HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Nougat 7.1
|
7.1.1_r28
下载
查看原文件
收藏
根目录
external
opencv3
3rdparty
openexr
Imath
ImathQuat.h
/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMATHQUAT_H #define INCLUDED_IMATHQUAT_H //---------------------------------------------------------------------- // // template class Quat
// // "Quaternions came from Hamilton ... and have been an unmixed // evil to those who have touched them in any way. Vector is a // useless survival ... and has never been of the slightest use // to any creature." // // - Lord Kelvin // // This class implements the quaternion numerical type -- you // will probably want to use this class to represent orientations // in R3 and to convert between various euler angle reps. You // should probably use Imath::Euler<> for that. // //---------------------------------------------------------------------- #include "ImathExc.h" #include "ImathMatrix.h" #include
namespace Imath { #if (defined _WIN32 || defined _WIN64) && defined _MSC_VER // Disable MS VC++ warnings about conversion from double to float #pragma warning(disable:4244) #endif template
class Quat { public: T r; // real part Vec3
v; // imaginary vector //----------------------------------------------------- // Constructors - default constructor is identity quat //----------------------------------------------------- Quat (); template
Quat (const Quat
&q); Quat (T s, T i, T j, T k); Quat (T s, Vec3
d); static Quat
identity (); //------------------------------------------------- // Basic Algebra - Operators and Methods // The operator return values are *NOT* normalized // // operator^ and euclideanInnnerProduct() both // implement the 4D dot product // // operator/ uses the inverse() quaternion // // operator~ is conjugate -- if (S+V) is quat then // the conjugate (S+V)* == (S-V) // // some operators (*,/,*=,/=) treat the quat as // a 4D vector when one of the operands is scalar //------------------------------------------------- const Quat
& operator = (const Quat
&q); const Quat
& operator *= (const Quat
&q); const Quat
& operator *= (T t); const Quat
& operator /= (const Quat
&q); const Quat
& operator /= (T t); const Quat
& operator += (const Quat
&q); const Quat
& operator -= (const Quat
&q); T & operator [] (int index); // as 4D vector T operator [] (int index) const; template
bool operator == (const Quat
&q) const; template
bool operator != (const Quat
&q) const; Quat
& invert (); // this -> 1 / this Quat
inverse () const; Quat
& normalize (); // returns this Quat
normalized () const; T length () const; // in R4 Vec3
rotateVector(const Vec3
&original) const; T euclideanInnerProduct(const Quat
&q) const; //----------------------- // Rotation conversion //----------------------- Quat
& setAxisAngle (const Vec3
&axis, T radians); Quat
& setRotation (const Vec3
&fromDirection, const Vec3
&toDirection); T angle () const; Vec3
axis () const; Matrix33
toMatrix33 () const; Matrix44
toMatrix44 () const; Quat
log () const; Quat
exp () const; private: void setRotationInternal (const Vec3
&f0, const Vec3
&t0, Quat
&q); }; template
Quat
slerp (const Quat
&q1, const Quat
&q2, T t); template
Quat
slerpShortestArc (const Quat
&q1, const Quat
&q2, T t); template
Quat
squad (const Quat
&q1, const Quat
&q2, const Quat
&qa, const Quat
&qb, T t); template
void intermediate (const Quat
&q0, const Quat
&q1, const Quat
&q2, const Quat
&q3, Quat
&qa, Quat
&qb); template
Matrix33
operator * (const Matrix33
&M, const Quat
&q); template
Matrix33
operator * (const Quat
&q, const Matrix33
&M); template
std::ostream & operator << (std::ostream &o, const Quat
&q); template
Quat
operator * (const Quat
&q1, const Quat
&q2); template
Quat
operator / (const Quat
&q1, const Quat
&q2); template
Quat
operator / (const Quat
&q, T t); template
Quat
operator * (const Quat
&q, T t); template
Quat
operator * (T t, const Quat
&q); template
Quat
operator + (const Quat
&q1, const Quat
&q2); template
Quat
operator - (const Quat
&q1, const Quat
&q2); template
Quat
operator ~ (const Quat
&q); template
Quat
operator - (const Quat
&q); template
Vec3
operator * (const Vec3
&v, const Quat
&q); //-------------------- // Convenient typedefs //-------------------- typedef Quat
Quatf; typedef Quat
Quatd; //--------------- // Implementation //--------------- template
inline Quat
::Quat (): r (1), v (0, 0, 0) { // empty } template
template
inline Quat
::Quat (const Quat
&q): r (q.r), v (q.v) { // empty } template
inline Quat
::Quat (T s, T i, T j, T k): r (s), v (i, j, k) { // empty } template
inline Quat
::Quat (T s, Vec3
d): r (s), v (d) { // empty } template
inline Quat
Quat
::identity () { return Quat
(); } template
inline const Quat
& Quat
::operator = (const Quat
&q) { r = q.r; v = q.v; return *this; } template
inline const Quat
& Quat
::operator *= (const Quat
&q) { T rtmp = r * q.r - (v ^ q.v); v = r * q.v + v * q.r + v % q.v; r = rtmp; return *this; } template
inline const Quat
& Quat
::operator *= (T t) { r *= t; v *= t; return *this; } template
inline const Quat
& Quat
::operator /= (const Quat
&q) { *this = *this * q.inverse(); return *this; } template
inline const Quat
& Quat
::operator /= (T t) { r /= t; v /= t; return *this; } template
inline const Quat
& Quat
::operator += (const Quat
&q) { r += q.r; v += q.v; return *this; } template
inline const Quat
& Quat
::operator -= (const Quat
&q) { r -= q.r; v -= q.v; return *this; } template
inline T & Quat
::operator [] (int index) { return index ? v[index - 1] : r; } template
inline T Quat
::operator [] (int index) const { return index ? v[index - 1] : r; } template
template
inline bool Quat
::operator == (const Quat
&q) const { return r == q.r && v == q.v; } template
template
inline bool Quat
::operator != (const Quat
&q) const { return r != q.r || v != q.v; } template
inline T operator ^ (const Quat
& q1 ,const Quat
& q2) { return q1.r * q2.r + (q1.v ^ q2.v); } template
inline T Quat
::length () const { return Math
::sqrt (r * r + (v ^ v)); } template
inline Quat
& Quat
::normalize () { if (T l = length()) { r /= l; v /= l; } else { r = 1; v = Vec3
(0); } return *this; } template
inline Quat
Quat
::normalized () const { if (T l = length()) return Quat (r / l, v / l); return Quat(); } template
inline Quat
Quat
::inverse () const { // // 1 Q* // - = ---- where Q* is conjugate (operator~) // Q Q* Q and (Q* Q) == Q ^ Q (4D dot) // T qdot = *this ^ *this; return Quat (r / qdot, -v / qdot); } template
inline Quat
& Quat
::invert () { T qdot = (*this) ^ (*this); r /= qdot; v = -v / qdot; return *this; } template
inline Vec3
Quat
::rotateVector(const Vec3
& original) const { // // Given a vector p and a quaternion q (aka this), // calculate p' = qpq* // // Assumes unit quaternions (because non-unit // quaternions cannot be used to rotate vectors // anyway). // Quat
vec (0, original); // temporarily promote grade of original Quat
inv (*this); inv.v *= -1; // unit multiplicative inverse Quat
result = *this * vec * inv; return result.v; } template
inline T Quat
::euclideanInnerProduct (const Quat
&q) const { return r * q.r + v.x * q.v.x + v.y * q.v.y + v.z * q.v.z; } template
T angle4D (const Quat
&q1, const Quat
&q2) { // // Compute the angle between two quaternions, // interpreting the quaternions as 4D vectors. // Quat
d = q1 - q2; T lengthD = Math
::sqrt (d ^ d); Quat
s = q1 + q2; T lengthS = Math
::sqrt (s ^ s); return 2 * Math
::atan2 (lengthD, lengthS); } template
Quat
slerp (const Quat
&q1, const Quat
&q2, T t) { // // Spherical linear interpolation. // Assumes q1 and q2 are normalized and that q1 != -q2. // // This method does *not* interpolate along the shortest // arc between q1 and q2. If you desire interpolation // along the shortest arc, and q1^q2 is negative, then // consider calling slerpShortestArc(), below, or flipping // the second quaternion explicitly. // // The implementation of squad() depends on a slerp() // that interpolates as is, without the automatic // flipping. // // Don Hatch explains the method we use here on his // web page, The Right Way to Calculate Stuff, at // http://www.plunk.org/~hatch/rightway.php // T a = angle4D (q1, q2); T s = 1 - t; Quat
q = sinx_over_x (s * a) / sinx_over_x (a) * s * q1 + sinx_over_x (t * a) / sinx_over_x (a) * t * q2; return q.normalized(); } template
Quat
slerpShortestArc (const Quat
&q1, const Quat
&q2, T t) { // // Spherical linear interpolation along the shortest // arc from q1 to either q2 or -q2, whichever is closer. // Assumes q1 and q2 are unit quaternions. // if ((q1 ^ q2) >= 0) return slerp (q1, q2, t); else return slerp (q1, -q2, t); } template
Quat
spline (const Quat
&q0, const Quat
&q1, const Quat
&q2, const Quat
&q3, T t) { // // Spherical Cubic Spline Interpolation - // from Advanced Animation and Rendering // Techniques by Watt and Watt, Page 366: // A spherical curve is constructed using three // spherical linear interpolations of a quadrangle // of unit quaternions: q1, qa, qb, q2. // Given a set of quaternion keys: q0, q1, q2, q3, // this routine does the interpolation between // q1 and q2 by constructing two intermediate // quaternions: qa and qb. The qa and qb are // computed by the intermediate function to // guarantee the continuity of tangents across // adjacent cubic segments. The qa represents in-tangent // for q1 and the qb represents the out-tangent for q2. // // The q1 q2 is the cubic segment being interpolated. // The q0 is from the previous adjacent segment and q3 is // from the next adjacent segment. The q0 and q3 are used // in computing qa and qb. // Quat
qa = intermediate (q0, q1, q2); Quat
qb = intermediate (q1, q2, q3); Quat
result = squad (q1, qa, qb, q2, t); return result; } template
Quat
squad (const Quat
&q1, const Quat
&qa, const Quat
&qb, const Quat
&q2, T t) { // // Spherical Quadrangle Interpolation - // from Advanced Animation and Rendering // Techniques by Watt and Watt, Page 366: // It constructs a spherical cubic interpolation as // a series of three spherical linear interpolations // of a quadrangle of unit quaternions. // Quat
r1 = slerp (q1, q2, t); Quat
r2 = slerp (qa, qb, t); Quat
result = slerp (r1, r2, 2 * t * (1 - t)); return result; } template
Quat
intermediate (const Quat
&q0, const Quat
&q1, const Quat
&q2) { // // From advanced Animation and Rendering // Techniques by Watt and Watt, Page 366: // computing the inner quadrangle // points (qa and qb) to guarantee tangent // continuity. // Quat
q1inv = q1.inverse(); Quat
c1 = q1inv * q2; Quat
c2 = q1inv * q0; Quat
c3 = (T) (-0.25) * (c2.log() + c1.log()); Quat
qa = q1 * c3.exp(); qa.normalize(); return qa; } template
inline Quat
Quat
::log () const { // // For unit quaternion, from Advanced Animation and // Rendering Techniques by Watt and Watt, Page 366: // T theta = Math
::acos (std::min (r, (T) 1.0)); if (theta == 0) return Quat
(0, v); T sintheta = Math
::sin (theta); T k; if (abs (sintheta) < 1 && abs (theta) >= limits
::max() * abs (sintheta)) k = 1; else k = theta / sintheta; return Quat
((T) 0, v.x * k, v.y * k, v.z * k); } template
inline Quat
Quat
::exp () const { // // For pure quaternion (zero scalar part): // from Advanced Animation and Rendering // Techniques by Watt and Watt, Page 366: // T theta = v.length(); T sintheta = Math
::sin (theta); T k; if (abs (theta) < 1 && abs (sintheta) >= limits
::max() * abs (theta)) k = 1; else k = sintheta / theta; T costheta = Math
::cos (theta); return Quat