// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include "src/base/adapters.h"
#include "src/compiler/instruction-selector-impl.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
namespace v8 {
namespace internal {
namespace compiler {
// Adds X64-specific methods for generating operands.
class X64OperandGenerator final : public OperandGenerator {
public:
explicit X64OperandGenerator(InstructionSelector* selector)
: OperandGenerator(selector) {}
bool CanBeImmediate(Node* node) {
switch (node->opcode()) {
case IrOpcode::kInt32Constant:
case IrOpcode::kRelocatableInt32Constant:
return true;
case IrOpcode::kInt64Constant: {
const int64_t value = OpParameter<int64_t>(node);
return value == static_cast<int64_t>(static_cast<int32_t>(value));
}
case IrOpcode::kNumberConstant: {
const double value = OpParameter<double>(node);
return bit_cast<int64_t>(value) == 0;
}
default:
return false;
}
}
bool CanBeMemoryOperand(InstructionCode opcode, Node* node, Node* input,
int effect_level) {
if (input->opcode() != IrOpcode::kLoad ||
!selector()->CanCover(node, input)) {
return false;
}
if (effect_level != selector()->GetEffectLevel(input)) {
return false;
}
MachineRepresentation rep =
LoadRepresentationOf(input->op()).representation();
switch (opcode) {
case kX64Cmp:
case kX64Test:
return rep == MachineRepresentation::kWord64 ||
rep == MachineRepresentation::kTagged;
case kX64Cmp32:
case kX64Test32:
return rep == MachineRepresentation::kWord32;
case kX64Cmp16:
case kX64Test16:
return rep == MachineRepresentation::kWord16;
case kX64Cmp8:
case kX64Test8:
return rep == MachineRepresentation::kWord8;
default:
break;
}
return false;
}
AddressingMode GenerateMemoryOperandInputs(Node* index, int scale_exponent,
Node* base, Node* displacement,
InstructionOperand inputs[],
size_t* input_count) {
AddressingMode mode = kMode_MRI;
if (base != nullptr) {
inputs[(*input_count)++] = UseRegister(base);
if (index != nullptr) {
DCHECK(scale_exponent >= 0 && scale_exponent <= 3);
inputs[(*input_count)++] = UseRegister(index);
if (displacement != nullptr) {
inputs[(*input_count)++] = UseImmediate(displacement);
static const AddressingMode kMRnI_modes[] = {kMode_MR1I, kMode_MR2I,
kMode_MR4I, kMode_MR8I};
mode = kMRnI_modes[scale_exponent];
} else {
static const AddressingMode kMRn_modes[] = {kMode_MR1, kMode_MR2,
kMode_MR4, kMode_MR8};
mode = kMRn_modes[scale_exponent];
}
} else {
if (displacement == nullptr) {
mode = kMode_MR;
} else {
inputs[(*input_count)++] = UseImmediate(displacement);
mode = kMode_MRI;
}
}
} else {
DCHECK_NOT_NULL(index);
DCHECK(scale_exponent >= 0 && scale_exponent <= 3);
inputs[(*input_count)++] = UseRegister(index);
if (displacement != nullptr) {
inputs[(*input_count)++] = UseImmediate(displacement);
static const AddressingMode kMnI_modes[] = {kMode_MRI, kMode_M2I,
kMode_M4I, kMode_M8I};
mode = kMnI_modes[scale_exponent];
} else {
static const AddressingMode kMn_modes[] = {kMode_MR, kMode_MR1,
kMode_M4, kMode_M8};
mode = kMn_modes[scale_exponent];
if (mode == kMode_MR1) {
// [%r1 + %r1*1] has a smaller encoding than [%r1*2+0]
inputs[(*input_count)++] = UseRegister(index);
}
}
}
return mode;
}
AddressingMode GetEffectiveAddressMemoryOperand(Node* operand,
InstructionOperand inputs[],
size_t* input_count) {
BaseWithIndexAndDisplacement64Matcher m(operand, true);
DCHECK(m.matches());
if ((m.displacement() == nullptr || CanBeImmediate(m.displacement()))) {
return GenerateMemoryOperandInputs(m.index(), m.scale(), m.base(),
m.displacement(), inputs, input_count);
} else {
inputs[(*input_count)++] = UseRegister(operand->InputAt(0));
inputs[(*input_count)++] = UseRegister(operand->InputAt(1));
return kMode_MR1;
}
}
bool CanBeBetterLeftOperand(Node* node) const {
return !selector()->IsLive(node);
}
};
void InstructionSelector::VisitLoad(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
X64OperandGenerator g(this);
ArchOpcode opcode = kArchNop;
switch (load_rep.representation()) {
case MachineRepresentation::kFloat32:
opcode = kX64Movss;
break;
case MachineRepresentation::kFloat64:
opcode = kX64Movsd;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kX64Movsxbl : kX64Movzxbl;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kX64Movsxwl : kX64Movzxwl;
break;
case MachineRepresentation::kWord32:
opcode = kX64Movl;
break;
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord64:
opcode = kX64Movq;
break;
case MachineRepresentation::kSimd128: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
InstructionOperand outputs[1];
outputs[0] = g.DefineAsRegister(node);
InstructionOperand inputs[3];
size_t input_count = 0;
AddressingMode mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
InstructionCode code = opcode | AddressingModeField::encode(mode);
Emit(code, 1, outputs, input_count, inputs);
}
void InstructionSelector::VisitStore(Node* node) {
X64OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
StoreRepresentation store_rep = StoreRepresentationOf(node->op());
WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind();
MachineRepresentation rep = store_rep.representation();
if (write_barrier_kind != kNoWriteBarrier) {
DCHECK_EQ(MachineRepresentation::kTagged, rep);
AddressingMode addressing_mode;
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
if (g.CanBeImmediate(index)) {
inputs[input_count++] = g.UseImmediate(index);
addressing_mode = kMode_MRI;
} else {
inputs[input_count++] = g.UseUniqueRegister(index);
addressing_mode = kMode_MR1;
}
inputs[input_count++] = g.UseUniqueRegister(value);
RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny;
switch (write_barrier_kind) {
case kNoWriteBarrier:
UNREACHABLE();
break;
case kMapWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsMap;
break;
case kPointerWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsPointer;
break;
case kFullWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsAny;
break;
}
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
size_t const temp_count = arraysize(temps);
InstructionCode code = kArchStoreWithWriteBarrier;
code |= AddressingModeField::encode(addressing_mode);
code |= MiscField::encode(static_cast<int>(record_write_mode));
Emit(code, 0, nullptr, input_count, inputs, temp_count, temps);
} else {
ArchOpcode opcode = kArchNop;
switch (rep) {
case MachineRepresentation::kFloat32:
opcode = kX64Movss;
break;
case MachineRepresentation::kFloat64:
opcode = kX64Movsd;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = kX64Movb;
break;
case MachineRepresentation::kWord16:
opcode = kX64Movw;
break;
case MachineRepresentation::kWord32:
opcode = kX64Movl;
break;
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord64:
opcode = kX64Movq;
break;
case MachineRepresentation::kSimd128: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
InstructionOperand inputs[4];
size_t input_count = 0;
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
InstructionCode code =
opcode | AddressingModeField::encode(addressing_mode);
InstructionOperand value_operand =
g.CanBeImmediate(value) ? g.UseImmediate(value) : g.UseRegister(value);
inputs[input_count++] = value_operand;
Emit(code, 0, static_cast<InstructionOperand*>(nullptr), input_count,
inputs);
}
}
void InstructionSelector::VisitCheckedLoad(Node* node) {
CheckedLoadRepresentation load_rep = CheckedLoadRepresentationOf(node->op());
X64OperandGenerator g(this);
Node* const buffer = node->InputAt(0);
Node* const offset = node->InputAt(1);
Node* const length = node->InputAt(2);
ArchOpcode opcode = kArchNop;
switch (load_rep.representation()) {
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kCheckedLoadInt8 : kCheckedLoadUint8;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kCheckedLoadInt16 : kCheckedLoadUint16;
break;
case MachineRepresentation::kWord32:
opcode = kCheckedLoadWord32;
break;
case MachineRepresentation::kWord64:
opcode = kCheckedLoadWord64;
break;
case MachineRepresentation::kFloat32:
opcode = kCheckedLoadFloat32;
break;
case MachineRepresentation::kFloat64:
opcode = kCheckedLoadFloat64;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kSimd128: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
if (offset->opcode() == IrOpcode::kInt32Add && CanCover(node, offset)) {
Int32Matcher mlength(length);
Int32BinopMatcher moffset(offset);
if (mlength.HasValue() && moffset.right().HasValue() &&
moffset.right().Value() >= 0 &&
mlength.Value() >= moffset.right().Value()) {
Emit(opcode, g.DefineAsRegister(node), g.UseRegister(buffer),
g.UseRegister(moffset.left().node()),
g.UseImmediate(moffset.right().node()), g.UseImmediate(length));
return;
}
}
InstructionOperand length_operand =
g.CanBeImmediate(length) ? g.UseImmediate(length) : g.UseRegister(length);
Emit(opcode, g.DefineAsRegister(node), g.UseRegister(buffer),
g.UseRegister(offset), g.TempImmediate(0), length_operand);
}
void InstructionSelector::VisitCheckedStore(Node* node) {
MachineRepresentation rep = CheckedStoreRepresentationOf(node->op());
X64OperandGenerator g(this);
Node* const buffer = node->InputAt(0);
Node* const offset = node->InputAt(1);
Node* const length = node->InputAt(2);
Node* const value = node->InputAt(3);
ArchOpcode opcode = kArchNop;
switch (rep) {
case MachineRepresentation::kWord8:
opcode = kCheckedStoreWord8;
break;
case MachineRepresentation::kWord16:
opcode = kCheckedStoreWord16;
break;
case MachineRepresentation::kWord32:
opcode = kCheckedStoreWord32;
break;
case MachineRepresentation::kWord64:
opcode = kCheckedStoreWord64;
break;
case MachineRepresentation::kFloat32:
opcode = kCheckedStoreFloat32;
break;
case MachineRepresentation::kFloat64:
opcode = kCheckedStoreFloat64;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kSimd128: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
InstructionOperand value_operand =
g.CanBeImmediate(value) ? g.UseImmediate(value) : g.UseRegister(value);
if (offset->opcode() == IrOpcode::kInt32Add && CanCover(node, offset)) {
Int32Matcher mlength(length);
Int32BinopMatcher moffset(offset);
if (mlength.HasValue() && moffset.right().HasValue() &&
moffset.right().Value() >= 0 &&
mlength.Value() >= moffset.right().Value()) {
Emit(opcode, g.NoOutput(), g.UseRegister(buffer),
g.UseRegister(moffset.left().node()),
g.UseImmediate(moffset.right().node()), g.UseImmediate(length),
value_operand);
return;
}
}
InstructionOperand length_operand =
g.CanBeImmediate(length) ? g.UseImmediate(length) : g.UseRegister(length);
Emit(opcode, g.NoOutput(), g.UseRegister(buffer), g.UseRegister(offset),
g.TempImmediate(0), length_operand, value_operand);
}
// Shared routine for multiple binary operations.
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
X64OperandGenerator g(selector);
Int32BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
InstructionOperand inputs[4];
size_t input_count = 0;
InstructionOperand outputs[2];
size_t output_count = 0;
// TODO(turbofan): match complex addressing modes.
if (left == right) {
// If both inputs refer to the same operand, enforce allocating a register
// for both of them to ensure that we don't end up generating code like
// this:
//
// mov rax, [rbp-0x10]
// add rax, [rbp-0x10]
// jo label
InstructionOperand const input = g.UseRegister(left);
inputs[input_count++] = input;
inputs[input_count++] = input;
} else if (g.CanBeImmediate(right)) {
inputs[input_count++] = g.UseRegister(left);
inputs[input_count++] = g.UseImmediate(right);
} else {
if (node->op()->HasProperty(Operator::kCommutative) &&
g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
inputs[input_count++] = g.UseRegister(left);
inputs[input_count++] = g.Use(right);
}
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
}
outputs[output_count++] = g.DefineSameAsFirst(node);
if (cont->IsSet()) {
outputs[output_count++] = g.DefineAsRegister(cont->result());
}
DCHECK_NE(0u, input_count);
DCHECK_NE(0u, output_count);
DCHECK_GE(arraysize(inputs), input_count);
DCHECK_GE(arraysize(outputs), output_count);
opcode = cont->Encode(opcode);
if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs,
cont->frame_state());
} else {
selector->Emit(opcode, output_count, outputs, input_count, inputs);
}
}
// Shared routine for multiple binary operations.
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
FlagsContinuation cont;
VisitBinop(selector, node, opcode, &cont);
}
void InstructionSelector::VisitWord32And(Node* node) {
X64OperandGenerator g(this);
Uint32BinopMatcher m(node);
if (m.right().Is(0xff)) {
Emit(kX64Movzxbl, g.DefineAsRegister(node), g.Use(m.left().node()));
} else if (m.right().Is(0xffff)) {
Emit(kX64Movzxwl, g.DefineAsRegister(node), g.Use(m.left().node()));
} else {
VisitBinop(this, node, kX64And32);
}
}
void InstructionSelector::VisitWord64And(Node* node) {
VisitBinop(this, node, kX64And);
}
void InstructionSelector::VisitWord32Or(Node* node) {
VisitBinop(this, node, kX64Or32);
}
void InstructionSelector::VisitWord64Or(Node* node) {
VisitBinop(this, node, kX64Or);
}
void InstructionSelector::VisitWord32Xor(Node* node) {
X64OperandGenerator g(this);
Uint32BinopMatcher m(node);
if (m.right().Is(-1)) {
Emit(kX64Not32, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()));
} else {
VisitBinop(this, node, kX64Xor32);
}
}
void InstructionSelector::VisitWord64Xor(Node* node) {
X64OperandGenerator g(this);
Uint64BinopMatcher m(node);
if (m.right().Is(-1)) {
Emit(kX64Not, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()));
} else {
VisitBinop(this, node, kX64Xor);
}
}
namespace {
// Shared routine for multiple 32-bit shift operations.
// TODO(bmeurer): Merge this with VisitWord64Shift using template magic?
void VisitWord32Shift(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
X64OperandGenerator g(selector);
Int32BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
if (g.CanBeImmediate(right)) {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseImmediate(right));
} else {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseFixed(right, rcx));
}
}
// Shared routine for multiple 64-bit shift operations.
// TODO(bmeurer): Merge this with VisitWord32Shift using template magic?
void VisitWord64Shift(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
X64OperandGenerator g(selector);
Int64BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
if (g.CanBeImmediate(right)) {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseImmediate(right));
} else {
if (m.right().IsWord64And()) {
Int64BinopMatcher mright(right);
if (mright.right().Is(0x3F)) {
right = mright.left().node();
}
}
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseFixed(right, rcx));
}
}
void EmitLea(InstructionSelector* selector, InstructionCode opcode,
Node* result, Node* index, int scale, Node* base,
Node* displacement) {
X64OperandGenerator g(selector);
InstructionOperand inputs[4];
size_t input_count = 0;
AddressingMode mode = g.GenerateMemoryOperandInputs(
index, scale, base, displacement, inputs, &input_count);
DCHECK_NE(0u, input_count);
DCHECK_GE(arraysize(inputs), input_count);
InstructionOperand outputs[1];
outputs[0] = g.DefineAsRegister(result);
opcode = AddressingModeField::encode(mode) | opcode;
selector->Emit(opcode, 1, outputs, input_count, inputs);
}
} // namespace
void InstructionSelector::VisitWord32Shl(Node* node) {
Int32ScaleMatcher m(node, true);
if (m.matches()) {
Node* index = node->InputAt(0);
Node* base = m.power_of_two_plus_one() ? index : nullptr;
EmitLea(this, kX64Lea32, node, index, m.scale(), base, nullptr);
return;
}
VisitWord32Shift(this, node, kX64Shl32);
}
void InstructionSelector::VisitWord64Shl(Node* node) {
X64OperandGenerator g(this);
Int64BinopMatcher m(node);
if ((m.left().IsChangeInt32ToInt64() || m.left().IsChangeUint32ToUint64()) &&
m.right().IsInRange(32, 63)) {
// There's no need to sign/zero-extend to 64-bit if we shift out the upper
// 32 bits anyway.
Emit(kX64Shl, g.DefineSameAsFirst(node),
g.UseRegister(m.left().node()->InputAt(0)),
g.UseImmediate(m.right().node()));
return;
}
VisitWord64Shift(this, node, kX64Shl);
}
void InstructionSelector::VisitWord32Shr(Node* node) {
VisitWord32Shift(this, node, kX64Shr32);
}
void InstructionSelector::VisitWord64Shr(Node* node) {
VisitWord64Shift(this, node, kX64Shr);
}
void InstructionSelector::VisitWord32Sar(Node* node) {
X64OperandGenerator g(this);
Int32BinopMatcher m(node);
if (CanCover(m.node(), m.left().node()) && m.left().IsWord32Shl()) {
Int32BinopMatcher mleft(m.left().node());
if (mleft.right().Is(16) && m.right().Is(16)) {
Emit(kX64Movsxwl, g.DefineAsRegister(node), g.Use(mleft.left().node()));
return;
} else if (mleft.right().Is(24) && m.right().Is(24)) {
Emit(kX64Movsxbl, g.DefineAsRegister(node), g.Use(mleft.left().node()));
return;
}
}
VisitWord32Shift(this, node, kX64Sar32);
}
void InstructionSelector::VisitWord64Sar(Node* node) {
X64OperandGenerator g(this);
Int64BinopMatcher m(node);
if (CanCover(m.node(), m.left().node()) && m.left().IsLoad() &&
m.right().Is(32)) {
// Just load and sign-extend the interesting 4 bytes instead. This happens,
// for example, when we're loading and untagging SMIs.
BaseWithIndexAndDisplacement64Matcher mleft(m.left().node(), true);
if (mleft.matches() && (mleft.displacement() == nullptr ||
g.CanBeImmediate(mleft.displacement()))) {
size_t input_count = 0;
InstructionOperand inputs[3];
AddressingMode mode = g.GetEffectiveAddressMemoryOperand(
m.left().node(), inputs, &input_count);
if (mleft.displacement() == nullptr) {
// Make sure that the addressing mode indicates the presence of an
// immediate displacement. It seems that we never use M1 and M2, but we
// handle them here anyways.
switch (mode) {
case kMode_MR:
mode = kMode_MRI;
break;
case kMode_MR1:
mode = kMode_MR1I;
break;
case kMode_MR2:
mode = kMode_MR2I;
break;
case kMode_MR4:
mode = kMode_MR4I;
break;
case kMode_MR8:
mode = kMode_MR8I;
break;
case kMode_M1:
mode = kMode_M1I;
break;
case kMode_M2:
mode = kMode_M2I;
break;
case kMode_M4:
mode = kMode_M4I;
break;
case kMode_M8:
mode = kMode_M8I;
break;
case kMode_None:
case kMode_MRI:
case kMode_MR1I:
case kMode_MR2I:
case kMode_MR4I:
case kMode_MR8I:
case kMode_M1I:
case kMode_M2I:
case kMode_M4I:
case kMode_M8I:
UNREACHABLE();
}
inputs[input_count++] = ImmediateOperand(ImmediateOperand::INLINE, 4);
} else {
ImmediateOperand* op = ImmediateOperand::cast(&inputs[input_count - 1]);
int32_t displacement = sequence()->GetImmediate(op).ToInt32();
*op = ImmediateOperand(ImmediateOperand::INLINE, displacement + 4);
}
InstructionOperand outputs[] = {g.DefineAsRegister(node)};
InstructionCode code = kX64Movsxlq | AddressingModeField::encode(mode);
Emit(code, 1, outputs, input_count, inputs);
return;
}
}
VisitWord64Shift(this, node, kX64Sar);
}
void InstructionSelector::VisitWord32Ror(Node* node) {
VisitWord32Shift(this, node, kX64Ror32);
}
void InstructionSelector::VisitWord64Ror(Node* node) {
VisitWord64Shift(this, node, kX64Ror);
}
void InstructionSelector::VisitWord64Clz(Node* node) {
X64OperandGenerator g(this);
Emit(kX64Lzcnt, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitWord32Clz(Node* node) {
X64OperandGenerator g(this);
Emit(kX64Lzcnt32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitWord64Ctz(Node* node) {
X64OperandGenerator g(this);
Emit(kX64Tzcnt, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitWord32Ctz(Node* node) {
X64OperandGenerator g(this);
Emit(kX64Tzcnt32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitWord64ReverseBits(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitWord32Popcnt(Node* node) {
X64OperandGenerator g(this);
Emit(kX64Popcnt32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitWord64Popcnt(Node* node) {
X64OperandGenerator g(this);
Emit(kX64Popcnt, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitInt32Add(Node* node) {
X64OperandGenerator g(this);
// Try to match the Add to a leal pattern
BaseWithIndexAndDisplacement32Matcher m(node);
if (m.matches() &&
(m.displacement() == nullptr || g.CanBeImmediate(m.displacement()))) {
EmitLea(this, kX64Lea32, node, m.index(), m.scale(), m.base(),
m.displacement());
return;
}
// No leal pattern match, use addl
VisitBinop(this, node, kX64Add32);
}
void InstructionSelector::VisitInt64Add(Node* node) {
VisitBinop(this, node, kX64Add);
}
void InstructionSelector::VisitInt64AddWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kX64Add, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kX64Add, &cont);
}
void InstructionSelector::VisitInt32Sub(Node* node) {
X64OperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kX64Neg32, g.DefineSameAsFirst(node), g.UseRegister(m.right().node()));
} else {
if (m.right().HasValue() && g.CanBeImmediate(m.right().node())) {
// Turn subtractions of constant values into immediate "leal" instructions
// by negating the value.
Emit(kX64Lea32 | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), g.UseRegister(m.left().node()),
g.TempImmediate(-m.right().Value()));
return;
}
VisitBinop(this, node, kX64Sub32);
}
}
void InstructionSelector::VisitInt64Sub(Node* node) {
X64OperandGenerator g(this);
Int64BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kX64Neg, g.DefineSameAsFirst(node), g.UseRegister(m.right().node()));
} else {
VisitBinop(this, node, kX64Sub);
}
}
void InstructionSelector::VisitInt64SubWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kX64Sub, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kX64Sub, &cont);
}
namespace {
void VisitMul(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
X64OperandGenerator g(selector);
Int32BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
if (g.CanBeImmediate(right)) {
selector->Emit(opcode, g.DefineAsRegister(node), g.Use(left),
g.UseImmediate(right));
} else {
if (g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.Use(right));
}
}
void VisitMulHigh(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
X64OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (selector->IsLive(left) && !selector->IsLive(right)) {
std::swap(left, right);
}
InstructionOperand temps[] = {g.TempRegister(rax)};
// TODO(turbofan): We use UseUniqueRegister here to improve register
// allocation.
selector->Emit(opcode, g.DefineAsFixed(node, rdx), g.UseFixed(left, rax),
g.UseUniqueRegister(right), arraysize(temps), temps);
}
void VisitDiv(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
X64OperandGenerator g(selector);
InstructionOperand temps[] = {g.TempRegister(rdx)};
selector->Emit(
opcode, g.DefineAsFixed(node, rax), g.UseFixed(node->InputAt(0), rax),
g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps);
}
void VisitMod(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
X64OperandGenerator g(selector);
InstructionOperand temps[] = {g.TempRegister(rax)};
selector->Emit(
opcode, g.DefineAsFixed(node, rdx), g.UseFixed(node->InputAt(0), rax),
g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps);
}
} // namespace
void InstructionSelector::VisitInt32Mul(Node* node) {
Int32ScaleMatcher m(node, true);
if (m.matches()) {
Node* index = node->InputAt(0);
Node* base = m.power_of_two_plus_one() ? index : nullptr;
EmitLea(this, kX64Lea32, node, index, m.scale(), base, nullptr);
return;
}
VisitMul(this, node, kX64Imul32);
}
void InstructionSelector::VisitInt64Mul(Node* node) {
VisitMul(this, node, kX64Imul);
}
void InstructionSelector::VisitInt32MulHigh(Node* node) {
VisitMulHigh(this, node, kX64ImulHigh32);
}
void InstructionSelector::VisitInt32Div(Node* node) {
VisitDiv(this, node, kX64Idiv32);
}
void InstructionSelector::VisitInt64Div(Node* node) {
VisitDiv(this, node, kX64Idiv);
}
void InstructionSelector::VisitUint32Div(Node* node) {
VisitDiv(this, node, kX64Udiv32);
}
void InstructionSelector::VisitUint64Div(Node* node) {
VisitDiv(this, node, kX64Udiv);
}
void InstructionSelector::VisitInt32Mod(Node* node) {
VisitMod(this, node, kX64Idiv32);
}
void InstructionSelector::VisitInt64Mod(Node* node) {
VisitMod(this, node, kX64Idiv);
}
void InstructionSelector::VisitUint32Mod(Node* node) {
VisitMod(this, node, kX64Udiv32);
}
void InstructionSelector::VisitUint64Mod(Node* node) {
VisitMod(this, node, kX64Udiv);
}
void InstructionSelector::VisitUint32MulHigh(Node* node) {
VisitMulHigh(this, node, kX64UmulHigh32);
}
void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEFloat32ToFloat64, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEInt32ToFloat64, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEUint32ToFloat64, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEFloat64ToInt32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEFloat64ToUint32 | MiscField::encode(1), g.DefineAsRegister(node),
g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEFloat64ToUint32 | MiscField::encode(0), g.DefineAsRegister(node),
g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEFloat32ToInt32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEFloat32ToUint32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) {
X64OperandGenerator g(this);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
Emit(kSSEFloat32ToInt64, output_count, outputs, 1, inputs);
}
void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) {
X64OperandGenerator g(this);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
Emit(kSSEFloat64ToInt64, output_count, outputs, 1, inputs);
}
void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) {
X64OperandGenerator g(this);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
Emit(kSSEFloat32ToUint64, output_count, outputs, 1, inputs);
}
void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) {
X64OperandGenerator g(this);
InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))};
InstructionOperand outputs[2];
size_t output_count = 0;
outputs[output_count++] = g.DefineAsRegister(node);
Node* success_output = NodeProperties::FindProjection(node, 1);
if (success_output) {
outputs[output_count++] = g.DefineAsRegister(success_output);
}
Emit(kSSEFloat64ToUint64, output_count, outputs, 1, inputs);
}
void InstructionSelector::VisitChangeInt32ToInt64(Node* node) {
X64OperandGenerator g(this);
Emit(kX64Movsxlq, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitChangeUint32ToUint64(Node* node) {
X64OperandGenerator g(this);
Node* value = node->InputAt(0);
switch (value->opcode()) {
case IrOpcode::kWord32And:
case IrOpcode::kWord32Or:
case IrOpcode::kWord32Xor:
case IrOpcode::kWord32Shl:
case IrOpcode::kWord32Shr:
case IrOpcode::kWord32Sar:
case IrOpcode::kWord32Ror:
case IrOpcode::kWord32Equal:
case IrOpcode::kInt32Add:
case IrOpcode::kInt32Sub:
case IrOpcode::kInt32Mul:
case IrOpcode::kInt32MulHigh:
case IrOpcode::kInt32Div:
case IrOpcode::kInt32LessThan:
case IrOpcode::kInt32LessThanOrEqual:
case IrOpcode::kInt32Mod:
case IrOpcode::kUint32Div:
case IrOpcode::kUint32LessThan:
case IrOpcode::kUint32LessThanOrEqual:
case IrOpcode::kUint32Mod:
case IrOpcode::kUint32MulHigh: {
// These 32-bit operations implicitly zero-extend to 64-bit on x64, so the
// zero-extension is a no-op.
Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value));
return;
}
default:
break;
}
Emit(kX64Movl, g.DefineAsRegister(node), g.Use(value));
}
namespace {
void VisitRO(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
X64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void VisitRR(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
X64OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void VisitFloatBinop(InstructionSelector* selector, Node* node,
ArchOpcode avx_opcode, ArchOpcode sse_opcode) {
X64OperandGenerator g(selector);
InstructionOperand operand0 = g.UseRegister(node->InputAt(0));
InstructionOperand operand1 = g.Use(node->InputAt(1));
if (selector->IsSupported(AVX)) {
selector->Emit(avx_opcode, g.DefineAsRegister(node), operand0, operand1);
} else {
selector->Emit(sse_opcode, g.DefineSameAsFirst(node), operand0, operand1);
}
}
void VisitFloatUnop(InstructionSelector* selector, Node* node, Node* input,
ArchOpcode avx_opcode, ArchOpcode sse_opcode) {
X64OperandGenerator g(selector);
if (selector->IsSupported(AVX)) {
selector->Emit(avx_opcode, g.DefineAsRegister(node), g.Use(input));
} else {
selector->Emit(sse_opcode, g.DefineSameAsFirst(node), g.UseRegister(input));
}
}
} // namespace
void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) {
VisitRO(this, node, kSSEFloat64ToFloat32);
}
void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) {
VisitRR(this, node, kArchTruncateDoubleToI);
}
void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) {
X64OperandGenerator g(this);
Node* value = node->InputAt(0);
if (CanCover(node, value)) {
switch (value->opcode()) {
case IrOpcode::kWord64Sar:
case IrOpcode::kWord64Shr: {
Int64BinopMatcher m(value);
if (m.right().Is(32)) {
Emit(kX64Shr, g.DefineSameAsFirst(node),
g.UseRegister(m.left().node()), g.TempImmediate(32));
return;
}
break;
}
default:
break;
}
}
Emit(kX64Movl, g.DefineAsRegister(node), g.Use(value));
}
void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) {
VisitRO(this, node, kSSEFloat64ToInt32);
}
void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEInt32ToFloat32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitRoundInt64ToFloat32(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEInt64ToFloat32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitRoundInt64ToFloat64(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEInt64ToFloat64, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEUint32ToFloat32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitRoundUint64ToFloat32(Node* node) {
X64OperandGenerator g(this);
InstructionOperand temps[] = {g.TempRegister()};
Emit(kSSEUint64ToFloat32, g.DefineAsRegister(node), g.Use(node->InputAt(0)),
arraysize(temps), temps);
}
void InstructionSelector::VisitRoundUint64ToFloat64(Node* node) {
X64OperandGenerator g(this);
InstructionOperand temps[] = {g.TempRegister()};
Emit(kSSEUint64ToFloat64, g.DefineAsRegister(node), g.Use(node->InputAt(0)),
arraysize(temps), temps);
}
void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) {
X64OperandGenerator g(this);
Emit(kX64BitcastFI, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitBitcastFloat64ToInt64(Node* node) {
X64OperandGenerator g(this);
Emit(kX64BitcastDL, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) {
X64OperandGenerator g(this);
Emit(kX64BitcastIF, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitBitcastInt64ToFloat64(Node* node) {
X64OperandGenerator g(this);
Emit(kX64BitcastLD, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitFloat32Add(Node* node) {
VisitFloatBinop(this, node, kAVXFloat32Add, kSSEFloat32Add);
}
void InstructionSelector::VisitFloat32Sub(Node* node) {
X64OperandGenerator g(this);
Float32BinopMatcher m(node);
if (m.left().IsMinusZero()) {
VisitFloatUnop(this, node, m.right().node(), kAVXFloat32Neg,
kSSEFloat32Neg);
return;
}
VisitFloatBinop(this, node, kAVXFloat32Sub, kSSEFloat32Sub);
}
void InstructionSelector::VisitFloat32SubPreserveNan(Node* node) {
VisitFloatBinop(this, node, kAVXFloat32Sub, kSSEFloat32Sub);
}
void InstructionSelector::VisitFloat32Mul(Node* node) {
VisitFloatBinop(this, node, kAVXFloat32Mul, kSSEFloat32Mul);
}
void InstructionSelector::VisitFloat32Div(Node* node) {
VisitFloatBinop(this, node, kAVXFloat32Div, kSSEFloat32Div);
}
void InstructionSelector::VisitFloat32Max(Node* node) {
VisitFloatBinop(this, node, kAVXFloat32Max, kSSEFloat32Max);
}
void InstructionSelector::VisitFloat32Min(Node* node) {
VisitFloatBinop(this, node, kAVXFloat32Min, kSSEFloat32Min);
}
void InstructionSelector::VisitFloat32Abs(Node* node) {
VisitFloatUnop(this, node, node->InputAt(0), kAVXFloat32Abs, kSSEFloat32Abs);
}
void InstructionSelector::VisitFloat32Sqrt(Node* node) {
VisitRO(this, node, kSSEFloat32Sqrt);
}
void InstructionSelector::VisitFloat64Add(Node* node) {
VisitFloatBinop(this, node, kAVXFloat64Add, kSSEFloat64Add);
}
void InstructionSelector::VisitFloat64Sub(Node* node) {
X64OperandGenerator g(this);
Float64BinopMatcher m(node);
if (m.left().IsMinusZero()) {
if (m.right().IsFloat64RoundDown() &&
CanCover(m.node(), m.right().node())) {
if (m.right().InputAt(0)->opcode() == IrOpcode::kFloat64Sub &&
CanCover(m.right().node(), m.right().InputAt(0))) {
Float64BinopMatcher mright0(m.right().InputAt(0));
if (mright0.left().IsMinusZero()) {
Emit(kSSEFloat64Round | MiscField::encode(kRoundUp),
g.DefineAsRegister(node), g.UseRegister(mright0.right().node()));
return;
}
}
}
VisitFloatUnop(this, node, m.right().node(), kAVXFloat64Neg,
kSSEFloat64Neg);
return;
}
VisitFloatBinop(this, node, kAVXFloat64Sub, kSSEFloat64Sub);
}
void InstructionSelector::VisitFloat64SubPreserveNan(Node* node) {
VisitFloatBinop(this, node, kAVXFloat64Sub, kSSEFloat64Sub);
}
void InstructionSelector::VisitFloat64Mul(Node* node) {
VisitFloatBinop(this, node, kAVXFloat64Mul, kSSEFloat64Mul);
}
void InstructionSelector::VisitFloat64Div(Node* node) {
VisitFloatBinop(this, node, kAVXFloat64Div, kSSEFloat64Div);
}
void InstructionSelector::VisitFloat64Mod(Node* node) {
X64OperandGenerator g(this);
InstructionOperand temps[] = {g.TempRegister(rax)};
Emit(kSSEFloat64Mod, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), 1,
temps);
}
void InstructionSelector::VisitFloat64Max(Node* node) {
VisitFloatBinop(this, node, kAVXFloat64Max, kSSEFloat64Max);
}
void InstructionSelector::VisitFloat64Min(Node* node) {
VisitFloatBinop(this, node, kAVXFloat64Min, kSSEFloat64Min);
}
void InstructionSelector::VisitFloat64Abs(Node* node) {
VisitFloatUnop(this, node, node->InputAt(0), kAVXFloat64Abs, kSSEFloat64Abs);
}
void InstructionSelector::VisitFloat64Sqrt(Node* node) {
VisitRO(this, node, kSSEFloat64Sqrt);
}
void InstructionSelector::VisitFloat32RoundDown(Node* node) {
VisitRR(this, node, kSSEFloat32Round | MiscField::encode(kRoundDown));
}
void InstructionSelector::VisitFloat64RoundDown(Node* node) {
VisitRR(this, node, kSSEFloat64Round | MiscField::encode(kRoundDown));
}
void InstructionSelector::VisitFloat32RoundUp(Node* node) {
VisitRR(this, node, kSSEFloat32Round | MiscField::encode(kRoundUp));
}
void InstructionSelector::VisitFloat64RoundUp(Node* node) {
VisitRR(this, node, kSSEFloat64Round | MiscField::encode(kRoundUp));
}
void InstructionSelector::VisitFloat32RoundTruncate(Node* node) {
VisitRR(this, node, kSSEFloat32Round | MiscField::encode(kRoundToZero));
}
void InstructionSelector::VisitFloat64RoundTruncate(Node* node) {
VisitRR(this, node, kSSEFloat64Round | MiscField::encode(kRoundToZero));
}
void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) {
VisitRR(this, node, kSSEFloat32Round | MiscField::encode(kRoundToNearest));
}
void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) {
VisitRR(this, node, kSSEFloat64Round | MiscField::encode(kRoundToNearest));
}
void InstructionSelector::VisitFloat32Neg(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitFloat64Neg(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitFloat64Ieee754Binop(Node* node,
InstructionCode opcode) {
X64OperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, xmm0), g.UseFixed(node->InputAt(0), xmm0),
g.UseFixed(node->InputAt(1), xmm1))
->MarkAsCall();
}
void InstructionSelector::VisitFloat64Ieee754Unop(Node* node,
InstructionCode opcode) {
X64OperandGenerator g(this);
Emit(opcode, g.DefineAsFixed(node, xmm0), g.UseFixed(node->InputAt(0), xmm0))
->MarkAsCall();
}
void InstructionSelector::EmitPrepareArguments(
ZoneVector<PushParameter>* arguments, const CallDescriptor* descriptor,
Node* node) {
X64OperandGenerator g(this);
// Prepare for C function call.
if (descriptor->IsCFunctionCall()) {
Emit(kArchPrepareCallCFunction |
MiscField::encode(static_cast<int>(descriptor->CParameterCount())),
0, nullptr, 0, nullptr);
// Poke any stack arguments.
for (size_t n = 0; n < arguments->size(); ++n) {
PushParameter input = (*arguments)[n];
if (input.node()) {
int slot = static_cast<int>(n);
InstructionOperand value = g.CanBeImmediate(input.node())
? g.UseImmediate(input.node())
: g.UseRegister(input.node());
Emit(kX64Poke | MiscField::encode(slot), g.NoOutput(), value);
}
}
} else {
// Push any stack arguments.
for (PushParameter input : base::Reversed(*arguments)) {
// TODO(titzer): X64Push cannot handle stack->stack double moves
// because there is no way to encode fixed double slots.
InstructionOperand value =
g.CanBeImmediate(input.node())
? g.UseImmediate(input.node())
: IsSupported(ATOM) ||
sequence()->IsFP(GetVirtualRegister(input.node()))
? g.UseRegister(input.node())
: g.Use(input.node());
Emit(kX64Push, g.NoOutput(), value);
}
}
}
bool InstructionSelector::IsTailCallAddressImmediate() { return true; }
int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; }
namespace {
void VisitCompareWithMemoryOperand(InstructionSelector* selector,
InstructionCode opcode, Node* left,
InstructionOperand right,
FlagsContinuation* cont) {
DCHECK(left->opcode() == IrOpcode::kLoad);
X64OperandGenerator g(selector);
size_t input_count = 0;
InstructionOperand inputs[6];
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(left, inputs, &input_count);
opcode |= AddressingModeField::encode(addressing_mode);
opcode = cont->Encode(opcode);
inputs[input_count++] = right;
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
selector->Emit(opcode, 0, nullptr, input_count, inputs);
} else if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, 0, nullptr, input_count, inputs,
cont->frame_state());
} else {
DCHECK(cont->IsSet());
InstructionOperand output = g.DefineAsRegister(cont->result());
selector->Emit(opcode, 1, &output, input_count, inputs);
}
}
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand left, InstructionOperand right,
FlagsContinuation* cont) {
X64OperandGenerator g(selector);
opcode = cont->Encode(opcode);
if (cont->IsBranch()) {
selector->Emit(opcode, g.NoOutput(), left, right,
g.Label(cont->true_block()), g.Label(cont->false_block()));
} else if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, g.NoOutput(), left, right,
cont->frame_state());
} else {
DCHECK(cont->IsSet());
selector->Emit(opcode, g.DefineAsRegister(cont->result()), left, right);
}
}
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
Node* left, Node* right, FlagsContinuation* cont,
bool commutative) {
X64OperandGenerator g(selector);
if (commutative && g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
VisitCompare(selector, opcode, g.UseRegister(left), g.Use(right), cont);
}
// Tries to match the size of the given opcode to that of the operands, if
// possible.
InstructionCode TryNarrowOpcodeSize(InstructionCode opcode, Node* left,
Node* right) {
if (opcode != kX64Cmp32 && opcode != kX64Test32) {
return opcode;
}
// Currently, if one of the two operands is not a Load, we don't know what its
// machine representation is, so we bail out.
// TODO(epertoso): we can probably get some size information out of immediates
// and phi nodes.
if (left->opcode() != IrOpcode::kLoad || right->opcode() != IrOpcode::kLoad) {
return opcode;
}
// If the load representations don't match, both operands will be
// zero/sign-extended to 32bit.
LoadRepresentation left_representation = LoadRepresentationOf(left->op());
if (left_representation != LoadRepresentationOf(right->op())) {
return opcode;
}
switch (left_representation.representation()) {
case MachineRepresentation::kBit:
case MachineRepresentation::kWord8:
return opcode == kX64Cmp32 ? kX64Cmp8 : kX64Test8;
case MachineRepresentation::kWord16:
return opcode == kX64Cmp32 ? kX64Cmp16 : kX64Test16;
default:
return opcode;
}
}
// Shared routine for multiple word compare operations.
void VisitWordCompare(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
X64OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
opcode = TryNarrowOpcodeSize(opcode, left, right);
// If one of the two inputs is an immediate, make sure it's on the right, or
// if one of the two inputs is a memory operand, make sure it's on the left.
int effect_level = selector->GetEffectLevel(node);
if (cont->IsBranch()) {
effect_level = selector->GetEffectLevel(
cont->true_block()->PredecessorAt(0)->control_input());
}
if ((!g.CanBeImmediate(right) && g.CanBeImmediate(left)) ||
(g.CanBeMemoryOperand(opcode, node, right, effect_level) &&
!g.CanBeMemoryOperand(opcode, node, left, effect_level))) {
if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute();
std::swap(left, right);
}
// Match immediates on right side of comparison.
if (g.CanBeImmediate(right)) {
if (g.CanBeMemoryOperand(opcode, node, left, effect_level)) {
return VisitCompareWithMemoryOperand(selector, opcode, left,
g.UseImmediate(right), cont);
}
return VisitCompare(selector, opcode, g.Use(left), g.UseImmediate(right),
cont);
}
// Match memory operands on left side of comparison.
if (g.CanBeMemoryOperand(opcode, node, left, effect_level)) {
return VisitCompareWithMemoryOperand(selector, opcode, left,
g.UseRegister(right), cont);
}
if (g.CanBeBetterLeftOperand(right)) {
if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute();
std::swap(left, right);
}
return VisitCompare(selector, opcode, left, right, cont,
node->op()->HasProperty(Operator::kCommutative));
}
// Shared routine for 64-bit word comparison operations.
void VisitWord64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
X64OperandGenerator g(selector);
Int64BinopMatcher m(node);
if (m.left().IsLoad() && m.right().IsLoadStackPointer()) {
LoadMatcher<ExternalReferenceMatcher> mleft(m.left().node());
ExternalReference js_stack_limit =
ExternalReference::address_of_stack_limit(selector->isolate());
if (mleft.object().Is(js_stack_limit) && mleft.index().Is(0)) {
// Compare(Load(js_stack_limit), LoadStackPointer)
if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute();
InstructionCode opcode = cont->Encode(kX64StackCheck);
if (cont->IsBranch()) {
selector->Emit(opcode, g.NoOutput(), g.Label(cont->true_block()),
g.Label(cont->false_block()));
} else if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, 0, nullptr, 0, nullptr,
cont->frame_state());
} else {
DCHECK(cont->IsSet());
selector->Emit(opcode, g.DefineAsRegister(cont->result()));
}
return;
}
}
VisitWordCompare(selector, node, kX64Cmp, cont);
}
// Shared routine for comparison with zero.
void VisitCompareZero(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
X64OperandGenerator g(selector);
VisitCompare(selector, opcode, g.Use(node), g.TempImmediate(0), cont);
}
// Shared routine for multiple float32 compare operations (inputs commuted).
void VisitFloat32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
Node* const left = node->InputAt(0);
Node* const right = node->InputAt(1);
InstructionCode const opcode =
selector->IsSupported(AVX) ? kAVXFloat32Cmp : kSSEFloat32Cmp;
VisitCompare(selector, opcode, right, left, cont, false);
}
// Shared routine for multiple float64 compare operations (inputs commuted).
void VisitFloat64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
Node* const left = node->InputAt(0);
Node* const right = node->InputAt(1);
InstructionCode const opcode =
selector->IsSupported(AVX) ? kAVXFloat64Cmp : kSSEFloat64Cmp;
VisitCompare(selector, opcode, right, left, cont, false);
}
// Shared routine for word comparison against zero.
void VisitWordCompareZero(InstructionSelector* selector, Node* user,
Node* value, FlagsContinuation* cont) {
while (selector->CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kWord32Equal: {
// Combine with comparisons against 0 by simply inverting the
// continuation.
Int32BinopMatcher m(value);
if (m.right().Is(0)) {
user = value;
value = m.left().node();
cont->Negate();
continue;
}
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitWordCompare(selector, value, kX64Cmp32, cont);
}
case IrOpcode::kInt32LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWordCompare(selector, value, kX64Cmp32, cont);
case IrOpcode::kInt32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWordCompare(selector, value, kX64Cmp32, cont);
case IrOpcode::kUint32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWordCompare(selector, value, kX64Cmp32, cont);
case IrOpcode::kUint32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWordCompare(selector, value, kX64Cmp32, cont);
case IrOpcode::kWord64Equal: {
cont->OverwriteAndNegateIfEqual(kEqual);
Int64BinopMatcher m(value);
if (m.right().Is(0)) {
// Try to combine the branch with a comparison.
Node* const user = m.node();
Node* const value = m.left().node();
if (selector->CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kInt64Sub:
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kWord64And:
return VisitWordCompare(selector, value, kX64Test, cont);
default:
break;
}
}
return VisitCompareZero(selector, value, kX64Cmp, cont);
}
return VisitWord64Compare(selector, value, cont);
}
case IrOpcode::kInt64LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kInt64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kUint64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kUint64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kFloat32Equal:
cont->OverwriteAndNegateIfEqual(kUnorderedEqual);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat64Equal:
cont->OverwriteAndNegateIfEqual(kUnorderedEqual);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kFloat64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kFloat64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kProjection:
// Check if this is the overflow output projection of an
// <Operation>WithOverflow node.
if (ProjectionIndexOf(value->op()) == 1u) {
// We cannot combine the <Operation>WithOverflow with this branch
// unless the 0th projection (the use of the actual value of the
// <Operation> is either nullptr, which means there's no use of the
// actual value, or was already defined, which means it is scheduled
// *AFTER* this branch).
Node* const node = value->InputAt(0);
Node* const result = NodeProperties::FindProjection(node, 0);
if (result == nullptr || selector->IsDefined(result)) {
switch (node->opcode()) {
case IrOpcode::kInt32AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kX64Add32, cont);
case IrOpcode::kInt32SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kX64Sub32, cont);
case IrOpcode::kInt64AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kX64Add, cont);
case IrOpcode::kInt64SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kX64Sub, cont);
default:
break;
}
}
}
break;
case IrOpcode::kInt32Sub:
return VisitWordCompare(selector, value, kX64Cmp32, cont);
case IrOpcode::kInt64Sub:
return VisitWord64Compare(selector, value, cont);
case IrOpcode::kWord32And:
return VisitWordCompare(selector, value, kX64Test32, cont);
case IrOpcode::kWord64And:
return VisitWordCompare(selector, value, kX64Test, cont);
default:
break;
}
break;
}
// Branch could not be combined with a compare, emit compare against 0.
VisitCompareZero(selector, value, kX64Cmp32, cont);
}
} // namespace
void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch,
BasicBlock* fbranch) {
FlagsContinuation cont(kNotEqual, tbranch, fbranch);
VisitWordCompareZero(this, branch, branch->InputAt(0), &cont);
}
void InstructionSelector::VisitDeoptimizeIf(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForDeoptimize(kNotEqual, node->InputAt(1));
VisitWordCompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitDeoptimizeUnless(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForDeoptimize(kEqual, node->InputAt(1));
VisitWordCompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
X64OperandGenerator g(this);
InstructionOperand value_operand = g.UseRegister(node->InputAt(0));
// Emit either ArchTableSwitch or ArchLookupSwitch.
size_t table_space_cost = 4 + sw.value_range;
size_t table_time_cost = 3;
size_t lookup_space_cost = 3 + 2 * sw.case_count;
size_t lookup_time_cost = sw.case_count;
if (sw.case_count > 4 &&
table_space_cost + 3 * table_time_cost <=
lookup_space_cost + 3 * lookup_time_cost &&
sw.min_value > std::numeric_limits<int32_t>::min()) {
InstructionOperand index_operand = g.TempRegister();
if (sw.min_value) {
// The leal automatically zero extends, so result is a valid 64-bit index.
Emit(kX64Lea32 | AddressingModeField::encode(kMode_MRI), index_operand,
value_operand, g.TempImmediate(-sw.min_value));
} else {
// Zero extend, because we use it as 64-bit index into the jump table.
Emit(kX64Movl, index_operand, value_operand);
}
// Generate a table lookup.
return EmitTableSwitch(sw, index_operand);
}
// Generate a sequence of conditional jumps.
return EmitLookupSwitch(sw, value_operand);
}
void InstructionSelector::VisitWord32Equal(Node* const node) {
Node* user = node;
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
Int32BinopMatcher m(user);
if (m.right().Is(0)) {
Node* value = m.left().node();
// Try to combine with comparisons against 0 by simply inverting the branch.
while (CanCover(user, value) && value->opcode() == IrOpcode::kWord32Equal) {
Int32BinopMatcher m(value);
if (m.right().Is(0)) {
user = value;
value = m.left().node();
cont.Negate();
} else {
break;
}
}
// Try to combine the branch with a comparison.
if (CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kInt32Sub:
return VisitWordCompare(this, value, kX64Cmp32, &cont);
case IrOpcode::kWord32And:
return VisitWordCompare(this, value, kX64Test32, &cont);
default:
break;
}
}
return VisitCompareZero(this, value, kX64Cmp32, &cont);
}
VisitWordCompare(this, node, kX64Cmp32, &cont);
}
void InstructionSelector::VisitInt32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
VisitWordCompare(this, node, kX64Cmp32, &cont);
}
void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
VisitWordCompare(this, node, kX64Cmp32, &cont);
}
void InstructionSelector::VisitUint32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitWordCompare(this, node, kX64Cmp32, &cont);
}
void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitWordCompare(this, node, kX64Cmp32, &cont);
}
void InstructionSelector::VisitWord64Equal(Node* const node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
Int64BinopMatcher m(node);
if (m.right().Is(0)) {
// Try to combine the equality check with a comparison.
Node* const user = m.node();
Node* const value = m.left().node();
if (CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kInt64Sub:
return VisitWord64Compare(this, value, &cont);
case IrOpcode::kWord64And:
return VisitWordCompare(this, value, kX64Test, &cont);
default:
break;
}
}
}
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kX64Add32, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kX64Add32, &cont);
}
void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kX64Sub32, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kX64Sub32, &cont);
}
void InstructionSelector::VisitInt64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitUint64LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitWord64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnorderedEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThan(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedGreaterThan, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedGreaterThanOrEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnorderedEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThan(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedGreaterThan, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedGreaterThanOrEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEFloat64ExtractLowWord32, g.DefineAsRegister(node),
g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEFloat64ExtractHighWord32, g.DefineAsRegister(node),
g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) {
X64OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
Float64Matcher mleft(left);
if (mleft.HasValue() && (bit_cast<uint64_t>(mleft.Value()) >> 32) == 0u) {
Emit(kSSEFloat64LoadLowWord32, g.DefineAsRegister(node), g.Use(right));
return;
}
Emit(kSSEFloat64InsertLowWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.Use(right));
}
void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) {
X64OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
Emit(kSSEFloat64InsertHighWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.Use(right));
}
void InstructionSelector::VisitFloat64SilenceNaN(Node* node) {
X64OperandGenerator g(this);
Emit(kSSEFloat64SilenceNaN, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitAtomicLoad(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
DCHECK(load_rep.representation() == MachineRepresentation::kWord8 ||
load_rep.representation() == MachineRepresentation::kWord16 ||
load_rep.representation() == MachineRepresentation::kWord32);
USE(load_rep);
VisitLoad(node);
}
void InstructionSelector::VisitAtomicStore(Node* node) {
X64OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
MachineRepresentation rep = AtomicStoreRepresentationOf(node->op());
ArchOpcode opcode = kArchNop;
switch (rep) {
case MachineRepresentation::kWord8:
opcode = kX64Xchgb;
break;
case MachineRepresentation::kWord16:
opcode = kX64Xchgw;
break;
case MachineRepresentation::kWord32:
opcode = kX64Xchgl;
break;
default:
UNREACHABLE();
return;
}
AddressingMode addressing_mode;
InstructionOperand inputs[4];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
if (g.CanBeImmediate(index)) {
inputs[input_count++] = g.UseImmediate(index);
addressing_mode = kMode_MRI;
} else {
inputs[input_count++] = g.UseUniqueRegister(index);
addressing_mode = kMode_MR1;
}
inputs[input_count++] = g.UseUniqueRegister(value);
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
Emit(code, 0, static_cast<InstructionOperand*>(nullptr), input_count, inputs);
}
// static
MachineOperatorBuilder::Flags
InstructionSelector::SupportedMachineOperatorFlags() {
MachineOperatorBuilder::Flags flags =
MachineOperatorBuilder::kFloat32Max |
MachineOperatorBuilder::kFloat32Min |
MachineOperatorBuilder::kFloat64Max |
MachineOperatorBuilder::kFloat64Min |
MachineOperatorBuilder::kWord32ShiftIsSafe |
MachineOperatorBuilder::kWord32Ctz | MachineOperatorBuilder::kWord64Ctz;
if (CpuFeatures::IsSupported(POPCNT)) {
flags |= MachineOperatorBuilder::kWord32Popcnt |
MachineOperatorBuilder::kWord64Popcnt;
}
if (CpuFeatures::IsSupported(SSE4_1)) {
flags |= MachineOperatorBuilder::kFloat32RoundDown |
MachineOperatorBuilder::kFloat64RoundDown |
MachineOperatorBuilder::kFloat32RoundUp |
MachineOperatorBuilder::kFloat64RoundUp |
MachineOperatorBuilder::kFloat32RoundTruncate |
MachineOperatorBuilder::kFloat64RoundTruncate |
MachineOperatorBuilder::kFloat32RoundTiesEven |
MachineOperatorBuilder::kFloat64RoundTiesEven;
}
return flags;
}
// static
MachineOperatorBuilder::AlignmentRequirements
InstructionSelector::AlignmentRequirements() {
return MachineOperatorBuilder::AlignmentRequirements::
FullUnalignedAccessSupport();
}
} // namespace compiler
} // namespace internal
} // namespace v8