBodyA->calcAccelerationDeltas(&data.m_jacobians[solverConstraint.m_jacAindex],delta,data.scratch_r, data.scratch_v);

		btVector3 torqueAxis0 = rel_pos1.cross(contactNormalOnB);
		solverConstraint.m_relpos1CrossNormal = torqueAxis0;
		solverConstraint.m_contactNormal1 = contactNormalOnB;
	}
	else //if(rb0)
	{
		btVector3 torqueAxis0 = rel_pos1.cross(contactNormalOnB);
		solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
		solverConstraint.m_relpos1CrossNormal = torqueAxis0;
		solverConstraint.m_contactNormal1 = contactNormalOnB;
	}

	if (multiBodyB)
	{
		if (solverConstraint.m_linkB<0)
		{
			rel_pos2 = posBworld - multiBodyB->getBasePos();
		} else
		{
			rel_pos2 = posBworld - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
		}

		const int ndofB  = (multiBodyB->isMultiDof() ? multiBodyB->getNumDofs() : multiBodyB->getNumLinks()) + 6;

		solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
		if (solverConstraint.m_deltaVelBindex <0)
		{
			solverConstraint.m_deltaVelBindex = data.m_deltaVelocities.size();
			multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
			data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofB);
		}

		//determine jacobian of this 1D constraint in terms of multibodyB's degrees of freedom
		//resize..
		solverConstraint.m_jacBindex = data.m_jacobians.size();
		data.m_jacobians.resize(data.m_jacobians.size()+ndofB);
		//copy/determine..
		if(jacOrgB)
		{
			for (int i=0;i<ndofB;i++)
				data.m_jacobians[solverConstraint.m_jacBindex+i] = jacOrgB[i];
		}
		else
		{
			if(multiBodyB->isMultiDof())
				multiBodyB->fillContactJacobianMultiDof(solverConstraint.m_linkB, posBworld, -contactNormalOnB, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
			else
				multiBodyB->fillContactJacobian(solverConstraint.m_linkB, posBworld, -contactNormalOnB, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
		}

		//determine velocity response of multibodyB to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
		//resize..
		data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
		btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
		btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
		//determine..
		if(multiBodyB->isMultiDof())
			multiBodyB->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacBindex],delta,data.scratch_r, data.scratch_v);
		else
			multiBodyB->calcAccelerationDeltas(&data.m_jacobians[solverConstraint.m_jacBindex],delta,data.scratch_r, data.scratch_v);

		btVector3 torqueAxis1 = rel_pos2.cross(contactNormalOnB);
		solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
		solverConstraint.m_contactNormal2 = -contactNormalOnB;

	}
	else //if(rb1)
	{
		btVector3 torqueAxis1 = rel_pos2.cross(contactNormalOnB);
		solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
		solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
		solverConstraint.m_contactNormal2 = -contactNormalOnB;
	}
	{

		btVector3 vec;
		btScalar denom0 = 0.f;
		btScalar denom1 = 0.f;
		btScalar* jacB = 0;
		btScalar* jacA = 0;
		btScalar* deltaVelA = 0;
		btScalar* deltaVelB = 0;
		int ndofA  = 0;
		//determine the "effective mass" of the constrained multibodyA with respect to this 1D constraint (i.e. 1/A[i,i])
		if (multiBodyA)
		{
			ndofA = (multiBodyA->isMultiDof() ? multiBodyA->getNumDofs() : multiBodyA->getNumLinks()) + 6;
			jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
			deltaVelA = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
			for (int i = 0; i < ndofA; ++i)
			{
				btScalar j = jacA[i] ;
				btScalar l = deltaVelA[i];
				denom0 += j*l;
			}
		}
		else if(rb0)
		{
			vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
			denom0 = rb0->getInvMass() + contactNormalOnB.dot(vec);
		}
		//
		if (multiBodyB)
		{
			const int ndofB = (multiBodyB->isMultiDof() ? multiBodyB->getNumDofs() : multiBodyB->getNumLinks()) + 6;
			jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
			deltaVelB = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
			for (int i = 0; i < ndofB; ++i)
			{
				btScalar j = jacB[i] ;
				btScalar l = deltaVelB[i];
				denom1 += j*l;
			}

		}
		else if(rb1)
		{
			vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
			denom1 = rb1->getInvMass() + contactNormalOnB.dot(vec);
		}

		//
		btScalar d = denom0+denom1;
		if (d>SIMD_EPSILON)
		{
			solverConstraint.m_jacDiagABInv = relaxation/(d);
		}
		else
		{
		//disable the constraint row to handle singularity/redundant constraint
			solverConstraint.m_jacDiagABInv  = 0.f;
		}
	}


	//compute rhs and remaining solverConstraint fields
	btScalar penetration = isFriction? 0 : posError+infoGlobal.m_linearSlop;

	btScalar rel_vel = 0.f;
	int ndofA  = 0;
	int ndofB  = 0;
	{
		btVector3 vel1,vel2;
		if (multiBodyA)
		{
			ndofA = (multiBodyA->isMultiDof() ? multiBodyA->getNumDofs() : multiBodyA->getNumLinks()) + 6;
			btScalar* jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
			for (int i = 0; i < ndofA ; ++i)
				rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
		}
		else if(rb0)
		{
			rel_vel += rb0->getVelocityInLocalPoint(rel_pos1).dot(solverConstraint.m_contactNormal1);
		}
		if (multiBodyB)
		{
			ndofB = (multiBodyB->isMultiDof() ? multiBodyB->getNumDofs() : multiBodyB->getNumLinks()) + 6;
			btScalar* jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
			for (int i = 0; i < ndofB ; ++i)
				rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];

		}
		else if(rb1)
		{
			rel_vel += rb1->getVelocityInLocalPoint(rel_pos2).dot(solverConstraint.m_contactNormal2);
		}

		solverConstraint.m_friction = 0.f;//cp.m_combinedFriction;
	}


	///warm starting (or zero if disabled)
	/*
	if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
	{
		solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;

		if (solverConstraint.m_appliedImpulse)
		{
			if (multiBodyA)
			{
				btScalar impulse = solverConstraint.m_appliedImpulse;
				btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
				multiBodyA->applyDeltaVee(deltaV,impulse);
				applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
			} else
			{
				if (rb0)
					bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
			}
			if (multiBodyB)
			{
				btScalar impulse = solverConstraint.m_appliedImpulse;
				btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
				multiBodyB->applyDeltaVee(deltaV,impulse);
				applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
			} else
			{
				if (rb1)
					bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
			}
		}
	} else
	*/

	solverConstraint.m_appliedImpulse = 0.f;
	solverConstraint.m_appliedPushImpulse = 0.f;

	{

		btScalar positionalError = 0.f;
		btScalar	velocityError = desiredVelocity - rel_vel;// * damping;


		btScalar erp = infoGlobal.m_erp2;
		if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
		{
			erp = infoGlobal.m_erp;
		}

		positionalError = -penetration * erp/infoGlobal.m_timeStep;

		btScalar  penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
		btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;

		if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
		{
			//combine position and velocity into rhs
			solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
			solverConstraint.m_rhsPenetration = 0.f;

		} else
		{
			//split position and velocity into rhs and m_rhsPenetration
			solverConstraint.m_rhs = velocityImpulse;
			solverConstraint.m_rhsPenetration = penetrationImpulse;
		}

		solverConstraint.m_cfm = 0.f;
		solverConstraint.m_lowerLimit = lowerLimit;
		solverConstraint.m_upperLimit = upperLimit;
	}

	return rel_vel;

}