HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Nougat 7.1
|
7.1.1_r28
下载
查看原文件
收藏
根目录
external
opencv3
3rdparty
openexr
Imath
ImathMatrixAlgo.h
/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMATHMATRIXALGO_H #define INCLUDED_IMATHMATRIXALGO_H //------------------------------------------------------------------------- // // This file contains algorithms applied to or in conjunction with // transformation matrices (Imath::Matrix33 and Imath::Matrix44). // The assumption made is that these functions are called much less // often than the basic point functions or these functions require // more support classes. // // This file also defines a few predefined constant matrices. // //------------------------------------------------------------------------- #include "ImathMatrix.h" #include "ImathQuat.h" #include "ImathEuler.h" #include "ImathExc.h" #include "ImathVec.h" #include "ImathLimits.h" #include
#ifdef OPENEXR_DLL #ifdef IMATH_EXPORTS #define IMATH_EXPORT_CONST extern __declspec(dllexport) #else #define IMATH_EXPORT_CONST extern __declspec(dllimport) #endif #else #define IMATH_EXPORT_CONST extern const #endif namespace Imath { //------------------ // Identity matrices //------------------ IMATH_EXPORT_CONST M33f identity33f; IMATH_EXPORT_CONST M44f identity44f; IMATH_EXPORT_CONST M33d identity33d; IMATH_EXPORT_CONST M44d identity44d; //---------------------------------------------------------------------- // Extract scale, shear, rotation, and translation values from a matrix: // // Notes: // // This implementation follows the technique described in the paper by // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a // Matrix into Simple Transformations", p. 320. // // - Some of the functions below have an optional exc parameter // that determines the functions' behavior when the matrix' // scaling is very close to zero: // // If exc is true, the functions throw an Imath::ZeroScale exception. // // If exc is false: // // extractScaling (m, s) returns false, s is invalid // sansScaling (m) returns m // removeScaling (m) returns false, m is unchanged // sansScalingAndShear (m) returns m // removeScalingAndShear (m) returns false, m is unchanged // extractAndRemoveScalingAndShear (m, s, h) // returns false, m is unchanged, // (sh) are invalid // checkForZeroScaleInRow () returns false // extractSHRT (m, s, h, r, t) returns false, (shrt) are invalid // // - Functions extractEuler(), extractEulerXYZ() and extractEulerZYX() // assume that the matrix does not include shear or non-uniform scaling, // but they do not examine the matrix to verify this assumption. // Matrices with shear or non-uniform scaling are likely to produce // meaningless results. Therefore, you should use the // removeScalingAndShear() routine, if necessary, prior to calling // extractEuler...() . // // - All functions assume that the matrix does not include perspective // transformation(s), but they do not examine the matrix to verify // this assumption. Matrices with perspective transformations are // likely to produce meaningless results. // //---------------------------------------------------------------------- // // Declarations for 4x4 matrix. // template
bool extractScaling (const Matrix44
&mat, Vec3
&scl, bool exc = true); template
Matrix44
sansScaling (const Matrix44
&mat, bool exc = true); template
bool removeScaling (Matrix44
&mat, bool exc = true); template
bool extractScalingAndShear (const Matrix44
&mat, Vec3
&scl, Vec3
&shr, bool exc = true); template
Matrix44
sansScalingAndShear (const Matrix44
&mat, bool exc = true); template
void sansScalingAndShear (Matrix44
&result, const Matrix44
&mat, bool exc = true); template
bool removeScalingAndShear (Matrix44
&mat, bool exc = true); template
bool extractAndRemoveScalingAndShear (Matrix44
&mat, Vec3
&scl, Vec3
&shr, bool exc = true); template
void extractEulerXYZ (const Matrix44
&mat, Vec3
&rot); template
void extractEulerZYX (const Matrix44
&mat, Vec3
&rot); template
Quat
extractQuat (const Matrix44
&mat); template
bool extractSHRT (const Matrix44
&mat, Vec3
&s, Vec3
&h, Vec3
&r, Vec3
&t, bool exc /*= true*/, typename Euler
::Order rOrder); template
bool extractSHRT (const Matrix44
&mat, Vec3
&s, Vec3
&h, Vec3
&r, Vec3
&t, bool exc = true); template
bool extractSHRT (const Matrix44
&mat, Vec3
&s, Vec3
&h, Euler
&r, Vec3
&t, bool exc = true); // // Internal utility function. // template
bool checkForZeroScaleInRow (const T &scl, const Vec3
&row, bool exc = true); template
Matrix44
outerProduct ( const Vec4
&a, const Vec4
&b); // // Returns a matrix that rotates "fromDirection" vector to "toDirection" // vector. // template
Matrix44
rotationMatrix (const Vec3
&fromDirection, const Vec3
&toDirection); // // Returns a matrix that rotates the "fromDir" vector // so that it points towards "toDir". You may also // specify that you want the up vector to be pointing // in a certain direction "upDir". // template
Matrix44
rotationMatrixWithUpDir (const Vec3
&fromDir, const Vec3
&toDir, const Vec3
&upDir); // // Constructs a matrix that rotates the z-axis so that it // points towards "targetDir". You must also specify // that you want the up vector to be pointing in a // certain direction "upDir". // // Notes: The following degenerate cases are handled: // (a) when the directions given by "toDir" and "upDir" // are parallel or opposite; // (the direction vectors must have a non-zero cross product) // (b) when any of the given direction vectors have zero length // template
void alignZAxisWithTargetDir (Matrix44
&result, Vec3
targetDir, Vec3
upDir); // Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis // If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis. // Inputs are : // -the position of the frame // -the x axis direction of the frame // -a normal to the y axis of the frame // Return is the orthonormal frame template
Matrix44
computeLocalFrame( const Vec3
& p, const Vec3
& xDir, const Vec3
& normal); // Add a translate/rotate/scale offset to an input frame // and put it in another frame of reference // Inputs are : // - input frame // - translate offset // - rotate offset in degrees // - scale offset // - frame of reference // Output is the offsetted frame template
Matrix44
addOffset( const Matrix44
& inMat, const Vec3
& tOffset, const Vec3
& rOffset, const Vec3
& sOffset, const Vec3
& ref); // Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B // Inputs are : // -keepRotateA : if true keep rotate from matrix A, use B otherwise // -keepScaleA : if true keep scale from matrix A, use B otherwise // -Matrix A // -Matrix B // Return Matrix A with tweaked rotation/scale template
Matrix44
computeRSMatrix( bool keepRotateA, bool keepScaleA, const Matrix44
& A, const Matrix44
& B); //---------------------------------------------------------------------- // // Declarations for 3x3 matrix. // template
bool extractScaling (const Matrix33
&mat, Vec2
&scl, bool exc = true); template
Matrix33
sansScaling (const Matrix33
&mat, bool exc = true); template
bool removeScaling (Matrix33
&mat, bool exc = true); template
bool extractScalingAndShear (const Matrix33
&mat, Vec2
&scl, T &h, bool exc = true); template
Matrix33
sansScalingAndShear (const Matrix33
&mat, bool exc = true); template
bool removeScalingAndShear (Matrix33
&mat, bool exc = true); template
bool extractAndRemoveScalingAndShear (Matrix33
&mat, Vec2
&scl, T &shr, bool exc = true); template
void extractEuler (const Matrix33
&mat, T &rot); template
bool extractSHRT (const Matrix33
&mat, Vec2
&s, T &h, T &r, Vec2
&t, bool exc = true); template
bool checkForZeroScaleInRow (const T &scl, const Vec2
&row, bool exc = true); template
Matrix33
outerProduct ( const Vec3
&a, const Vec3
&b); //----------------------------------------------------------------------------- // Implementation for 4x4 Matrix //------------------------------ template
bool extractScaling (const Matrix44
&mat, Vec3
&scl, bool exc) { Vec3
shr; Matrix44
M (mat); if (! extractAndRemoveScalingAndShear (M, scl, shr, exc)) return false; return true; } template
Matrix44
sansScaling (const Matrix44
&mat, bool exc) { Vec3
scl; Vec3
shr; Vec3
rot; Vec3
tran; if (! extractSHRT (mat, scl, shr, rot, tran, exc)) return mat; Matrix44
M; M.translate (tran); M.rotate (rot); M.shear (shr); return M; } template
bool removeScaling (Matrix44
&mat, bool exc) { Vec3
scl; Vec3
shr; Vec3
rot; Vec3
tran; if (! extractSHRT (mat, scl, shr, rot, tran, exc)) return false; mat.makeIdentity (); mat.translate (tran); mat.rotate (rot); mat.shear (shr); return true; } template
bool extractScalingAndShear (const Matrix44
&mat, Vec3
&scl, Vec3
&shr, bool exc) { Matrix44
M (mat); if (! extractAndRemoveScalingAndShear (M, scl, shr, exc)) return false; return true; } template
Matrix44
sansScalingAndShear (const Matrix44
&mat, bool exc) { Vec3
scl; Vec3
shr; Matrix44
M (mat); if (! extractAndRemoveScalingAndShear (M, scl, shr, exc)) return mat; return M; } template
void sansScalingAndShear (Matrix44
&result, const Matrix44
&mat, bool exc) { Vec3
scl; Vec3
shr; if (! extractAndRemoveScalingAndShear (result, scl, shr, exc)) result = mat; } template
bool removeScalingAndShear (Matrix44
&mat, bool exc) { Vec3
scl; Vec3
shr; if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc)) return false; return true; } template
bool extractAndRemoveScalingAndShear (Matrix44
&mat, Vec3
&scl, Vec3
&shr, bool exc) { // // This implementation follows the technique described in the paper by // Spencer W. Thomas in the Graphics Gems II article: "Decomposing a // Matrix into Simple Transformations", p. 320. // Vec3
row[3]; row[0] = Vec3
(mat[0][0], mat[0][1], mat[0][2]); row[1] = Vec3
(mat[1][0], mat[1][1], mat[1][2]); row[2] = Vec3
(mat[2][0], mat[2][1], mat[2][2]); T maxVal = 0; for (int i=0; i < 3; i++) for (int j=0; j < 3; j++) if (Imath::abs (row[i][j]) > maxVal) maxVal = Imath::abs (row[i][j]); // // We normalize the 3x3 matrix here. // It was noticed that this can improve numerical stability significantly, // especially when many of the upper 3x3 matrix's coefficients are very // close to zero; we correct for this step at the end by multiplying the // scaling factors by maxVal at the end (shear and rotation are not // affected by the normalization). if (maxVal != 0) { for (int i=0; i < 3; i++) if (! checkForZeroScaleInRow (maxVal, row[i], exc)) return false; else row[i] /= maxVal; } // Compute X scale factor. scl.x = row[0].length (); if (! checkForZeroScaleInRow (scl.x, row[0], exc)) return false; // Normalize first row. row[0] /= scl.x; // An XY shear factor will shear the X coord. as the Y coord. changes. // There are 6 combinations (XY, XZ, YZ, YX, ZX, ZY), although we only // extract the first 3 because we can effect the last 3 by shearing in // XY, XZ, YZ combined rotations and scales. // // shear matrix < 1, YX, ZX, 0, // XY, 1, ZY, 0, // XZ, YZ, 1, 0, // 0, 0, 0, 1 > // Compute XY shear factor and make 2nd row orthogonal to 1st. shr[0] = row[0].dot (row[1]); row[1] -= shr[0] * row[0]; // Now, compute Y scale. scl.y = row[1].length (); if (! checkForZeroScaleInRow (scl.y, row[1], exc)) return false; // Normalize 2nd row and correct the XY shear factor for Y scaling. row[1] /= scl.y; shr[0] /= scl.y; // Compute XZ and YZ shears, orthogonalize 3rd row. shr[1] = row[0].dot (row[2]); row[2] -= shr[1] * row[0]; shr[2] = row[1].dot (row[2]); row[2] -= shr[2] * row[1]; // Next, get Z scale. scl.z = row[2].length (); if (! checkForZeroScaleInRow (scl.z, row[2], exc)) return false; // Normalize 3rd row and correct the XZ and YZ shear factors for Z scaling. row[2] /= scl.z; shr[1] /= scl.z; shr[2] /= scl.z; // At this point, the upper 3x3 matrix in mat is orthonormal. // Check for a coordinate system flip. If the determinant // is less than zero, then negate the matrix and the scaling factors. if (row[0].dot (row[1].cross (row[2])) < 0) for (int i=0; i < 3; i++) { scl[i] *= -1; row[i] *= -1; } // Copy over the orthonormal rows into the returned matrix. // The upper 3x3 matrix in mat is now a rotation matrix. for (int i=0; i < 3; i++) { mat[i][0] = row[i][0]; mat[i][1] = row[i][1]; mat[i][2] = row[i][2]; } // Correct the scaling factors for the normalization step that we // performed above; shear and rotation are not affected by the // normalization. scl *= maxVal; return true; } template
void extractEulerXYZ (const Matrix44
&mat, Vec3
&rot) { // // Normalize the local x, y and z axes to remove scaling. // Vec3
i (mat[0][0], mat[0][1], mat[0][2]); Vec3
j (mat[1][0], mat[1][1], mat[1][2]); Vec3
k (mat[2][0], mat[2][1], mat[2][2]); i.normalize(); j.normalize(); k.normalize(); Matrix44
M (i[0], i[1], i[2], 0, j[0], j[1], j[2], 0, k[0], k[1], k[2], 0, 0, 0, 0, 1); // // Extract the first angle, rot.x. // rot.x = Math
::atan2 (M[1][2], M[2][2]); // // Remove the rot.x rotation from M, so that the remaining // rotation, N, is only around two axes, and gimbal lock // cannot occur. // Matrix44
N; N.rotate (Vec3
(-rot.x, 0, 0)); N = N * M; // // Extract the other two angles, rot.y and rot.z, from N. // T cy = Math
::sqrt (N[0][0]*N[0][0] + N[0][1]*N[0][1]); rot.y = Math
::atan2 (-N[0][2], cy); rot.z = Math
::atan2 (-N[1][0], N[1][1]); } template
void extractEulerZYX (const Matrix44
&mat, Vec3
&rot) { // // Normalize the local x, y and z axes to remove scaling. // Vec3
i (mat[0][0], mat[0][1], mat[0][2]); Vec3
j (mat[1][0], mat[1][1], mat[1][2]); Vec3
k (mat[2][0], mat[2][1], mat[2][2]); i.normalize(); j.normalize(); k.normalize(); Matrix44
M (i[0], i[1], i[2], 0, j[0], j[1], j[2], 0, k[0], k[1], k[2], 0, 0, 0, 0, 1); // // Extract the first angle, rot.x. // rot.x = -Math
::atan2 (M[1][0], M[0][0]); // // Remove the x rotation from M, so that the remaining // rotation, N, is only around two axes, and gimbal lock // cannot occur. // Matrix44
N; N.rotate (Vec3
(0, 0, -rot.x)); N = N * M; // // Extract the other two angles, rot.y and rot.z, from N. // T cy = Math
::sqrt (N[2][2]*N[2][2] + N[2][1]*N[2][1]); rot.y = -Math
::atan2 (-N[2][0], cy); rot.z = -Math
::atan2 (-N[1][2], N[1][1]); } template
Quat
extractQuat (const Matrix44
&mat) { Matrix44
rot; T tr, s; T q[4]; int i, j, k; Quat
quat; int nxt[3] = {1, 2, 0}; tr = mat[0][0] + mat[1][1] + mat[2][2]; // check the diagonal if (tr > 0.0) { s = Math
::sqrt (tr + T(1.0)); quat.r = s / T(2.0); s = T(0.5) / s; quat.v.x = (mat[1][2] - mat[2][1]) * s; quat.v.y = (mat[2][0] - mat[0][2]) * s; quat.v.z = (mat[0][1] - mat[1][0]) * s; } else { // diagonal is negative i = 0; if (mat[1][1] > mat[0][0]) i=1; if (mat[2][2] > mat[i][i]) i=2; j = nxt[i]; k = nxt[j]; s = Math
::sqrt ((mat[i][i] - (mat[j][j] + mat[k][k])) + T(1.0)); q[i] = s * T(0.5); if (s != T(0.0)) s = T(0.5) / s; q[3] = (mat[j][k] - mat[k][j]) * s; q[j] = (mat[i][j] + mat[j][i]) * s; q[k] = (mat[i][k] + mat[k][i]) * s; quat.v.x = q[0]; quat.v.y = q[1]; quat.v.z = q[2]; quat.r = q[3]; } return quat; } template
bool extractSHRT (const Matrix44
&mat, Vec3
&s, Vec3
&h, Vec3
&r, Vec3
&t, bool exc /* = true */ , typename Euler
::Order rOrder /* = Euler
::XYZ */ ) { Matrix44
rot; rot = mat; if (! extractAndRemoveScalingAndShear (rot, s, h, exc)) return false; extractEulerXYZ (rot, r); t.x = mat[3][0]; t.y = mat[3][1]; t.z = mat[3][2]; if (rOrder != Euler
::XYZ) { Imath::Euler
eXYZ (r, Imath::Euler
::XYZ); Imath::Euler
e (eXYZ, rOrder); r = e.toXYZVector (); } return true; } template
bool extractSHRT (const Matrix44
&mat, Vec3
&s, Vec3
&h, Vec3
&r, Vec3
&t, bool exc) { return extractSHRT(mat, s, h, r, t, exc, Imath::Euler
::XYZ); } template
bool extractSHRT (const Matrix44
&mat, Vec3
&s, Vec3
&h, Euler
&r, Vec3
&t, bool exc /* = true */) { return extractSHRT (mat, s, h, r, t, exc, r.order ()); } template
bool checkForZeroScaleInRow (const T& scl, const Vec3
&row, bool exc /* = true */ ) { for (int i = 0; i < 3; i++) { if ((abs (scl) < 1 && abs (row[i]) >= limits
::max() * abs (scl))) { if (exc) throw Imath::ZeroScaleExc ("Cannot remove zero scaling " "from matrix."); else return false; } } return true; } template
Matrix44
outerProduct (const Vec4
&a, const Vec4
&b ) { return Matrix44
(a.x*b.x, a.x*b.y, a.x*b.z, a.x*b.w, a.y*b.x, a.y*b.y, a.y*b.z, a.x*b.w, a.z*b.x, a.z*b.y, a.z*b.z, a.x*b.w, a.w*b.x, a.w*b.y, a.w*b.z, a.w*b.w); } template
Matrix44
rotationMatrix (const Vec3
&from, const Vec3
&to) { Quat
q; q.setRotation(from, to); return q.toMatrix44(); } template
Matrix44
rotationMatrixWithUpDir (const Vec3
&fromDir, const Vec3
&toDir, const Vec3
&upDir) { // // The goal is to obtain a rotation matrix that takes // "fromDir" to "toDir". We do this in two steps and // compose the resulting rotation matrices; // (a) rotate "fromDir" into the z-axis // (b) rotate the z-axis into "toDir" // // The from direction must be non-zero; but we allow zero to and up dirs. if (fromDir.length () == 0) return Matrix44
(); else { Matrix44
zAxis2FromDir( Imath::UNINITIALIZED ); alignZAxisWithTargetDir (zAxis2FromDir, fromDir, Vec3
(0, 1, 0)); Matrix44
fromDir2zAxis = zAxis2FromDir.transposed (); Matrix44
zAxis2ToDir( Imath::UNINITIALIZED ); alignZAxisWithTargetDir (zAxis2ToDir, toDir, upDir); return fromDir2zAxis * zAxis2ToDir; } } template
void alignZAxisWithTargetDir (Matrix44
&result, Vec3
targetDir, Vec3
upDir) { // // Ensure that the target direction is non-zero. // if ( targetDir.length () == 0 ) targetDir = Vec3
(0, 0, 1); // // Ensure that the up direction is non-zero. // if ( upDir.length () == 0 ) upDir = Vec3