/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Sk4fGradientBase.h"
namespace {
const float kInv255Float = 1.0f / 255;
SkPMColor pack_color(SkColor c, bool premul) {
return premul
? SkPreMultiplyColor(c)
: SkPackARGB32NoCheck(SkColorGetA(c), SkColorGetR(c), SkColorGetG(c), SkColorGetB(c));
}
// true when x is in [k1,k2)
bool in_range(SkScalar x, SkScalar k1, SkScalar k2) {
SkASSERT(k1 != k2);
return (k1 < k2)
? (x >= k1 && x < k2)
: (x >= k2 && x < k1);
}
} // anonymous namespace
SkGradientShaderBase::GradientShaderBase4fContext::
Interval::Interval(SkPMColor c0, SkScalar p0,
SkPMColor c1, SkScalar p1,
const Sk4f& componentScale)
: fP0(p0)
, fP1(p1)
, fZeroRamp(c0 == c1) {
SkASSERT(p0 != p1);
const Sk4f c4f0 = SkNx_cast<float>(Sk4b::Load(&c0)) * componentScale;
const Sk4f c4f1 = SkNx_cast<float>(Sk4b::Load(&c1)) * componentScale;
const Sk4f dc4f = (c4f1 - c4f0) / (p1 - p0);
c4f0.store(&fC0.fVec);
dc4f.store(&fDc.fVec);
}
SkGradientShaderBase::GradientShaderBase4fContext::
Interval::Interval(const Sk4f& c0, const Sk4f& dc,
SkScalar p0, SkScalar p1)
: fP0(p0)
, fP1(p1)
, fZeroRamp((dc == 0).allTrue()) {
c0.store(fC0.fVec);
dc.store(fDc.fVec);
}
bool SkGradientShaderBase::GradientShaderBase4fContext::
Interval::contains(SkScalar fx) const {
return in_range(fx, fP0, fP1);
}
SkGradientShaderBase::
GradientShaderBase4fContext::GradientShaderBase4fContext(const SkGradientShaderBase& shader,
const ContextRec& rec)
: INHERITED(shader, rec)
, fFlags(this->INHERITED::getFlags())
#ifdef SK_SUPPORT_LEGACY_GRADIENT_DITHERING
, fDither(true)
#else
, fDither(rec.fPaint->isDither())
#endif
{
// The main job here is to build an interval list. Intervals are a different
// representation of the color stops data, optimized for efficient scan line
// access during shading.
//
// [{P0,C0} , {P1,C1}) [{P1,C2} , {P2,c3}) ... [{Pn,C2n} , {Pn+1,C2n+1})
//
// The list is sorted in increasing dst order, i.e. X(Pk) < X(Pk+1). This
// allows us to always traverse left->right when iterating over a scan line.
// It also means that the interval order matches the color stops when dx >= 0,
// and is the inverse (pos, colors, order are flipped) when dx < 0.
//
// Note: the current representation duplicates pos data; we could refactor to
// avoid this if interval storage size becomes a concern.
//
// Aside from reordering, we also perform two more pre-processing steps at
// this stage:
//
// 1) scale the color components depending on paint alpha and the requested
// interpolation space (note: the interval color storage is SkPM4f, but
// that doesn't necessarily mean the colors are premultiplied; that
// property is tracked in fColorsArePremul)
//
// 2) inject synthetic intervals to support tiling.
//
// * for kRepeat, no extra intervals are needed - the iterator just
// wraps around at the end:
//
// ->[P0,P1)->..[Pn-1,Pn)->
//
// * for kClamp, we add two "infinite" intervals before/after:
//
// [-/+inf , P0)->[P0 , P1)->..[Pn-1 , Pn)->[Pn , +/-inf)
//
// (the iterator should never run off the end in this mode)
//
// * for kMirror, we extend the range to [0..2] and add a flipped
// interval series - then the iterator operates just as in the
// kRepeat case:
//
// ->[P0,P1)->..[Pn-1,Pn)->[2 - Pn,2 - Pn-1)->..[2 - P1,2 - P0)->
//
// TODO: investigate collapsing intervals << 1px.
const SkMatrix& inverse = this->getTotalInverse();
fDstToPos.setConcat(shader.fPtsToUnit, inverse);
fDstToPosProc = fDstToPos.getMapXYProc();
fDstToPosClass = static_cast<uint8_t>(INHERITED::ComputeMatrixClass(fDstToPos));
if (shader.fColorsAreOpaque && this->getPaintAlpha() == SK_AlphaOPAQUE) {
fFlags |= kOpaqueAlpha_Flag;
}
fColorsArePremul =
(shader.fGradFlags & SkGradientShader::kInterpolateColorsInPremul_Flag)
|| shader.fColorsAreOpaque;
const float paintAlpha = rec.fPaint->getAlpha() * kInv255Float;
const Sk4f componentScale = fColorsArePremul
? Sk4f(paintAlpha * kInv255Float)
: Sk4f(kInv255Float, kInv255Float, kInv255Float, paintAlpha * kInv255Float);
SkASSERT(shader.fColorCount > 1);
SkASSERT(shader.fOrigColors);
int direction = 1;
int first_index = 0;
int last_index = shader.fColorCount - 1;
SkScalar first_pos = 0;
SkScalar last_pos = 1;
const bool dx_is_pos = fDstToPos.getScaleX() >= 0;
if (!dx_is_pos) {
direction = -direction;
SkTSwap(first_index, last_index);
SkTSwap(first_pos, last_pos);
}
if (shader.fTileMode == SkShader::kClamp_TileMode) {
// synthetic edge interval: -/+inf .. P0)
const SkPMColor clamp_color = pack_color(shader.fOrigColors[first_index],
fColorsArePremul);
const SkScalar clamp_pos = dx_is_pos ? SK_ScalarMin : SK_ScalarMax;
fIntervals.emplace_back(clamp_color, clamp_pos,
clamp_color, first_pos,
componentScale);
}
int prev = first_index;
int curr = prev + direction;
SkScalar prev_pos = first_pos;
if (shader.fOrigPos) {
// explicit positions
do {
// TODO: this sanitization should be done in SkGradientShaderBase
const SkScalar curr_pos = (dx_is_pos)
? SkTPin(shader.fOrigPos[curr], prev_pos, last_pos)
: SkTPin(shader.fOrigPos[curr], last_pos, prev_pos);
if (curr_pos != prev_pos) {
fIntervals.emplace_back(
pack_color(shader.fOrigColors[prev], fColorsArePremul),
prev_pos,
pack_color(shader.fOrigColors[curr], fColorsArePremul),
curr_pos,
componentScale);
}
prev = curr;
prev_pos = curr_pos;
curr += direction;
} while (prev != last_index);
} else {
// implicit positions
const SkScalar dt = direction * SK_Scalar1 / (shader.fColorCount - 1);
do {
const SkScalar curr_pos = prev_pos + dt;
fIntervals.emplace_back(
pack_color(shader.fOrigColors[prev], fColorsArePremul),
prev_pos,
pack_color(shader.fOrigColors[curr], fColorsArePremul),
curr_pos,
componentScale);
prev = curr;
prev_pos = curr_pos;
curr += direction;
} while (prev != last_index);
// pin the last pos to maintain accurate [0,1] pos coverage.
fIntervals.back().fP1 = last_pos;
}
if (shader.fTileMode == SkShader::kClamp_TileMode) {
// synthetic edge interval: Pn .. +/-inf
const SkPMColor clamp_color =
pack_color(shader.fOrigColors[last_index], fColorsArePremul);
const SkScalar clamp_pos = dx_is_pos ? SK_ScalarMax : SK_ScalarMin;
fIntervals.emplace_back(clamp_color, last_pos,
clamp_color, clamp_pos,
componentScale);
} else if (shader.fTileMode == SkShader::kMirror_TileMode) {
const int count = fIntervals.count();
// synthetic flipped intervals in [1 .. 2)
for (int i = count - 1; i >= 0; --i) {
const Interval& interval = fIntervals[i];
const SkScalar p0 = interval.fP0;
const SkScalar p1 = interval.fP1;
Sk4f dc = Sk4f::Load(interval.fDc.fVec);
Sk4f c = Sk4f::Load(interval.fC0.fVec) + dc * Sk4f(p1 - p0);
fIntervals.emplace_back(c, dc * Sk4f(-1), 2 - p1, 2 - p0);
}
if (!dx_is_pos) {
// When dx is negative, our initial invervals are in (1..0] order.
// The loop above appends their flipped counterparts, pivoted in 2: (1..0](2..1]
// To achieve the expected monotonic interval order, we need to
// swap the two halves: (2..1](1..0]
// TODO: we can probably avoid this late swap with some additional logic during
// the initial interval buildup.
SkASSERT(fIntervals.count() == count * 2)
for (int i = 0; i < count; ++i) {
SkTSwap(fIntervals[i], fIntervals[count + i]);
}
}
}
SkASSERT(fIntervals.count() > 0);
fCachedInterval = fIntervals.begin();
}
const SkGradientShaderBase::GradientShaderBase4fContext::Interval*
SkGradientShaderBase::
GradientShaderBase4fContext::findInterval(SkScalar fx) const {
SkASSERT(in_range(fx, fIntervals.front().fP0, fIntervals.back().fP1));
if (1) {
// Linear search, using the last scanline interval as a starting point.
SkASSERT(fCachedInterval >= fIntervals.begin());
SkASSERT(fCachedInterval < fIntervals.end());
const int search_dir = fDstToPos.getScaleX() >= 0 ? 1 : -1;
while (!in_range(fx, fCachedInterval->fP0, fCachedInterval->fP1)) {
fCachedInterval += search_dir;
if (fCachedInterval >= fIntervals.end()) {
fCachedInterval = fIntervals.begin();
} else if (fCachedInterval < fIntervals.begin()) {
fCachedInterval = fIntervals.end() - 1;
}
}
return fCachedInterval;
} else {
// Binary search. Seems less effective than linear + caching.
const Interval* i0 = fIntervals.begin();
const Interval* i1 = fIntervals.end() - 1;
while (i0 != i1) {
SkASSERT(i0 < i1);
SkASSERT(in_range(fx, i0->fP0, i1->fP1));
const Interval* i = i0 + ((i1 - i0) >> 1);
if (in_range(fx, i0->fP0, i->fP1)) {
i1 = i;
} else {
SkASSERT(in_range(fx, i->fP1, i1->fP1));
i0 = i + 1;
}
}
SkASSERT(in_range(fx, i0->fP0, i0->fP1));
return i0;
}
}