// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_MARK_COMPACT_H_
#define V8_HEAP_MARK_COMPACT_H_
#include <deque>
#include "src/base/bits.h"
#include "src/heap/spaces.h"
#include "src/heap/store-buffer.h"
namespace v8 {
namespace internal {
// Callback function, returns whether an object is alive. The heap size
// of the object is returned in size. It optionally updates the offset
// to the first live object in the page (only used for old and map objects).
typedef bool (*IsAliveFunction)(HeapObject* obj, int* size, int* offset);
// Callback function to mark an object in a given heap.
typedef void (*MarkObjectFunction)(Heap* heap, HeapObject* object);
// Forward declarations.
class CodeFlusher;
class MarkCompactCollector;
class MarkingVisitor;
class RootMarkingVisitor;
class Marking : public AllStatic {
public:
INLINE(static MarkBit MarkBitFrom(Address addr)) {
MemoryChunk* p = MemoryChunk::FromAddress(addr);
return p->markbits()->MarkBitFromIndex(p->AddressToMarkbitIndex(addr));
}
INLINE(static MarkBit MarkBitFrom(HeapObject* obj)) {
return MarkBitFrom(reinterpret_cast<Address>(obj));
}
// Impossible markbits: 01
static const char* kImpossibleBitPattern;
INLINE(static bool IsImpossible(MarkBit mark_bit)) {
return !mark_bit.Get() && mark_bit.Next().Get();
}
// Black markbits: 11
static const char* kBlackBitPattern;
INLINE(static bool IsBlack(MarkBit mark_bit)) {
return mark_bit.Get() && mark_bit.Next().Get();
}
// White markbits: 00 - this is required by the mark bit clearer.
static const char* kWhiteBitPattern;
INLINE(static bool IsWhite(MarkBit mark_bit)) {
DCHECK(!IsImpossible(mark_bit));
return !mark_bit.Get();
}
// Grey markbits: 10
static const char* kGreyBitPattern;
INLINE(static bool IsGrey(MarkBit mark_bit)) {
return mark_bit.Get() && !mark_bit.Next().Get();
}
// IsBlackOrGrey assumes that the first bit is set for black or grey
// objects.
INLINE(static bool IsBlackOrGrey(MarkBit mark_bit)) { return mark_bit.Get(); }
INLINE(static void MarkBlack(MarkBit mark_bit)) {
mark_bit.Set();
mark_bit.Next().Set();
}
INLINE(static void MarkWhite(MarkBit mark_bit)) {
mark_bit.Clear();
mark_bit.Next().Clear();
}
INLINE(static void BlackToWhite(MarkBit markbit)) {
DCHECK(IsBlack(markbit));
markbit.Clear();
markbit.Next().Clear();
}
INLINE(static void GreyToWhite(MarkBit markbit)) {
DCHECK(IsGrey(markbit));
markbit.Clear();
markbit.Next().Clear();
}
INLINE(static void BlackToGrey(MarkBit markbit)) {
DCHECK(IsBlack(markbit));
markbit.Next().Clear();
}
INLINE(static void WhiteToGrey(MarkBit markbit)) {
DCHECK(IsWhite(markbit));
markbit.Set();
}
INLINE(static void WhiteToBlack(MarkBit markbit)) {
DCHECK(IsWhite(markbit));
markbit.Set();
markbit.Next().Set();
}
INLINE(static void GreyToBlack(MarkBit markbit)) {
DCHECK(IsGrey(markbit));
markbit.Next().Set();
}
INLINE(static void BlackToGrey(HeapObject* obj)) {
BlackToGrey(MarkBitFrom(obj));
}
INLINE(static void AnyToGrey(MarkBit markbit)) {
markbit.Set();
markbit.Next().Clear();
}
static void TransferMark(Heap* heap, Address old_start, Address new_start);
#ifdef DEBUG
enum ObjectColor {
BLACK_OBJECT,
WHITE_OBJECT,
GREY_OBJECT,
IMPOSSIBLE_COLOR
};
static const char* ColorName(ObjectColor color) {
switch (color) {
case BLACK_OBJECT:
return "black";
case WHITE_OBJECT:
return "white";
case GREY_OBJECT:
return "grey";
case IMPOSSIBLE_COLOR:
return "impossible";
}
return "error";
}
static ObjectColor Color(HeapObject* obj) {
return Color(Marking::MarkBitFrom(obj));
}
static ObjectColor Color(MarkBit mark_bit) {
if (IsBlack(mark_bit)) return BLACK_OBJECT;
if (IsWhite(mark_bit)) return WHITE_OBJECT;
if (IsGrey(mark_bit)) return GREY_OBJECT;
UNREACHABLE();
return IMPOSSIBLE_COLOR;
}
#endif
// Returns true if the transferred color is black.
INLINE(static bool TransferColor(HeapObject* from, HeapObject* to)) {
if (Page::FromAddress(to->address())->IsFlagSet(Page::BLACK_PAGE))
return true;
MarkBit from_mark_bit = MarkBitFrom(from);
MarkBit to_mark_bit = MarkBitFrom(to);
DCHECK(Marking::IsWhite(to_mark_bit));
if (from_mark_bit.Get()) {
to_mark_bit.Set();
if (from_mark_bit.Next().Get()) {
to_mark_bit.Next().Set();
return true;
}
}
return false;
}
private:
DISALLOW_IMPLICIT_CONSTRUCTORS(Marking);
};
// ----------------------------------------------------------------------------
// Marking deque for tracing live objects.
class MarkingDeque {
public:
MarkingDeque()
: array_(NULL),
top_(0),
bottom_(0),
mask_(0),
overflowed_(false),
in_use_(false) {}
void Initialize(Address low, Address high);
void Uninitialize(bool aborting = false);
inline bool IsFull() { return ((top_ + 1) & mask_) == bottom_; }
inline bool IsEmpty() { return top_ == bottom_; }
bool overflowed() const { return overflowed_; }
bool in_use() const { return in_use_; }
void ClearOverflowed() { overflowed_ = false; }
void SetOverflowed() { overflowed_ = true; }
// Push the object on the marking stack if there is room, otherwise mark the
// deque as overflowed and wait for a rescan of the heap.
INLINE(bool Push(HeapObject* object)) {
DCHECK(object->IsHeapObject());
if (IsFull()) {
SetOverflowed();
return false;
} else {
array_[top_] = object;
top_ = ((top_ + 1) & mask_);
return true;
}
}
INLINE(HeapObject* Pop()) {
DCHECK(!IsEmpty());
top_ = ((top_ - 1) & mask_);
HeapObject* object = array_[top_];
DCHECK(object->IsHeapObject());
return object;
}
// Unshift the object into the marking stack if there is room, otherwise mark
// the deque as overflowed and wait for a rescan of the heap.
INLINE(bool Unshift(HeapObject* object)) {
DCHECK(object->IsHeapObject());
if (IsFull()) {
SetOverflowed();
return false;
} else {
bottom_ = ((bottom_ - 1) & mask_);
array_[bottom_] = object;
return true;
}
}
HeapObject** array() { return array_; }
int bottom() { return bottom_; }
int top() { return top_; }
int mask() { return mask_; }
void set_top(int top) { top_ = top; }
private:
HeapObject** array_;
// array_[(top - 1) & mask_] is the top element in the deque. The Deque is
// empty when top_ == bottom_. It is full when top_ + 1 == bottom
// (mod mask + 1).
int top_;
int bottom_;
int mask_;
bool overflowed_;
bool in_use_;
DISALLOW_COPY_AND_ASSIGN(MarkingDeque);
};
// CodeFlusher collects candidates for code flushing during marking and
// processes those candidates after marking has completed in order to
// reset those functions referencing code objects that would otherwise
// be unreachable. Code objects can be referenced in two ways:
// - SharedFunctionInfo references unoptimized code.
// - JSFunction references either unoptimized or optimized code.
// We are not allowed to flush unoptimized code for functions that got
// optimized or inlined into optimized code, because we might bailout
// into the unoptimized code again during deoptimization.
class CodeFlusher {
public:
explicit CodeFlusher(Isolate* isolate)
: isolate_(isolate),
jsfunction_candidates_head_(nullptr),
shared_function_info_candidates_head_(nullptr) {}
inline void AddCandidate(SharedFunctionInfo* shared_info);
inline void AddCandidate(JSFunction* function);
void EvictCandidate(SharedFunctionInfo* shared_info);
void EvictCandidate(JSFunction* function);
void ProcessCandidates() {
ProcessSharedFunctionInfoCandidates();
ProcessJSFunctionCandidates();
}
void IteratePointersToFromSpace(ObjectVisitor* v);
private:
void ProcessJSFunctionCandidates();
void ProcessSharedFunctionInfoCandidates();
static inline JSFunction** GetNextCandidateSlot(JSFunction* candidate);
static inline JSFunction* GetNextCandidate(JSFunction* candidate);
static inline void SetNextCandidate(JSFunction* candidate,
JSFunction* next_candidate);
static inline void ClearNextCandidate(JSFunction* candidate,
Object* undefined);
static inline SharedFunctionInfo* GetNextCandidate(
SharedFunctionInfo* candidate);
static inline void SetNextCandidate(SharedFunctionInfo* candidate,
SharedFunctionInfo* next_candidate);
static inline void ClearNextCandidate(SharedFunctionInfo* candidate);
Isolate* isolate_;
JSFunction* jsfunction_candidates_head_;
SharedFunctionInfo* shared_function_info_candidates_head_;
DISALLOW_COPY_AND_ASSIGN(CodeFlusher);
};
// Defined in isolate.h.
class ThreadLocalTop;
class MarkBitCellIterator BASE_EMBEDDED {
public:
explicit MarkBitCellIterator(MemoryChunk* chunk) : chunk_(chunk) {
last_cell_index_ = Bitmap::IndexToCell(Bitmap::CellAlignIndex(
chunk_->AddressToMarkbitIndex(chunk_->area_end())));
cell_base_ = chunk_->area_start();
cell_index_ = Bitmap::IndexToCell(
Bitmap::CellAlignIndex(chunk_->AddressToMarkbitIndex(cell_base_)));
cells_ = chunk_->markbits()->cells();
}
inline bool Done() { return cell_index_ == last_cell_index_; }
inline bool HasNext() { return cell_index_ < last_cell_index_ - 1; }
inline MarkBit::CellType* CurrentCell() {
DCHECK(cell_index_ == Bitmap::IndexToCell(Bitmap::CellAlignIndex(
chunk_->AddressToMarkbitIndex(cell_base_))));
return &cells_[cell_index_];
}
inline Address CurrentCellBase() {
DCHECK(cell_index_ == Bitmap::IndexToCell(Bitmap::CellAlignIndex(
chunk_->AddressToMarkbitIndex(cell_base_))));
return cell_base_;
}
inline void Advance() {
cell_index_++;
cell_base_ += 32 * kPointerSize;
}
// Return the next mark bit cell. If there is no next it returns 0;
inline MarkBit::CellType PeekNext() {
if (HasNext()) {
return cells_[cell_index_ + 1];
}
return 0;
}
private:
MemoryChunk* chunk_;
MarkBit::CellType* cells_;
unsigned int last_cell_index_;
unsigned int cell_index_;
Address cell_base_;
};
// Grey objects can happen on black pages when black objects transition to
// grey e.g. when calling RecordWrites on them.
enum LiveObjectIterationMode {
kBlackObjects,
kGreyObjects,
kAllLiveObjects
};
template <LiveObjectIterationMode T>
class LiveObjectIterator BASE_EMBEDDED {
public:
explicit LiveObjectIterator(MemoryChunk* chunk)
: chunk_(chunk),
it_(chunk_),
cell_base_(it_.CurrentCellBase()),
current_cell_(*it_.CurrentCell()) {
// Black pages can not be iterated.
DCHECK(!chunk->IsFlagSet(Page::BLACK_PAGE));
}
HeapObject* Next();
private:
MemoryChunk* chunk_;
MarkBitCellIterator it_;
Address cell_base_;
MarkBit::CellType current_cell_;
};
// -------------------------------------------------------------------------
// Mark-Compact collector
class MarkCompactCollector {
public:
class Evacuator;
class Sweeper {
public:
class SweeperTask;
enum SweepingMode { SWEEP_ONLY, SWEEP_AND_VISIT_LIVE_OBJECTS };
enum SkipListRebuildingMode { REBUILD_SKIP_LIST, IGNORE_SKIP_LIST };
enum FreeListRebuildingMode { REBUILD_FREE_LIST, IGNORE_FREE_LIST };
enum FreeSpaceTreatmentMode { IGNORE_FREE_SPACE, ZAP_FREE_SPACE };
enum SweepingParallelism { SWEEP_ON_MAIN_THREAD, SWEEP_IN_PARALLEL };
typedef std::deque<Page*> SweepingList;
typedef List<Page*> SweptList;
template <SweepingMode sweeping_mode, SweepingParallelism parallelism,
SkipListRebuildingMode skip_list_mode,
FreeListRebuildingMode free_list_mode,
FreeSpaceTreatmentMode free_space_mode>
static int RawSweep(PagedSpace* space, Page* p, ObjectVisitor* v);
explicit Sweeper(Heap* heap)
: heap_(heap),
pending_sweeper_tasks_semaphore_(0),
sweeping_in_progress_(false),
late_pages_(false),
num_sweeping_tasks_(0) {}
bool sweeping_in_progress() { return sweeping_in_progress_; }
bool contains_late_pages() { return late_pages_; }
void AddPage(AllocationSpace space, Page* page);
void AddLatePage(AllocationSpace space, Page* page);
int ParallelSweepSpace(AllocationSpace identity, int required_freed_bytes,
int max_pages = 0);
int ParallelSweepPage(Page* page, AllocationSpace identity);
void StartSweeping();
void StartSweepingHelper(AllocationSpace space_to_start);
void EnsureCompleted();
void EnsureNewSpaceCompleted();
bool IsSweepingCompleted();
void SweepOrWaitUntilSweepingCompleted(Page* page);
void AddSweptPageSafe(PagedSpace* space, Page* page);
Page* GetSweptPageSafe(PagedSpace* space);
private:
static const int kAllocationSpaces = LAST_PAGED_SPACE + 1;
template <typename Callback>
void ForAllSweepingSpaces(Callback callback) {
for (int i = 0; i < kAllocationSpaces; i++) {
callback(static_cast<AllocationSpace>(i));
}
}
Page* GetSweepingPageSafe(AllocationSpace space);
void AddSweepingPageSafe(AllocationSpace space, Page* page);
void PrepareToBeSweptPage(AllocationSpace space, Page* page);
Heap* heap_;
base::Semaphore pending_sweeper_tasks_semaphore_;
base::Mutex mutex_;
SweptList swept_list_[kAllocationSpaces];
SweepingList sweeping_list_[kAllocationSpaces];
bool sweeping_in_progress_;
bool late_pages_;
base::AtomicNumber<intptr_t> num_sweeping_tasks_;
};
enum IterationMode {
kKeepMarking,
kClearMarkbits,
};
static void Initialize();
void SetUp();
void TearDown();
void CollectEvacuationCandidates(PagedSpace* space);
void AddEvacuationCandidate(Page* p);
// Prepares for GC by resetting relocation info in old and map spaces and
// choosing spaces to compact.
void Prepare();
// Performs a global garbage collection.
void CollectGarbage();
enum CompactionMode { INCREMENTAL_COMPACTION, NON_INCREMENTAL_COMPACTION };
bool StartCompaction(CompactionMode mode);
void AbortCompaction();
#ifdef DEBUG
// Checks whether performing mark-compact collection.
bool in_use() { return state_ > PREPARE_GC; }
bool are_map_pointers_encoded() { return state_ == UPDATE_POINTERS; }
#endif
// Determine type of object and emit deletion log event.
static void ReportDeleteIfNeeded(HeapObject* obj, Isolate* isolate);
// Distinguishable invalid map encodings (for single word and multiple words)
// that indicate free regions.
static const uint32_t kSingleFreeEncoding = 0;
static const uint32_t kMultiFreeEncoding = 1;
static inline bool IsMarked(Object* obj);
static bool IsUnmarkedHeapObjectWithHeap(Heap* heap, Object** p);
inline Heap* heap() const { return heap_; }
inline Isolate* isolate() const;
CodeFlusher* code_flusher() { return code_flusher_; }
inline bool is_code_flushing_enabled() const { return code_flusher_ != NULL; }
#ifdef VERIFY_HEAP
void VerifyValidStoreAndSlotsBufferEntries();
void VerifyMarkbitsAreClean();
static void VerifyMarkbitsAreClean(PagedSpace* space);
static void VerifyMarkbitsAreClean(NewSpace* space);
void VerifyWeakEmbeddedObjectsInCode();
void VerifyOmittedMapChecks();
#endif
INLINE(static bool ShouldSkipEvacuationSlotRecording(Object* host)) {
return Page::FromAddress(reinterpret_cast<Address>(host))
->ShouldSkipEvacuationSlotRecording();
}
INLINE(static bool IsOnEvacuationCandidate(Object* obj)) {
return Page::FromAddress(reinterpret_cast<Address>(obj))
->IsEvacuationCandidate();
}
void RecordRelocSlot(Code* host, RelocInfo* rinfo, Object* target);
void RecordCodeEntrySlot(HeapObject* host, Address slot, Code* target);
void RecordCodeTargetPatch(Address pc, Code* target);
INLINE(void RecordSlot(HeapObject* object, Object** slot, Object* target));
INLINE(void ForceRecordSlot(HeapObject* object, Object** slot,
Object* target));
void UpdateSlots(SlotsBuffer* buffer);
void UpdateSlotsRecordedIn(SlotsBuffer* buffer);
void InvalidateCode(Code* code);
void ClearMarkbits();
bool is_compacting() const { return compacting_; }
MarkingParity marking_parity() { return marking_parity_; }
// Ensures that sweeping is finished.
//
// Note: Can only be called safely from main thread.
void EnsureSweepingCompleted();
// Help out in sweeping the corresponding space and refill memory that has
// been regained.
//
// Note: Thread-safe.
void SweepAndRefill(CompactionSpace* space);
// Checks if sweeping is in progress right now on any space.
bool sweeping_in_progress() { return sweeper().sweeping_in_progress(); }
void set_evacuation(bool evacuation) { evacuation_ = evacuation; }
bool evacuation() const { return evacuation_; }
// Special case for processing weak references in a full collection. We need
// to artificially keep AllocationSites alive for a time.
void MarkAllocationSite(AllocationSite* site);
// Mark objects in implicit references groups if their parent object
// is marked.
void MarkImplicitRefGroups(MarkObjectFunction mark_object);
MarkingDeque* marking_deque() { return &marking_deque_; }
static const size_t kMaxMarkingDequeSize = 4 * MB;
static const size_t kMinMarkingDequeSize = 256 * KB;
void EnsureMarkingDequeIsCommittedAndInitialize(size_t max_size) {
if (!marking_deque_.in_use()) {
EnsureMarkingDequeIsCommitted(max_size);
InitializeMarkingDeque();
}
}
void EnsureMarkingDequeIsCommitted(size_t max_size);
void EnsureMarkingDequeIsReserved();
void InitializeMarkingDeque();
// The following two methods can just be called after marking, when the
// whole transitive closure is known. They must be called before sweeping
// when mark bits are still intact.
bool IsSlotInBlackObject(MemoryChunk* p, Address slot);
HeapObject* FindBlackObjectBySlotSlow(Address slot);
// Removes all the slots in the slot buffers that are within the given
// address range.
void RemoveObjectSlots(Address start_slot, Address end_slot);
Sweeper& sweeper() { return sweeper_; }
void RegisterWrappersWithEmbedderHeapTracer();
void SetEmbedderHeapTracer(EmbedderHeapTracer* tracer);
EmbedderHeapTracer* embedder_heap_tracer() { return embedder_heap_tracer_; }
bool UsingEmbedderHeapTracer() { return embedder_heap_tracer(); }
void TracePossibleWrapper(JSObject* js_object);
void RegisterExternallyReferencedObject(Object** object);
private:
class EvacuateNewSpacePageVisitor;
class EvacuateNewSpaceVisitor;
class EvacuateOldSpaceVisitor;
class EvacuateRecordOnlyVisitor;
class EvacuateVisitorBase;
class HeapObjectVisitor;
explicit MarkCompactCollector(Heap* heap);
bool WillBeDeoptimized(Code* code);
void ClearInvalidRememberedSetSlots();
void ComputeEvacuationHeuristics(int area_size,
int* target_fragmentation_percent,
int* max_evacuated_bytes);
// Finishes GC, performs heap verification if enabled.
void Finish();
// -----------------------------------------------------------------------
// Phase 1: Marking live objects.
//
// Before: The heap has been prepared for garbage collection by
// MarkCompactCollector::Prepare() and is otherwise in its
// normal state.
//
// After: Live objects are marked and non-live objects are unmarked.
friend class CodeMarkingVisitor;
friend class IncrementalMarkingMarkingVisitor;
friend class MarkCompactMarkingVisitor;
friend class MarkingVisitor;
friend class RecordMigratedSlotVisitor;
friend class RootMarkingVisitor;
friend class SharedFunctionInfoMarkingVisitor;
// Mark code objects that are active on the stack to prevent them
// from being flushed.
void PrepareThreadForCodeFlushing(Isolate* isolate, ThreadLocalTop* top);
void PrepareForCodeFlushing();
// Marking operations for objects reachable from roots.
void MarkLiveObjects();
// Pushes a black object onto the marking stack and accounts for live bytes.
// Note that this assumes live bytes have not yet been counted.
INLINE(void PushBlack(HeapObject* obj));
// Unshifts a black object into the marking stack and accounts for live bytes.
// Note that this assumes lives bytes have already been counted.
INLINE(void UnshiftBlack(HeapObject* obj));
// Marks the object black and pushes it on the marking stack.
// This is for non-incremental marking only.
INLINE(void MarkObject(HeapObject* obj, MarkBit mark_bit));
// Marks the object black assuming that it is not yet marked.
// This is for non-incremental marking only.
INLINE(void SetMark(HeapObject* obj, MarkBit mark_bit));
// Mark the heap roots and all objects reachable from them.
void MarkRoots(RootMarkingVisitor* visitor);
// Mark the string table specially. References to internalized strings from
// the string table are weak.
void MarkStringTable(RootMarkingVisitor* visitor);
// Mark objects reachable (transitively) from objects in the marking stack
// or overflowed in the heap.
void ProcessMarkingDeque();
// Mark objects reachable (transitively) from objects in the marking stack
// or overflowed in the heap. This respects references only considered in
// the final atomic marking pause including the following:
// - Processing of objects reachable through Harmony WeakMaps.
// - Objects reachable due to host application logic like object groups,
// implicit references' groups, or embedder heap tracing.
void ProcessEphemeralMarking(ObjectVisitor* visitor,
bool only_process_harmony_weak_collections);
// If the call-site of the top optimized code was not prepared for
// deoptimization, then treat the maps in the code as strong pointers,
// otherwise a map can die and deoptimize the code.
void ProcessTopOptimizedFrame(ObjectVisitor* visitor);
// Collects a list of dependent code from maps embedded in optimize code.
DependentCode* DependentCodeListFromNonLiveMaps();
// Mark objects reachable (transitively) from objects in the marking
// stack. This function empties the marking stack, but may leave
// overflowed objects in the heap, in which case the marking stack's
// overflow flag will be set.
void EmptyMarkingDeque();
// Refill the marking stack with overflowed objects from the heap. This
// function either leaves the marking stack full or clears the overflow
// flag on the marking stack.
void RefillMarkingDeque();
// Helper methods for refilling the marking stack by discovering grey objects
// on various pages of the heap. Used by {RefillMarkingDeque} only.
template <class T>
void DiscoverGreyObjectsWithIterator(T* it);
void DiscoverGreyObjectsOnPage(MemoryChunk* p);
void DiscoverGreyObjectsInSpace(PagedSpace* space);
void DiscoverGreyObjectsInNewSpace();
// Callback function for telling whether the object *p is an unmarked
// heap object.
static bool IsUnmarkedHeapObject(Object** p);
// Clear non-live references in weak cells, transition and descriptor arrays,
// and deoptimize dependent code of non-live maps.
void ClearNonLiveReferences();
void MarkDependentCodeForDeoptimization(DependentCode* list);
// Find non-live targets of simple transitions in the given list. Clear
// transitions to non-live targets and if needed trim descriptors arrays.
void ClearSimpleMapTransitions(Object* non_live_map_list);
void ClearSimpleMapTransition(Map* map, Map* dead_transition);
// Compact every array in the global list of transition arrays and
// trim the corresponding descriptor array if a transition target is non-live.
void ClearFullMapTransitions();
bool CompactTransitionArray(Map* map, TransitionArray* transitions,
DescriptorArray* descriptors);
void TrimDescriptorArray(Map* map, DescriptorArray* descriptors);
void TrimEnumCache(Map* map, DescriptorArray* descriptors);
// Mark all values associated with reachable keys in weak collections
// encountered so far. This might push new object or even new weak maps onto
// the marking stack.
void ProcessWeakCollections();
// After all reachable objects have been marked those weak map entries
// with an unreachable key are removed from all encountered weak maps.
// The linked list of all encountered weak maps is destroyed.
void ClearWeakCollections();
// We have to remove all encountered weak maps from the list of weak
// collections when incremental marking is aborted.
void AbortWeakCollections();
void ClearWeakCells(Object** non_live_map_list,
DependentCode** dependent_code_list);
void AbortWeakCells();
void AbortTransitionArrays();
// -----------------------------------------------------------------------
// Phase 2: Sweeping to clear mark bits and free non-live objects for
// a non-compacting collection.
//
// Before: Live objects are marked and non-live objects are unmarked.
//
// After: Live objects are unmarked, non-live regions have been added to
// their space's free list. Active eden semispace is compacted by
// evacuation.
//
// If we are not compacting the heap, we simply sweep the spaces except
// for the large object space, clearing mark bits and adding unmarked
// regions to each space's free list.
void SweepSpaces();
void EvacuateNewSpacePrologue();
void EvacuatePagesInParallel();
// The number of parallel compaction tasks, including the main thread.
int NumberOfParallelCompactionTasks(int pages, intptr_t live_bytes);
void EvacuateNewSpaceAndCandidates();
void UpdatePointersAfterEvacuation();
// Iterates through all live objects on a page using marking information.
// Returns whether all objects have successfully been visited.
template <class Visitor>
bool VisitLiveObjects(MemoryChunk* page, Visitor* visitor,
IterationMode mode);
void VisitLiveObjectsBody(Page* page, ObjectVisitor* visitor);
void RecomputeLiveBytes(MemoryChunk* page);
void ReleaseEvacuationCandidates();
// Starts sweeping of a space by contributing on the main thread and setting
// up other pages for sweeping.
void StartSweepSpace(PagedSpace* space);
#ifdef DEBUG
friend class MarkObjectVisitor;
static void VisitObject(HeapObject* obj);
friend class UnmarkObjectVisitor;
static void UnmarkObject(HeapObject* obj);
#endif
Heap* heap_;
base::Semaphore page_parallel_job_semaphore_;
#ifdef DEBUG
enum CollectorState {
IDLE,
PREPARE_GC,
MARK_LIVE_OBJECTS,
SWEEP_SPACES,
ENCODE_FORWARDING_ADDRESSES,
UPDATE_POINTERS,
RELOCATE_OBJECTS
};
// The current stage of the collector.
CollectorState state_;
#endif
MarkingParity marking_parity_;
bool was_marked_incrementally_;
bool evacuation_;
// True if we are collecting slots to perform evacuation from evacuation
// candidates.
bool compacting_;
bool black_allocation_;
bool have_code_to_deoptimize_;
base::VirtualMemory* marking_deque_memory_;
size_t marking_deque_memory_committed_;
MarkingDeque marking_deque_;
std::vector<std::pair<void*, void*>> wrappers_to_trace_;
CodeFlusher* code_flusher_;
EmbedderHeapTracer* embedder_heap_tracer_;
List<Page*> evacuation_candidates_;
List<Page*> newspace_evacuation_candidates_;
Sweeper sweeper_;
friend class Heap;
friend class StoreBuffer;
};
class EvacuationScope BASE_EMBEDDED {
public:
explicit EvacuationScope(MarkCompactCollector* collector)
: collector_(collector) {
collector_->set_evacuation(true);
}
~EvacuationScope() { collector_->set_evacuation(false); }
private:
MarkCompactCollector* collector_;
};
const char* AllocationSpaceName(AllocationSpace space);
} // namespace internal
} // namespace v8
#endif // V8_HEAP_MARK_COMPACT_H_