// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
// A light-weight ARM Assembler
// Generates user mode instructions for the ARM architecture up to version 5
#ifndef V8_ARM_ASSEMBLER_ARM_H_
#define V8_ARM_ASSEMBLER_ARM_H_
#include <stdio.h>
#include <vector>
#include "src/arm/constants-arm.h"
#include "src/assembler.h"
namespace v8 {
namespace internal {
// clang-format off
#define GENERAL_REGISTERS(V) \
V(r0) V(r1) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) \
V(r8) V(r9) V(r10) V(fp) V(ip) V(sp) V(lr) V(pc)
#define ALLOCATABLE_GENERAL_REGISTERS(V) \
V(r0) V(r1) V(r2) V(r3) V(r4) V(r5) V(r6) V(r7) V(r8)
#define FLOAT_REGISTERS(V) \
V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) \
V(s8) V(s9) V(s10) V(s11) V(s12) V(s13) V(s14) V(s15) \
V(s16) V(s17) V(s18) V(s19) V(s20) V(s21) V(s22) V(s23) \
V(s24) V(s25) V(s26) V(s27) V(s28) V(s29) V(s30) V(s31)
#define DOUBLE_REGISTERS(V) \
V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d13) V(d14) V(d15) \
V(d16) V(d17) V(d18) V(d19) V(d20) V(d21) V(d22) V(d23) \
V(d24) V(d25) V(d26) V(d27) V(d28) V(d29) V(d30) V(d31)
#define ALLOCATABLE_DOUBLE_REGISTERS(V) \
V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d13) \
V(d16) V(d17) V(d18) V(d19) V(d20) V(d21) V(d22) V(d23) \
V(d24) V(d25) V(d26) V(d27) V(d28) V(d29) V(d30) V(d31)
#define ALLOCATABLE_NO_VFP32_DOUBLE_REGISTERS(V) \
V(d0) V(d1) V(d2) V(d3) V(d4) V(d5) V(d6) V(d7) \
V(d8) V(d9) V(d10) V(d11) V(d12) V(d13) \
// clang-format on
// CPU Registers.
//
// 1) We would prefer to use an enum, but enum values are assignment-
// compatible with int, which has caused code-generation bugs.
//
// 2) We would prefer to use a class instead of a struct but we don't like
// the register initialization to depend on the particular initialization
// order (which appears to be different on OS X, Linux, and Windows for the
// installed versions of C++ we tried). Using a struct permits C-style
// "initialization". Also, the Register objects cannot be const as this
// forces initialization stubs in MSVC, making us dependent on initialization
// order.
//
// 3) By not using an enum, we are possibly preventing the compiler from
// doing certain constant folds, which may significantly reduce the
// code generated for some assembly instructions (because they boil down
// to a few constants). If this is a problem, we could change the code
// such that we use an enum in optimized mode, and the struct in debug
// mode. This way we get the compile-time error checking in debug mode
// and best performance in optimized code.
struct Register {
enum Code {
#define REGISTER_CODE(R) kCode_##R,
GENERAL_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kAfterLast,
kCode_no_reg = -1
};
static const int kNumRegisters = Code::kAfterLast;
static Register from_code(int code) {
DCHECK(code >= 0);
DCHECK(code < kNumRegisters);
Register r = {code};
return r;
}
bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
bool is(Register reg) const { return reg_code == reg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
void set_code(int code) {
reg_code = code;
DCHECK(is_valid());
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
// r7: context register
// r8: constant pool pointer register if FLAG_enable_embedded_constant_pool.
// r9: lithium scratch
#define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
GENERAL_REGISTERS(DECLARE_REGISTER)
#undef DECLARE_REGISTER
const Register no_reg = {Register::kCode_no_reg};
static const bool kSimpleFPAliasing = false;
// Single word VFP register.
struct SwVfpRegister {
enum Code {
#define REGISTER_CODE(R) kCode_##R,
FLOAT_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kAfterLast,
kCode_no_reg = -1
};
static const int kMaxNumRegisters = Code::kAfterLast;
static const int kSizeInBytes = 4;
bool is_valid() const { return 0 <= reg_code && reg_code < 32; }
bool is(SwVfpRegister reg) const { return reg_code == reg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
static SwVfpRegister from_code(int code) {
SwVfpRegister r = {code};
return r;
}
void split_code(int* vm, int* m) const {
DCHECK(is_valid());
*m = reg_code & 0x1;
*vm = reg_code >> 1;
}
int reg_code;
};
typedef SwVfpRegister FloatRegister;
// Double word VFP register.
struct DwVfpRegister {
enum Code {
#define REGISTER_CODE(R) kCode_##R,
DOUBLE_REGISTERS(REGISTER_CODE)
#undef REGISTER_CODE
kAfterLast,
kCode_no_reg = -1
};
static const int kMaxNumRegisters = Code::kAfterLast;
inline static int NumRegisters();
// A few double registers are reserved: one as a scratch register and one to
// hold 0.0, that does not fit in the immediate field of vmov instructions.
// d14: 0.0
// d15: scratch register.
static const int kSizeInBytes = 8;
bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
bool is(DwVfpRegister reg) const { return reg_code == reg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
static DwVfpRegister from_code(int code) {
DwVfpRegister r = {code};
return r;
}
void split_code(int* vm, int* m) const {
DCHECK(is_valid());
*m = (reg_code & 0x10) >> 4;
*vm = reg_code & 0x0F;
}
int reg_code;
};
typedef DwVfpRegister DoubleRegister;
// Double word VFP register d0-15.
struct LowDwVfpRegister {
public:
static const int kMaxNumLowRegisters = 16;
operator DwVfpRegister() const {
DwVfpRegister r = { reg_code };
return r;
}
static LowDwVfpRegister from_code(int code) {
LowDwVfpRegister r = { code };
return r;
}
bool is_valid() const {
return 0 <= reg_code && reg_code < kMaxNumLowRegisters;
}
bool is(DwVfpRegister reg) const { return reg_code == reg.reg_code; }
bool is(LowDwVfpRegister reg) const { return reg_code == reg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
SwVfpRegister low() const {
SwVfpRegister reg;
reg.reg_code = reg_code * 2;
DCHECK(reg.is_valid());
return reg;
}
SwVfpRegister high() const {
SwVfpRegister reg;
reg.reg_code = (reg_code * 2) + 1;
DCHECK(reg.is_valid());
return reg;
}
int reg_code;
};
// Quad word NEON register.
struct QwNeonRegister {
static const int kMaxNumRegisters = 16;
static QwNeonRegister from_code(int code) {
QwNeonRegister r = { code };
return r;
}
bool is_valid() const {
return (0 <= reg_code) && (reg_code < kMaxNumRegisters);
}
bool is(QwNeonRegister reg) const { return reg_code == reg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
void split_code(int* vm, int* m) const {
DCHECK(is_valid());
int encoded_code = reg_code << 1;
*m = (encoded_code & 0x10) >> 4;
*vm = encoded_code & 0x0F;
}
int reg_code;
};
typedef QwNeonRegister QuadRegister;
typedef QwNeonRegister Simd128Register;
// Support for the VFP registers s0 to s31 (d0 to d15).
// Note that "s(N):s(N+1)" is the same as "d(N/2)".
const SwVfpRegister s0 = { 0 };
const SwVfpRegister s1 = { 1 };
const SwVfpRegister s2 = { 2 };
const SwVfpRegister s3 = { 3 };
const SwVfpRegister s4 = { 4 };
const SwVfpRegister s5 = { 5 };
const SwVfpRegister s6 = { 6 };
const SwVfpRegister s7 = { 7 };
const SwVfpRegister s8 = { 8 };
const SwVfpRegister s9 = { 9 };
const SwVfpRegister s10 = { 10 };
const SwVfpRegister s11 = { 11 };
const SwVfpRegister s12 = { 12 };
const SwVfpRegister s13 = { 13 };
const SwVfpRegister s14 = { 14 };
const SwVfpRegister s15 = { 15 };
const SwVfpRegister s16 = { 16 };
const SwVfpRegister s17 = { 17 };
const SwVfpRegister s18 = { 18 };
const SwVfpRegister s19 = { 19 };
const SwVfpRegister s20 = { 20 };
const SwVfpRegister s21 = { 21 };
const SwVfpRegister s22 = { 22 };
const SwVfpRegister s23 = { 23 };
const SwVfpRegister s24 = { 24 };
const SwVfpRegister s25 = { 25 };
const SwVfpRegister s26 = { 26 };
const SwVfpRegister s27 = { 27 };
const SwVfpRegister s28 = { 28 };
const SwVfpRegister s29 = { 29 };
const SwVfpRegister s30 = { 30 };
const SwVfpRegister s31 = { 31 };
const DwVfpRegister no_dreg = { -1 };
const LowDwVfpRegister d0 = { 0 };
const LowDwVfpRegister d1 = { 1 };
const LowDwVfpRegister d2 = { 2 };
const LowDwVfpRegister d3 = { 3 };
const LowDwVfpRegister d4 = { 4 };
const LowDwVfpRegister d5 = { 5 };
const LowDwVfpRegister d6 = { 6 };
const LowDwVfpRegister d7 = { 7 };
const LowDwVfpRegister d8 = { 8 };
const LowDwVfpRegister d9 = { 9 };
const LowDwVfpRegister d10 = { 10 };
const LowDwVfpRegister d11 = { 11 };
const LowDwVfpRegister d12 = { 12 };
const LowDwVfpRegister d13 = { 13 };
const LowDwVfpRegister d14 = { 14 };
const LowDwVfpRegister d15 = { 15 };
const DwVfpRegister d16 = { 16 };
const DwVfpRegister d17 = { 17 };
const DwVfpRegister d18 = { 18 };
const DwVfpRegister d19 = { 19 };
const DwVfpRegister d20 = { 20 };
const DwVfpRegister d21 = { 21 };
const DwVfpRegister d22 = { 22 };
const DwVfpRegister d23 = { 23 };
const DwVfpRegister d24 = { 24 };
const DwVfpRegister d25 = { 25 };
const DwVfpRegister d26 = { 26 };
const DwVfpRegister d27 = { 27 };
const DwVfpRegister d28 = { 28 };
const DwVfpRegister d29 = { 29 };
const DwVfpRegister d30 = { 30 };
const DwVfpRegister d31 = { 31 };
const QwNeonRegister q0 = { 0 };
const QwNeonRegister q1 = { 1 };
const QwNeonRegister q2 = { 2 };
const QwNeonRegister q3 = { 3 };
const QwNeonRegister q4 = { 4 };
const QwNeonRegister q5 = { 5 };
const QwNeonRegister q6 = { 6 };
const QwNeonRegister q7 = { 7 };
const QwNeonRegister q8 = { 8 };
const QwNeonRegister q9 = { 9 };
const QwNeonRegister q10 = { 10 };
const QwNeonRegister q11 = { 11 };
const QwNeonRegister q12 = { 12 };
const QwNeonRegister q13 = { 13 };
const QwNeonRegister q14 = { 14 };
const QwNeonRegister q15 = { 15 };
// Aliases for double registers. Defined using #define instead of
// "static const DwVfpRegister&" because Clang complains otherwise when a
// compilation unit that includes this header doesn't use the variables.
#define kFirstCalleeSavedDoubleReg d8
#define kLastCalleeSavedDoubleReg d15
#define kDoubleRegZero d14
#define kScratchDoubleReg d15
// Coprocessor register
struct CRegister {
bool is_valid() const { return 0 <= reg_code && reg_code < 16; }
bool is(CRegister creg) const { return reg_code == creg.reg_code; }
int code() const {
DCHECK(is_valid());
return reg_code;
}
int bit() const {
DCHECK(is_valid());
return 1 << reg_code;
}
// Unfortunately we can't make this private in a struct.
int reg_code;
};
const CRegister no_creg = { -1 };
const CRegister cr0 = { 0 };
const CRegister cr1 = { 1 };
const CRegister cr2 = { 2 };
const CRegister cr3 = { 3 };
const CRegister cr4 = { 4 };
const CRegister cr5 = { 5 };
const CRegister cr6 = { 6 };
const CRegister cr7 = { 7 };
const CRegister cr8 = { 8 };
const CRegister cr9 = { 9 };
const CRegister cr10 = { 10 };
const CRegister cr11 = { 11 };
const CRegister cr12 = { 12 };
const CRegister cr13 = { 13 };
const CRegister cr14 = { 14 };
const CRegister cr15 = { 15 };
// Coprocessor number
enum Coprocessor {
p0 = 0,
p1 = 1,
p2 = 2,
p3 = 3,
p4 = 4,
p5 = 5,
p6 = 6,
p7 = 7,
p8 = 8,
p9 = 9,
p10 = 10,
p11 = 11,
p12 = 12,
p13 = 13,
p14 = 14,
p15 = 15
};
// -----------------------------------------------------------------------------
// Machine instruction Operands
// Class Operand represents a shifter operand in data processing instructions
class Operand BASE_EMBEDDED {
public:
// immediate
INLINE(explicit Operand(int32_t immediate,
RelocInfo::Mode rmode = RelocInfo::NONE32));
INLINE(static Operand Zero()) {
return Operand(static_cast<int32_t>(0));
}
INLINE(explicit Operand(const ExternalReference& f));
explicit Operand(Handle<Object> handle);
INLINE(explicit Operand(Smi* value));
// rm
INLINE(explicit Operand(Register rm));
// rm <shift_op> shift_imm
explicit Operand(Register rm, ShiftOp shift_op, int shift_imm);
INLINE(static Operand SmiUntag(Register rm)) {
return Operand(rm, ASR, kSmiTagSize);
}
INLINE(static Operand PointerOffsetFromSmiKey(Register key)) {
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
return Operand(key, LSL, kPointerSizeLog2 - kSmiTagSize);
}
INLINE(static Operand DoubleOffsetFromSmiKey(Register key)) {
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kDoubleSizeLog2);
return Operand(key, LSL, kDoubleSizeLog2 - kSmiTagSize);
}
// rm <shift_op> rs
explicit Operand(Register rm, ShiftOp shift_op, Register rs);
// Return true if this is a register operand.
INLINE(bool is_reg() const);
// Return the number of actual instructions required to implement the given
// instruction for this particular operand. This can be a single instruction,
// if no load into the ip register is necessary, or anything between 2 and 4
// instructions when we need to load from the constant pool (depending upon
// whether the constant pool entry is in the small or extended section). If
// the instruction this operand is used for is a MOV or MVN instruction the
// actual instruction to use is required for this calculation. For other
// instructions instr is ignored.
//
// The value returned is only valid as long as no entries are added to the
// constant pool between this call and the actual instruction being emitted.
int instructions_required(const Assembler* assembler, Instr instr = 0) const;
bool must_output_reloc_info(const Assembler* assembler) const;
inline int32_t immediate() const {
DCHECK(!rm_.is_valid());
return imm32_;
}
Register rm() const { return rm_; }
Register rs() const { return rs_; }
ShiftOp shift_op() const { return shift_op_; }
private:
Register rm_;
Register rs_;
ShiftOp shift_op_;
int shift_imm_; // valid if rm_ != no_reg && rs_ == no_reg
int32_t imm32_; // valid if rm_ == no_reg
RelocInfo::Mode rmode_;
friend class Assembler;
};
// Class MemOperand represents a memory operand in load and store instructions
class MemOperand BASE_EMBEDDED {
public:
// [rn +/- offset] Offset/NegOffset
// [rn +/- offset]! PreIndex/NegPreIndex
// [rn], +/- offset PostIndex/NegPostIndex
// offset is any signed 32-bit value; offset is first loaded to register ip if
// it does not fit the addressing mode (12-bit unsigned and sign bit)
explicit MemOperand(Register rn, int32_t offset = 0, AddrMode am = Offset);
// [rn +/- rm] Offset/NegOffset
// [rn +/- rm]! PreIndex/NegPreIndex
// [rn], +/- rm PostIndex/NegPostIndex
explicit MemOperand(Register rn, Register rm, AddrMode am = Offset);
// [rn +/- rm <shift_op> shift_imm] Offset/NegOffset
// [rn +/- rm <shift_op> shift_imm]! PreIndex/NegPreIndex
// [rn], +/- rm <shift_op> shift_imm PostIndex/NegPostIndex
explicit MemOperand(Register rn, Register rm,
ShiftOp shift_op, int shift_imm, AddrMode am = Offset);
INLINE(static MemOperand PointerAddressFromSmiKey(Register array,
Register key,
AddrMode am = Offset)) {
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
return MemOperand(array, key, LSL, kPointerSizeLog2 - kSmiTagSize, am);
}
void set_offset(int32_t offset) {
DCHECK(rm_.is(no_reg));
offset_ = offset;
}
uint32_t offset() const {
DCHECK(rm_.is(no_reg));
return offset_;
}
Register rn() const { return rn_; }
Register rm() const { return rm_; }
AddrMode am() const { return am_; }
bool OffsetIsUint12Encodable() const {
return offset_ >= 0 ? is_uint12(offset_) : is_uint12(-offset_);
}
private:
Register rn_; // base
Register rm_; // register offset
int32_t offset_; // valid if rm_ == no_reg
ShiftOp shift_op_;
int shift_imm_; // valid if rm_ != no_reg && rs_ == no_reg
AddrMode am_; // bits P, U, and W
friend class Assembler;
};
// Class NeonMemOperand represents a memory operand in load and
// store NEON instructions
class NeonMemOperand BASE_EMBEDDED {
public:
// [rn {:align}] Offset
// [rn {:align}]! PostIndex
explicit NeonMemOperand(Register rn, AddrMode am = Offset, int align = 0);
// [rn {:align}], rm PostIndex
explicit NeonMemOperand(Register rn, Register rm, int align = 0);
Register rn() const { return rn_; }
Register rm() const { return rm_; }
int align() const { return align_; }
private:
void SetAlignment(int align);
Register rn_; // base
Register rm_; // register increment
int align_;
};
// Class NeonListOperand represents a list of NEON registers
class NeonListOperand BASE_EMBEDDED {
public:
explicit NeonListOperand(DoubleRegister base, int registers_count = 1);
DoubleRegister base() const { return base_; }
NeonListType type() const { return type_; }
private:
DoubleRegister base_;
NeonListType type_;
};
struct VmovIndex {
unsigned char index;
};
const VmovIndex VmovIndexLo = { 0 };
const VmovIndex VmovIndexHi = { 1 };
class Assembler : public AssemblerBase {
public:
// Create an assembler. Instructions and relocation information are emitted
// into a buffer, with the instructions starting from the beginning and the
// relocation information starting from the end of the buffer. See CodeDesc
// for a detailed comment on the layout (globals.h).
//
// If the provided buffer is NULL, the assembler allocates and grows its own
// buffer, and buffer_size determines the initial buffer size. The buffer is
// owned by the assembler and deallocated upon destruction of the assembler.
//
// If the provided buffer is not NULL, the assembler uses the provided buffer
// for code generation and assumes its size to be buffer_size. If the buffer
// is too small, a fatal error occurs. No deallocation of the buffer is done
// upon destruction of the assembler.
Assembler(Isolate* isolate, void* buffer, int buffer_size);
virtual ~Assembler();
// GetCode emits any pending (non-emitted) code and fills the descriptor
// desc. GetCode() is idempotent; it returns the same result if no other
// Assembler functions are invoked in between GetCode() calls.
void GetCode(CodeDesc* desc);
// Label operations & relative jumps (PPUM Appendix D)
//
// Takes a branch opcode (cc) and a label (L) and generates
// either a backward branch or a forward branch and links it
// to the label fixup chain. Usage:
//
// Label L; // unbound label
// j(cc, &L); // forward branch to unbound label
// bind(&L); // bind label to the current pc
// j(cc, &L); // backward branch to bound label
// bind(&L); // illegal: a label may be bound only once
//
// Note: The same Label can be used for forward and backward branches
// but it may be bound only once.
void bind(Label* L); // binds an unbound label L to the current code position
// Returns the branch offset to the given label from the current code position
// Links the label to the current position if it is still unbound
// Manages the jump elimination optimization if the second parameter is true.
int branch_offset(Label* L);
// Returns true if the given pc address is the start of a constant pool load
// instruction sequence.
INLINE(static bool is_constant_pool_load(Address pc));
// Return the address in the constant pool of the code target address used by
// the branch/call instruction at pc, or the object in a mov.
INLINE(static Address constant_pool_entry_address(Address pc,
Address constant_pool));
// Read/Modify the code target address in the branch/call instruction at pc.
INLINE(static Address target_address_at(Address pc, Address constant_pool));
INLINE(static void set_target_address_at(
Isolate* isolate, Address pc, Address constant_pool, Address target,
ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED));
INLINE(static Address target_address_at(Address pc, Code* code)) {
Address constant_pool = code ? code->constant_pool() : NULL;
return target_address_at(pc, constant_pool);
}
INLINE(static void set_target_address_at(
Isolate* isolate, Address pc, Code* code, Address target,
ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) {
Address constant_pool = code ? code->constant_pool() : NULL;
set_target_address_at(isolate, pc, constant_pool, target,
icache_flush_mode);
}
// Return the code target address at a call site from the return address
// of that call in the instruction stream.
INLINE(static Address target_address_from_return_address(Address pc));
// Given the address of the beginning of a call, return the address
// in the instruction stream that the call will return from.
INLINE(static Address return_address_from_call_start(Address pc));
// This sets the branch destination (which is in the constant pool on ARM).
// This is for calls and branches within generated code.
inline static void deserialization_set_special_target_at(
Isolate* isolate, Address constant_pool_entry, Code* code,
Address target);
// This sets the internal reference at the pc.
inline static void deserialization_set_target_internal_reference_at(
Isolate* isolate, Address pc, Address target,
RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
// Here we are patching the address in the constant pool, not the actual call
// instruction. The address in the constant pool is the same size as a
// pointer.
static const int kSpecialTargetSize = kPointerSize;
// Size of an instruction.
static const int kInstrSize = sizeof(Instr);
// Distance between start of patched debug break slot and the emitted address
// to jump to.
// Patched debug break slot code is:
// ldr ip, [pc, #0] @ emited address and start
// blx ip
static const int kPatchDebugBreakSlotAddressOffset = 2 * kInstrSize;
// Difference between address of current opcode and value read from pc
// register.
static const int kPcLoadDelta = 8;
static const int kDebugBreakSlotInstructions = 4;
static const int kDebugBreakSlotLength =
kDebugBreakSlotInstructions * kInstrSize;
// ---------------------------------------------------------------------------
// Code generation
// Insert the smallest number of nop instructions
// possible to align the pc offset to a multiple
// of m. m must be a power of 2 (>= 4).
void Align(int m);
// Insert the smallest number of zero bytes possible to align the pc offset
// to a mulitple of m. m must be a power of 2 (>= 2).
void DataAlign(int m);
// Aligns code to something that's optimal for a jump target for the platform.
void CodeTargetAlign();
// Branch instructions
void b(int branch_offset, Condition cond = al);
void bl(int branch_offset, Condition cond = al);
void blx(int branch_offset); // v5 and above
void blx(Register target, Condition cond = al); // v5 and above
void bx(Register target, Condition cond = al); // v5 and above, plus v4t
// Convenience branch instructions using labels
void b(Label* L, Condition cond = al);
void b(Condition cond, Label* L) { b(L, cond); }
void bl(Label* L, Condition cond = al);
void bl(Condition cond, Label* L) { bl(L, cond); }
void blx(Label* L); // v5 and above
// Data-processing instructions
void and_(Register dst, Register src1, const Operand& src2,
SBit s = LeaveCC, Condition cond = al);
void eor(Register dst, Register src1, const Operand& src2,
SBit s = LeaveCC, Condition cond = al);
void sub(Register dst, Register src1, const Operand& src2,
SBit s = LeaveCC, Condition cond = al);
void sub(Register dst, Register src1, Register src2,
SBit s = LeaveCC, Condition cond = al) {
sub(dst, src1, Operand(src2), s, cond);
}
void rsb(Register dst, Register src1, const Operand& src2,
SBit s = LeaveCC, Condition cond = al);
void add(Register dst, Register src1, const Operand& src2,
SBit s = LeaveCC, Condition cond = al);
void add(Register dst, Register src1, Register src2,
SBit s = LeaveCC, Condition cond = al) {
add(dst, src1, Operand(src2), s, cond);
}
void adc(Register dst, Register src1, const Operand& src2,
SBit s = LeaveCC, Condition cond = al);
void sbc(Register dst, Register src1, const Operand& src2,
SBit s = LeaveCC, Condition cond = al);
void rsc(Register dst, Register src1, const Operand& src2,
SBit s = LeaveCC, Condition cond = al);
void tst(Register src1, const Operand& src2, Condition cond = al);
void tst(Register src1, Register src2, Condition cond = al) {
tst(src1, Operand(src2), cond);
}
void teq(Register src1, const Operand& src2, Condition cond = al);
void cmp(Register src1, const Operand& src2, Condition cond = al);
void cmp(Register src1, Register src2, Condition cond = al) {
cmp(src1, Operand(src2), cond);
}
void cmp_raw_immediate(Register src1, int raw_immediate, Condition cond = al);
void cmn(Register src1, const Operand& src2, Condition cond = al);
void orr(Register dst, Register src1, const Operand& src2,
SBit s = LeaveCC, Condition cond = al);
void orr(Register dst, Register src1, Register src2,
SBit s = LeaveCC, Condition cond = al) {
orr(dst, src1, Operand(src2), s, cond);
}
void mov(Register dst, const Operand& src,
SBit s = LeaveCC, Condition cond = al);
void mov(Register dst, Register src, SBit s = LeaveCC, Condition cond = al) {
mov(dst, Operand(src), s, cond);
}
// Load the position of the label relative to the generated code object
// pointer in a register.
void mov_label_offset(Register dst, Label* label);
// ARMv7 instructions for loading a 32 bit immediate in two instructions.
// The constant for movw and movt should be in the range 0-0xffff.
void movw(Register reg, uint32_t immediate, Condition cond = al);
void movt(Register reg, uint32_t immediate, Condition cond = al);
void bic(Register dst, Register src1, const Operand& src2,
SBit s = LeaveCC, Condition cond = al);
void mvn(Register dst, const Operand& src,
SBit s = LeaveCC, Condition cond = al);
// Shift instructions
void asr(Register dst, Register src1, const Operand& src2, SBit s = LeaveCC,
Condition cond = al) {
if (src2.is_reg()) {
mov(dst, Operand(src1, ASR, src2.rm()), s, cond);
} else {
mov(dst, Operand(src1, ASR, src2.immediate()), s, cond);
}
}
void lsl(Register dst, Register src1, const Operand& src2, SBit s = LeaveCC,
Condition cond = al) {
if (src2.is_reg()) {
mov(dst, Operand(src1, LSL, src2.rm()), s, cond);
} else {
mov(dst, Operand(src1, LSL, src2.immediate()), s, cond);
}
}
void lsr(Register dst, Register src1, const Operand& src2, SBit s = LeaveCC,
Condition cond = al) {
if (src2.is_reg()) {
mov(dst, Operand(src1, LSR, src2.rm()), s, cond);
} else {
mov(dst, Operand(src1, LSR, src2.immediate()), s, cond);
}
}
// Multiply instructions
void mla(Register dst, Register src1, Register src2, Register srcA,
SBit s = LeaveCC, Condition cond = al);
void mls(Register dst, Register src1, Register src2, Register srcA,
Condition cond = al);
void sdiv(Register dst, Register src1, Register src2,
Condition cond = al);
void udiv(Register dst, Register src1, Register src2, Condition cond = al);
void mul(Register dst, Register src1, Register src2,
SBit s = LeaveCC, Condition cond = al);
void smmla(Register dst, Register src1, Register src2, Register srcA,
Condition cond = al);
void smmul(Register dst, Register src1, Register src2, Condition cond = al);
void smlal(Register dstL, Register dstH, Register src1, Register src2,
SBit s = LeaveCC, Condition cond = al);
void smull(Register dstL, Register dstH, Register src1, Register src2,
SBit s = LeaveCC, Condition cond = al);
void umlal(Register dstL, Register dstH, Register src1, Register src2,
SBit s = LeaveCC, Condition cond = al);
void umull(Register dstL, Register dstH, Register src1, Register src2,
SBit s = LeaveCC, Condition cond = al);
// Miscellaneous arithmetic instructions
void clz(Register dst, Register src, Condition cond = al); // v5 and above
// Saturating instructions. v6 and above.
// Unsigned saturate.
//
// Saturate an optionally shifted signed value to an unsigned range.
//
// usat dst, #satpos, src
// usat dst, #satpos, src, lsl #sh
// usat dst, #satpos, src, asr #sh
//
// Register dst will contain:
//
// 0, if s < 0
// (1 << satpos) - 1, if s > ((1 << satpos) - 1)
// s, otherwise
//
// where s is the contents of src after shifting (if used.)
void usat(Register dst, int satpos, const Operand& src, Condition cond = al);
// Bitfield manipulation instructions. v7 and above.
void ubfx(Register dst, Register src, int lsb, int width,
Condition cond = al);
void sbfx(Register dst, Register src, int lsb, int width,
Condition cond = al);
void bfc(Register dst, int lsb, int width, Condition cond = al);
void bfi(Register dst, Register src, int lsb, int width,
Condition cond = al);
void pkhbt(Register dst, Register src1, const Operand& src2,
Condition cond = al);
void pkhtb(Register dst, Register src1, const Operand& src2,
Condition cond = al);
void sxtb(Register dst, Register src, int rotate = 0, Condition cond = al);
void sxtab(Register dst, Register src1, Register src2, int rotate = 0,
Condition cond = al);
void sxth(Register dst, Register src, int rotate = 0, Condition cond = al);
void sxtah(Register dst, Register src1, Register src2, int rotate = 0,
Condition cond = al);
void uxtb(Register dst, Register src, int rotate = 0, Condition cond = al);
void uxtab(Register dst, Register src1, Register src2, int rotate = 0,
Condition cond = al);
void uxtb16(Register dst, Register src, int rotate = 0, Condition cond = al);
void uxth(Register dst, Register src, int rotate = 0, Condition cond = al);
void uxtah(Register dst, Register src1, Register src2, int rotate = 0,
Condition cond = al);
// Reverse the bits in a register.
void rbit(Register dst, Register src, Condition cond = al);
// Status register access instructions
void mrs(Register dst, SRegister s, Condition cond = al);
void msr(SRegisterFieldMask fields, const Operand& src, Condition cond = al);
// Load/Store instructions
void ldr(Register dst, const MemOperand& src, Condition cond = al);
void str(Register src, const MemOperand& dst, Condition cond = al);
void ldrb(Register dst, const MemOperand& src, Condition cond = al);
void strb(Register src, const MemOperand& dst, Condition cond = al);
void ldrh(Register dst, const MemOperand& src, Condition cond = al);
void strh(Register src, const MemOperand& dst, Condition cond = al);
void ldrsb(Register dst, const MemOperand& src, Condition cond = al);
void ldrsh(Register dst, const MemOperand& src, Condition cond = al);
void ldrd(Register dst1,
Register dst2,
const MemOperand& src, Condition cond = al);
void strd(Register src1,
Register src2,
const MemOperand& dst, Condition cond = al);
// Load/Store exclusive instructions
void ldrex(Register dst, Register src, Condition cond = al);
void strex(Register src1, Register src2, Register dst, Condition cond = al);
void ldrexb(Register dst, Register src, Condition cond = al);
void strexb(Register src1, Register src2, Register dst, Condition cond = al);
void ldrexh(Register dst, Register src, Condition cond = al);
void strexh(Register src1, Register src2, Register dst, Condition cond = al);
// Preload instructions
void pld(const MemOperand& address);
// Load/Store multiple instructions
void ldm(BlockAddrMode am, Register base, RegList dst, Condition cond = al);
void stm(BlockAddrMode am, Register base, RegList src, Condition cond = al);
// Exception-generating instructions and debugging support
void stop(const char* msg,
Condition cond = al,
int32_t code = kDefaultStopCode);
void bkpt(uint32_t imm16); // v5 and above
void svc(uint32_t imm24, Condition cond = al);
// Synchronization instructions
void dmb(BarrierOption option);
void dsb(BarrierOption option);
void isb(BarrierOption option);
// Coprocessor instructions
void cdp(Coprocessor coproc, int opcode_1,
CRegister crd, CRegister crn, CRegister crm,
int opcode_2, Condition cond = al);
void cdp2(Coprocessor coproc, int opcode_1,
CRegister crd, CRegister crn, CRegister crm,
int opcode_2); // v5 and above
void mcr(Coprocessor coproc, int opcode_1,
Register rd, CRegister crn, CRegister crm,
int opcode_2 = 0, Condition cond = al);
void mcr2(Coprocessor coproc, int opcode_1,
Register rd, CRegister crn, CRegister crm,
int opcode_2 = 0); // v5 and above
void mrc(Coprocessor coproc, int opcode_1,
Register rd, CRegister crn, CRegister crm,
int opcode_2 = 0, Condition cond = al);
void mrc2(Coprocessor coproc, int opcode_1,
Register rd, CRegister crn, CRegister crm,
int opcode_2 = 0); // v5 and above
void ldc(Coprocessor coproc, CRegister crd, const MemOperand& src,
LFlag l = Short, Condition cond = al);
void ldc(Coprocessor coproc, CRegister crd, Register base, int option,
LFlag l = Short, Condition cond = al);
void ldc2(Coprocessor coproc, CRegister crd, const MemOperand& src,
LFlag l = Short); // v5 and above
void ldc2(Coprocessor coproc, CRegister crd, Register base, int option,
LFlag l = Short); // v5 and above
// Support for VFP.
// All these APIs support S0 to S31 and D0 to D31.
void vldr(const DwVfpRegister dst,
const Register base,
int offset,
const Condition cond = al);
void vldr(const DwVfpRegister dst,
const MemOperand& src,
const Condition cond = al);
void vldr(const SwVfpRegister dst,
const Register base,
int offset,
const Condition cond = al);
void vldr(const SwVfpRegister dst,
const MemOperand& src,
const Condition cond = al);
void vstr(const DwVfpRegister src,
const Register base,
int offset,
const Condition cond = al);
void vstr(const DwVfpRegister src,
const MemOperand& dst,
const Condition cond = al);
void vstr(const SwVfpRegister src,
const Register base,
int offset,
const Condition cond = al);
void vstr(const SwVfpRegister src,
const MemOperand& dst,
const Condition cond = al);
void vldm(BlockAddrMode am,
Register base,
DwVfpRegister first,
DwVfpRegister last,
Condition cond = al);
void vstm(BlockAddrMode am,
Register base,
DwVfpRegister first,
DwVfpRegister last,
Condition cond = al);
void vldm(BlockAddrMode am,
Register base,
SwVfpRegister first,
SwVfpRegister last,
Condition cond = al);
void vstm(BlockAddrMode am,
Register base,
SwVfpRegister first,
SwVfpRegister last,
Condition cond = al);
void vmov(const SwVfpRegister dst, float imm);
void vmov(const DwVfpRegister dst,
double imm,
const Register scratch = no_reg);
void vmov(const SwVfpRegister dst,
const SwVfpRegister src,
const Condition cond = al);
void vmov(const DwVfpRegister dst,
const DwVfpRegister src,
const Condition cond = al);
void vmov(const DwVfpRegister dst,
const VmovIndex index,
const Register src,
const Condition cond = al);
void vmov(const Register dst,
const VmovIndex index,
const DwVfpRegister src,
const Condition cond = al);
void vmov(const DwVfpRegister dst,
const Register src1,
const Register src2,
const Condition cond = al);
void vmov(const Register dst1,
const Register dst2,
const DwVfpRegister src,
const Condition cond = al);
void vmov(const SwVfpRegister dst,
const Register src,
const Condition cond = al);
void vmov(const Register dst,
const SwVfpRegister src,
const Condition cond = al);
void vcvt_f64_s32(const DwVfpRegister dst,
const SwVfpRegister src,
VFPConversionMode mode = kDefaultRoundToZero,
const Condition cond = al);
void vcvt_f32_s32(const SwVfpRegister dst,
const SwVfpRegister src,
VFPConversionMode mode = kDefaultRoundToZero,
const Condition cond = al);
void vcvt_f64_u32(const DwVfpRegister dst,
const SwVfpRegister src,
VFPConversionMode mode = kDefaultRoundToZero,
const Condition cond = al);
void vcvt_f32_u32(const SwVfpRegister dst,
const SwVfpRegister src,
VFPConversionMode mode = kDefaultRoundToZero,
const Condition cond = al);
void vcvt_s32_f32(const SwVfpRegister dst,
const SwVfpRegister src,
VFPConversionMode mode = kDefaultRoundToZero,
const Condition cond = al);
void vcvt_u32_f32(const SwVfpRegister dst,
const SwVfpRegister src,
VFPConversionMode mode = kDefaultRoundToZero,
const Condition cond = al);
void vcvt_s32_f64(const SwVfpRegister dst,
const DwVfpRegister src,
VFPConversionMode mode = kDefaultRoundToZero,
const Condition cond = al);
void vcvt_u32_f64(const SwVfpRegister dst,
const DwVfpRegister src,
VFPConversionMode mode = kDefaultRoundToZero,
const Condition cond = al);
void vcvt_f64_f32(const DwVfpRegister dst,
const SwVfpRegister src,
VFPConversionMode mode = kDefaultRoundToZero,
const Condition cond = al);
void vcvt_f32_f64(const SwVfpRegister dst,
const DwVfpRegister src,
VFPConversionMode mode = kDefaultRoundToZero,
const Condition cond = al);
void vcvt_f64_s32(const DwVfpRegister dst,
int fraction_bits,
const Condition cond = al);
void vmrs(const Register dst, const Condition cond = al);
void vmsr(const Register dst, const Condition cond = al);
void vneg(const DwVfpRegister dst,
const DwVfpRegister src,
const Condition cond = al);
void vneg(const SwVfpRegister dst, const SwVfpRegister src,
const Condition cond = al);
void vabs(const DwVfpRegister dst,
const DwVfpRegister src,
const Condition cond = al);
void vabs(const SwVfpRegister dst, const SwVfpRegister src,
const Condition cond = al);
void vadd(const DwVfpRegister dst,
const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond = al);
void vadd(const SwVfpRegister dst, const SwVfpRegister src1,
const SwVfpRegister src2, const Condition cond = al);
void vsub(const DwVfpRegister dst,
const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond = al);
void vsub(const SwVfpRegister dst, const SwVfpRegister src1,
const SwVfpRegister src2, const Condition cond = al);
void vmul(const DwVfpRegister dst,
const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond = al);
void vmul(const SwVfpRegister dst, const SwVfpRegister src1,
const SwVfpRegister src2, const Condition cond = al);
void vmla(const DwVfpRegister dst,
const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond = al);
void vmla(const SwVfpRegister dst, const SwVfpRegister src1,
const SwVfpRegister src2, const Condition cond = al);
void vmls(const DwVfpRegister dst,
const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond = al);
void vmls(const SwVfpRegister dst, const SwVfpRegister src1,
const SwVfpRegister src2, const Condition cond = al);
void vdiv(const DwVfpRegister dst,
const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond = al);
void vdiv(const SwVfpRegister dst, const SwVfpRegister src1,
const SwVfpRegister src2, const Condition cond = al);
void vcmp(const DwVfpRegister src1,
const DwVfpRegister src2,
const Condition cond = al);
void vcmp(const SwVfpRegister src1, const SwVfpRegister src2,
const Condition cond = al);
void vcmp(const DwVfpRegister src1,
const double src2,
const Condition cond = al);
void vcmp(const SwVfpRegister src1, const float src2,
const Condition cond = al);
// VSEL supports cond in {eq, ne, ge, lt, gt, le, vs, vc}.
void vsel(const Condition cond,
const DwVfpRegister dst,
const DwVfpRegister src1,
const DwVfpRegister src2);
void vsel(const Condition cond,
const SwVfpRegister dst,
const SwVfpRegister src1,
const SwVfpRegister src2);
void vsqrt(const DwVfpRegister dst,
const DwVfpRegister src,
const Condition cond = al);
void vsqrt(const SwVfpRegister dst, const SwVfpRegister src,
const Condition cond = al);
// ARMv8 rounding instructions.
void vrinta(const SwVfpRegister dst, const SwVfpRegister src);
void vrinta(const DwVfpRegister dst, const DwVfpRegister src);
void vrintn(const SwVfpRegister dst, const SwVfpRegister src);
void vrintn(const DwVfpRegister dst, const DwVfpRegister src);
void vrintm(const SwVfpRegister dst, const SwVfpRegister src);
void vrintm(const DwVfpRegister dst, const DwVfpRegister src);
void vrintp(const SwVfpRegister dst, const SwVfpRegister src);
void vrintp(const DwVfpRegister dst, const DwVfpRegister src);
void vrintz(const SwVfpRegister dst, const SwVfpRegister src,
const Condition cond = al);
void vrintz(const DwVfpRegister dst, const DwVfpRegister src,
const Condition cond = al);
// Support for NEON.
// All these APIs support D0 to D31 and Q0 to Q15.
void vld1(NeonSize size,
const NeonListOperand& dst,
const NeonMemOperand& src);
void vst1(NeonSize size,
const NeonListOperand& src,
const NeonMemOperand& dst);
void vmovl(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src);
// Pseudo instructions
// Different nop operations are used by the code generator to detect certain
// states of the generated code.
enum NopMarkerTypes {
NON_MARKING_NOP = 0,
DEBUG_BREAK_NOP,
// IC markers.
PROPERTY_ACCESS_INLINED,
PROPERTY_ACCESS_INLINED_CONTEXT,
PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
// Helper values.
LAST_CODE_MARKER,
FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED
};
void nop(int type = 0); // 0 is the default non-marking type.
void push(Register src, Condition cond = al) {
str(src, MemOperand(sp, 4, NegPreIndex), cond);
}
void pop(Register dst, Condition cond = al) {
ldr(dst, MemOperand(sp, 4, PostIndex), cond);
}
void pop() {
add(sp, sp, Operand(kPointerSize));
}
void vpush(DwVfpRegister src, Condition cond = al) {
vstm(db_w, sp, src, src, cond);
}
void vpush(SwVfpRegister src, Condition cond = al) {
vstm(db_w, sp, src, src, cond);
}
void vpop(DwVfpRegister dst, Condition cond = al) {
vldm(ia_w, sp, dst, dst, cond);
}
// Jump unconditionally to given label.
void jmp(Label* L) { b(L, al); }
// Check the code size generated from label to here.
int SizeOfCodeGeneratedSince(Label* label) {
return pc_offset() - label->pos();
}
// Check the number of instructions generated from label to here.
int InstructionsGeneratedSince(Label* label) {
return SizeOfCodeGeneratedSince(label) / kInstrSize;
}
// Check whether an immediate fits an addressing mode 1 instruction.
static bool ImmediateFitsAddrMode1Instruction(int32_t imm32);
// Check whether an immediate fits an addressing mode 2 instruction.
bool ImmediateFitsAddrMode2Instruction(int32_t imm32);
// Class for scoping postponing the constant pool generation.
class BlockConstPoolScope {
public:
explicit BlockConstPoolScope(Assembler* assem) : assem_(assem) {
assem_->StartBlockConstPool();
}
~BlockConstPoolScope() {
assem_->EndBlockConstPool();
}
private:
Assembler* assem_;
DISALLOW_IMPLICIT_CONSTRUCTORS(BlockConstPoolScope);
};
// Debugging
// Mark generator continuation.
void RecordGeneratorContinuation();
// Mark address of a debug break slot.
void RecordDebugBreakSlot(RelocInfo::Mode mode);
// Record the AST id of the CallIC being compiled, so that it can be placed
// in the relocation information.
void SetRecordedAstId(TypeFeedbackId ast_id) {
DCHECK(recorded_ast_id_.IsNone());
recorded_ast_id_ = ast_id;
}
TypeFeedbackId RecordedAstId() {
DCHECK(!recorded_ast_id_.IsNone());
return recorded_ast_id_;
}
void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
// Record a comment relocation entry that can be used by a disassembler.
// Use --code-comments to enable.
void RecordComment(const char* msg);
// Record a deoptimization reason that can be used by a log or cpu profiler.
// Use --trace-deopt to enable.
void RecordDeoptReason(const int reason, int raw_position, int id);
// Record the emission of a constant pool.
//
// The emission of constant pool depends on the size of the code generated and
// the number of RelocInfo recorded.
// The Debug mechanism needs to map code offsets between two versions of a
// function, compiled with and without debugger support (see for example
// Debug::PrepareForBreakPoints()).
// Compiling functions with debugger support generates additional code
// (DebugCodegen::GenerateSlot()). This may affect the emission of the
// constant pools and cause the version of the code with debugger support to
// have constant pools generated in different places.
// Recording the position and size of emitted constant pools allows to
// correctly compute the offset mappings between the different versions of a
// function in all situations.
//
// The parameter indicates the size of the constant pool (in bytes), including
// the marker and branch over the data.
void RecordConstPool(int size);
// Writes a single byte or word of data in the code stream. Used
// for inline tables, e.g., jump-tables. CheckConstantPool() should be
// called before any use of db/dd/dq/dp to ensure that constant pools
// are not emitted as part of the tables generated.
void db(uint8_t data);
void dd(uint32_t data);
void dq(uint64_t data);
void dp(uintptr_t data) { dd(data); }
// Emits the address of the code stub's first instruction.
void emit_code_stub_address(Code* stub);
AssemblerPositionsRecorder* positions_recorder() {
return &positions_recorder_;
}
// Read/patch instructions
Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
void instr_at_put(int pos, Instr instr) {
*reinterpret_cast<Instr*>(buffer_ + pos) = instr;
}
static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
static void instr_at_put(byte* pc, Instr instr) {
*reinterpret_cast<Instr*>(pc) = instr;
}
static Condition GetCondition(Instr instr);
static bool IsBranch(Instr instr);
static int GetBranchOffset(Instr instr);
static bool IsLdrRegisterImmediate(Instr instr);
static bool IsVldrDRegisterImmediate(Instr instr);
static Instr GetConsantPoolLoadPattern();
static Instr GetConsantPoolLoadMask();
static bool IsLdrPpRegOffset(Instr instr);
static Instr GetLdrPpRegOffsetPattern();
static bool IsLdrPpImmediateOffset(Instr instr);
static bool IsVldrDPpImmediateOffset(Instr instr);
static int GetLdrRegisterImmediateOffset(Instr instr);
static int GetVldrDRegisterImmediateOffset(Instr instr);
static Instr SetLdrRegisterImmediateOffset(Instr instr, int offset);
static Instr SetVldrDRegisterImmediateOffset(Instr instr, int offset);
static bool IsStrRegisterImmediate(Instr instr);
static Instr SetStrRegisterImmediateOffset(Instr instr, int offset);
static bool IsAddRegisterImmediate(Instr instr);
static Instr SetAddRegisterImmediateOffset(Instr instr, int offset);
static Register GetRd(Instr instr);
static Register GetRn(Instr instr);
static Register GetRm(Instr instr);
static bool IsPush(Instr instr);
static bool IsPop(Instr instr);
static bool IsStrRegFpOffset(Instr instr);
static bool IsLdrRegFpOffset(Instr instr);
static bool IsStrRegFpNegOffset(Instr instr);
static bool IsLdrRegFpNegOffset(Instr instr);
static bool IsLdrPcImmediateOffset(Instr instr);
static bool IsVldrDPcImmediateOffset(Instr instr);
static bool IsBlxReg(Instr instr);
static bool IsBlxIp(Instr instr);
static bool IsTstImmediate(Instr instr);
static bool IsCmpRegister(Instr instr);
static bool IsCmpImmediate(Instr instr);
static Register GetCmpImmediateRegister(Instr instr);
static int GetCmpImmediateRawImmediate(Instr instr);
static bool IsNop(Instr instr, int type = NON_MARKING_NOP);
static bool IsMovImmed(Instr instr);
static bool IsOrrImmed(Instr instr);
static bool IsMovT(Instr instr);
static Instr GetMovTPattern();
static bool IsMovW(Instr instr);
static Instr GetMovWPattern();
static Instr EncodeMovwImmediate(uint32_t immediate);
static Instr PatchMovwImmediate(Instr instruction, uint32_t immediate);
static int DecodeShiftImm(Instr instr);
static Instr PatchShiftImm(Instr instr, int immed);
// Constants in pools are accessed via pc relative addressing, which can
// reach +/-4KB for integer PC-relative loads and +/-1KB for floating-point
// PC-relative loads, thereby defining a maximum distance between the
// instruction and the accessed constant.
static const int kMaxDistToIntPool = 4*KB;
static const int kMaxDistToFPPool = 1*KB;
// All relocations could be integer, it therefore acts as the limit.
static const int kMinNumPendingConstants = 4;
static const int kMaxNumPending32Constants = kMaxDistToIntPool / kInstrSize;
static const int kMaxNumPending64Constants = kMaxDistToFPPool / kInstrSize;
// Postpone the generation of the constant pool for the specified number of
// instructions.
void BlockConstPoolFor(int instructions);
// Check if is time to emit a constant pool.
void CheckConstPool(bool force_emit, bool require_jump);
void MaybeCheckConstPool() {
if (pc_offset() >= next_buffer_check_) {
CheckConstPool(false, true);
}
}
int EmitEmbeddedConstantPool() {
DCHECK(FLAG_enable_embedded_constant_pool);
return constant_pool_builder_.Emit(this);
}
bool ConstantPoolAccessIsInOverflow() const {
return constant_pool_builder_.NextAccess(ConstantPoolEntry::INTPTR) ==
ConstantPoolEntry::OVERFLOWED;
}
void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
ConstantPoolEntry::Access access,
ConstantPoolEntry::Type type);
protected:
// Relocation for a type-recording IC has the AST id added to it. This
// member variable is a way to pass the information from the call site to
// the relocation info.
TypeFeedbackId recorded_ast_id_;
int buffer_space() const { return reloc_info_writer.pos() - pc_; }
// Decode branch instruction at pos and return branch target pos
int target_at(int pos);
// Patch branch instruction at pos to branch to given branch target pos
void target_at_put(int pos, int target_pos);
// Prevent contant pool emission until EndBlockConstPool is called.
// Call to this function can be nested but must be followed by an equal
// number of call to EndBlockConstpool.
void StartBlockConstPool() {
if (const_pool_blocked_nesting_++ == 0) {
// Prevent constant pool checks happening by setting the next check to
// the biggest possible offset.
next_buffer_check_ = kMaxInt;
}
}
// Resume constant pool emission. Need to be called as many time as
// StartBlockConstPool to have an effect.
void EndBlockConstPool() {
if (--const_pool_blocked_nesting_ == 0) {
#ifdef DEBUG
// Max pool start (if we need a jump and an alignment).
int start = pc_offset() + kInstrSize + 2 * kPointerSize;
// Check the constant pool hasn't been blocked for too long.
DCHECK(pending_32_bit_constants_.empty() ||
(start + pending_64_bit_constants_.size() * kDoubleSize <
(first_const_pool_32_use_ + kMaxDistToIntPool)));
DCHECK(pending_64_bit_constants_.empty() ||
(start < (first_const_pool_64_use_ + kMaxDistToFPPool)));
#endif
// Two cases:
// * no_const_pool_before_ >= next_buffer_check_ and the emission is
// still blocked
// * no_const_pool_before_ < next_buffer_check_ and the next emit will
// trigger a check.
next_buffer_check_ = no_const_pool_before_;
}
}
bool is_const_pool_blocked() const {
return (const_pool_blocked_nesting_ > 0) ||
(pc_offset() < no_const_pool_before_);
}
private:
int next_buffer_check_; // pc offset of next buffer check
// Code generation
// The relocation writer's position is at least kGap bytes below the end of
// the generated instructions. This is so that multi-instruction sequences do
// not have to check for overflow. The same is true for writes of large
// relocation info entries.
static const int kGap = 32;
// Constant pool generation
// Pools are emitted in the instruction stream, preferably after unconditional
// jumps or after returns from functions (in dead code locations).
// If a long code sequence does not contain unconditional jumps, it is
// necessary to emit the constant pool before the pool gets too far from the
// location it is accessed from. In this case, we emit a jump over the emitted
// constant pool.
// Constants in the pool may be addresses of functions that gets relocated;
// if so, a relocation info entry is associated to the constant pool entry.
// Repeated checking whether the constant pool should be emitted is rather
// expensive. By default we only check again once a number of instructions
// has been generated. That also means that the sizing of the buffers is not
// an exact science, and that we rely on some slop to not overrun buffers.
static const int kCheckPoolIntervalInst = 32;
static const int kCheckPoolInterval = kCheckPoolIntervalInst * kInstrSize;
// Emission of the constant pool may be blocked in some code sequences.
int const_pool_blocked_nesting_; // Block emission if this is not zero.
int no_const_pool_before_; // Block emission before this pc offset.
// Keep track of the first instruction requiring a constant pool entry
// since the previous constant pool was emitted.
int first_const_pool_32_use_;
int first_const_pool_64_use_;
// Relocation info generation
// Each relocation is encoded as a variable size value
static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
RelocInfoWriter reloc_info_writer;
// ConstantPoolEntry records are used during code generation as temporary
// containers for constants and code target addresses until they are emitted
// to the constant pool. These records are temporarily stored in a separate
// buffer until a constant pool is emitted.
// If every instruction in a long sequence is accessing the pool, we need one
// pending relocation entry per instruction.
// The buffers of pending constant pool entries.
std::vector<ConstantPoolEntry> pending_32_bit_constants_;
std::vector<ConstantPoolEntry> pending_64_bit_constants_;
ConstantPoolBuilder constant_pool_builder_;
// The bound position, before this we cannot do instruction elimination.
int last_bound_pos_;
// Code emission
inline void CheckBuffer();
void GrowBuffer();
inline void emit(Instr x);
// 32-bit immediate values
void move_32_bit_immediate(Register rd,
const Operand& x,
Condition cond = al);
// Instruction generation
void addrmod1(Instr instr, Register rn, Register rd, const Operand& x);
void addrmod2(Instr instr, Register rd, const MemOperand& x);
void addrmod3(Instr instr, Register rd, const MemOperand& x);
void addrmod4(Instr instr, Register rn, RegList rl);
void addrmod5(Instr instr, CRegister crd, const MemOperand& x);
// Labels
void print(Label* L);
void bind_to(Label* L, int pos);
void next(Label* L);
// Record reloc info for current pc_
void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
ConstantPoolEntry::Access ConstantPoolAddEntry(int position,
RelocInfo::Mode rmode,
intptr_t value);
ConstantPoolEntry::Access ConstantPoolAddEntry(int position, double value);
friend class RelocInfo;
friend class CodePatcher;
friend class BlockConstPoolScope;
AssemblerPositionsRecorder positions_recorder_;
friend class AssemblerPositionsRecorder;
friend class EnsureSpace;
};
class EnsureSpace BASE_EMBEDDED {
public:
explicit EnsureSpace(Assembler* assembler) {
assembler->CheckBuffer();
}
};
} // namespace internal
} // namespace v8
#endif // V8_ARM_ASSEMBLER_ARM_H_