// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
#define V8_IA32_MACRO_ASSEMBLER_IA32_H_
#include "src/assembler.h"
#include "src/bailout-reason.h"
#include "src/frames.h"
#include "src/globals.h"
namespace v8 {
namespace internal {
// Give alias names to registers for calling conventions.
const Register kReturnRegister0 = {Register::kCode_eax};
const Register kReturnRegister1 = {Register::kCode_edx};
const Register kReturnRegister2 = {Register::kCode_edi};
const Register kJSFunctionRegister = {Register::kCode_edi};
const Register kContextRegister = {Register::kCode_esi};
const Register kAllocateSizeRegister = {Register::kCode_edx};
const Register kInterpreterAccumulatorRegister = {Register::kCode_eax};
const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_ecx};
const Register kInterpreterBytecodeArrayRegister = {Register::kCode_edi};
const Register kInterpreterDispatchTableRegister = {Register::kCode_esi};
const Register kJavaScriptCallArgCountRegister = {Register::kCode_eax};
const Register kJavaScriptCallNewTargetRegister = {Register::kCode_edx};
const Register kRuntimeCallFunctionRegister = {Register::kCode_ebx};
const Register kRuntimeCallArgCountRegister = {Register::kCode_eax};
// Convenience for platform-independent signatures. We do not normally
// distinguish memory operands from other operands on ia32.
typedef Operand MemOperand;
enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
enum PointersToHereCheck {
kPointersToHereMaybeInteresting,
kPointersToHereAreAlwaysInteresting
};
enum RegisterValueType { REGISTER_VALUE_IS_SMI, REGISTER_VALUE_IS_INT32 };
enum class ReturnAddressState { kOnStack, kNotOnStack };
#ifdef DEBUG
bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
Register reg4 = no_reg, Register reg5 = no_reg,
Register reg6 = no_reg, Register reg7 = no_reg,
Register reg8 = no_reg);
#endif
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
public:
MacroAssembler(Isolate* isolate, void* buffer, int size,
CodeObjectRequired create_code_object);
void Load(Register dst, const Operand& src, Representation r);
void Store(Register src, const Operand& dst, Representation r);
// Load a register with a long value as efficiently as possible.
void Set(Register dst, int32_t x) {
if (x == 0) {
xor_(dst, dst);
} else {
mov(dst, Immediate(x));
}
}
void Set(const Operand& dst, int32_t x) { mov(dst, Immediate(x)); }
// Operations on roots in the root-array.
void LoadRoot(Register destination, Heap::RootListIndex index);
void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
// These methods can only be used with constant roots (i.e. non-writable
// and not in new space).
void CompareRoot(Register with, Heap::RootListIndex index);
void CompareRoot(const Operand& with, Heap::RootListIndex index);
void PushRoot(Heap::RootListIndex index);
// Compare the object in a register to a value and jump if they are equal.
void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
Label::Distance if_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(equal, if_equal, if_equal_distance);
}
void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
Label* if_equal,
Label::Distance if_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(equal, if_equal, if_equal_distance);
}
// Compare the object in a register to a value and jump if they are not equal.
void JumpIfNotRoot(Register with, Heap::RootListIndex index,
Label* if_not_equal,
Label::Distance if_not_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(not_equal, if_not_equal, if_not_equal_distance);
}
void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
Label* if_not_equal,
Label::Distance if_not_equal_distance = Label::kFar) {
CompareRoot(with, index);
j(not_equal, if_not_equal, if_not_equal_distance);
}
// These functions do not arrange the registers in any particular order so
// they are not useful for calls that can cause a GC. The caller can
// exclude up to 3 registers that do not need to be saved and restored.
void PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
void PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
Register exclusion2 = no_reg,
Register exclusion3 = no_reg);
// ---------------------------------------------------------------------------
// GC Support
enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
// Record in the remembered set the fact that we have a pointer to new space
// at the address pointed to by the addr register. Only works if addr is not
// in new space.
void RememberedSetHelper(Register object, // Used for debug code.
Register addr, Register scratch,
SaveFPRegsMode save_fp,
RememberedSetFinalAction and_then);
void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
Label* condition_met,
Label::Distance condition_met_distance = Label::kFar);
void CheckPageFlagForMap(
Handle<Map> map, int mask, Condition cc, Label* condition_met,
Label::Distance condition_met_distance = Label::kFar);
// Check if object is in new space. Jumps if the object is not in new space.
// The register scratch can be object itself, but scratch will be clobbered.
void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch,
Label::Distance distance = Label::kFar) {
InNewSpace(object, scratch, zero, branch, distance);
}
// Check if object is in new space. Jumps if the object is in new space.
// The register scratch can be object itself, but it will be clobbered.
void JumpIfInNewSpace(Register object, Register scratch, Label* branch,
Label::Distance distance = Label::kFar) {
InNewSpace(object, scratch, not_zero, branch, distance);
}
// Check if an object has a given incremental marking color. Also uses ecx!
void HasColor(Register object, Register scratch0, Register scratch1,
Label* has_color, Label::Distance has_color_distance,
int first_bit, int second_bit);
void JumpIfBlack(Register object, Register scratch0, Register scratch1,
Label* on_black,
Label::Distance on_black_distance = Label::kFar);
// Checks the color of an object. If the object is white we jump to the
// incremental marker.
void JumpIfWhite(Register value, Register scratch1, Register scratch2,
Label* value_is_white, Label::Distance distance);
// Notify the garbage collector that we wrote a pointer into an object.
// |object| is the object being stored into, |value| is the object being
// stored. value and scratch registers are clobbered by the operation.
// The offset is the offset from the start of the object, not the offset from
// the tagged HeapObject pointer. For use with FieldOperand(reg, off).
void RecordWriteField(
Register object, int offset, Register value, Register scratch,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting);
// As above, but the offset has the tag presubtracted. For use with
// Operand(reg, off).
void RecordWriteContextSlot(
Register context, int offset, Register value, Register scratch,
SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting) {
RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
remembered_set_action, smi_check,
pointers_to_here_check_for_value);
}
// Notify the garbage collector that we wrote a pointer into a fixed array.
// |array| is the array being stored into, |value| is the
// object being stored. |index| is the array index represented as a
// Smi. All registers are clobbered by the operation RecordWriteArray
// filters out smis so it does not update the write barrier if the
// value is a smi.
void RecordWriteArray(
Register array, Register value, Register index, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting);
// For page containing |object| mark region covering |address|
// dirty. |object| is the object being stored into, |value| is the
// object being stored. The address and value registers are clobbered by the
// operation. RecordWrite filters out smis so it does not update the
// write barrier if the value is a smi.
void RecordWrite(
Register object, Register address, Register value, SaveFPRegsMode save_fp,
RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
SmiCheck smi_check = INLINE_SMI_CHECK,
PointersToHereCheck pointers_to_here_check_for_value =
kPointersToHereMaybeInteresting);
// Notify the garbage collector that we wrote a code entry into a
// JSFunction. Only scratch is clobbered by the operation.
void RecordWriteCodeEntryField(Register js_function, Register code_entry,
Register scratch);
// For page containing |object| mark the region covering the object's map
// dirty. |object| is the object being stored into, |map| is the Map object
// that was stored.
void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
Register scratch2, SaveFPRegsMode save_fp);
// ---------------------------------------------------------------------------
// Debugger Support
void DebugBreak();
// Generates function and stub prologue code.
void StubPrologue(StackFrame::Type type);
void Prologue(bool code_pre_aging);
// Enter specific kind of exit frame. Expects the number of
// arguments in register eax and sets up the number of arguments in
// register edi and the pointer to the first argument in register
// esi.
void EnterExitFrame(int argc, bool save_doubles);
void EnterApiExitFrame(int argc);
// Leave the current exit frame. Expects the return value in
// register eax:edx (untouched) and the pointer to the first
// argument in register esi (if pop_arguments == true).
void LeaveExitFrame(bool save_doubles, bool pop_arguments = true);
// Leave the current exit frame. Expects the return value in
// register eax (untouched).
void LeaveApiExitFrame(bool restore_context);
// Find the function context up the context chain.
void LoadContext(Register dst, int context_chain_length);
// Load the global proxy from the current context.
void LoadGlobalProxy(Register dst);
// Conditionally load the cached Array transitioned map of type
// transitioned_kind from the native context if the map in register
// map_in_out is the cached Array map in the native context of
// expected_kind.
void LoadTransitionedArrayMapConditional(ElementsKind expected_kind,
ElementsKind transitioned_kind,
Register map_in_out,
Register scratch,
Label* no_map_match);
// Load the global function with the given index.
void LoadGlobalFunction(int index, Register function);
// Load the initial map from the global function. The registers
// function and map can be the same.
void LoadGlobalFunctionInitialMap(Register function, Register map);
// Push and pop the registers that can hold pointers.
void PushSafepointRegisters() { pushad(); }
void PopSafepointRegisters() { popad(); }
// Store the value in register/immediate src in the safepoint
// register stack slot for register dst.
void StoreToSafepointRegisterSlot(Register dst, Register src);
void StoreToSafepointRegisterSlot(Register dst, Immediate src);
void LoadFromSafepointRegisterSlot(Register dst, Register src);
// Nop, because ia32 does not have a root register.
void InitializeRootRegister() {}
void LoadHeapObject(Register result, Handle<HeapObject> object);
void CmpHeapObject(Register reg, Handle<HeapObject> object);
void PushHeapObject(Handle<HeapObject> object);
void LoadObject(Register result, Handle<Object> object) {
AllowDeferredHandleDereference heap_object_check;
if (object->IsHeapObject()) {
LoadHeapObject(result, Handle<HeapObject>::cast(object));
} else {
Move(result, Immediate(object));
}
}
void CmpObject(Register reg, Handle<Object> object) {
AllowDeferredHandleDereference heap_object_check;
if (object->IsHeapObject()) {
CmpHeapObject(reg, Handle<HeapObject>::cast(object));
} else {
cmp(reg, Immediate(object));
}
}
// Compare the given value and the value of weak cell.
void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
void GetWeakValue(Register value, Handle<WeakCell> cell);
// Load the value of the weak cell in the value register. Branch to the given
// miss label if the weak cell was cleared.
void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
// ---------------------------------------------------------------------------
// JavaScript invokes
// Removes current frame and its arguments from the stack preserving
// the arguments and a return address pushed to the stack for the next call.
// |ra_state| defines whether return address is already pushed to stack or
// not. Both |callee_args_count| and |caller_args_count_reg| do not include
// receiver. |callee_args_count| is not modified, |caller_args_count_reg|
// is trashed. |number_of_temp_values_after_return_address| specifies
// the number of words pushed to the stack after the return address. This is
// to allow "allocation" of scratch registers that this function requires
// by saving their values on the stack.
void PrepareForTailCall(const ParameterCount& callee_args_count,
Register caller_args_count_reg, Register scratch0,
Register scratch1, ReturnAddressState ra_state,
int number_of_temp_values_after_return_address);
// Invoke the JavaScript function code by either calling or jumping.
void InvokeFunctionCode(Register function, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag,
const CallWrapper& call_wrapper);
void FloodFunctionIfStepping(Register fun, Register new_target,
const ParameterCount& expected,
const ParameterCount& actual);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function, Register new_target,
const ParameterCount& actual, InvokeFlag flag,
const CallWrapper& call_wrapper);
void InvokeFunction(Register function, const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag,
const CallWrapper& call_wrapper);
void InvokeFunction(Handle<JSFunction> function,
const ParameterCount& expected,
const ParameterCount& actual, InvokeFlag flag,
const CallWrapper& call_wrapper);
// Expression support
// cvtsi2sd instruction only writes to the low 64-bit of dst register, which
// hinders register renaming and makes dependence chains longer. So we use
// xorps to clear the dst register before cvtsi2sd to solve this issue.
void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); }
void Cvtsi2sd(XMMRegister dst, const Operand& src);
void Cvtui2ss(XMMRegister dst, Register src, Register tmp);
void ShlPair(Register high, Register low, uint8_t imm8);
void ShlPair_cl(Register high, Register low);
void ShrPair(Register high, Register low, uint8_t imm8);
void ShrPair_cl(Register high, Register src);
void SarPair(Register high, Register low, uint8_t imm8);
void SarPair_cl(Register high, Register low);
// Support for constant splitting.
bool IsUnsafeImmediate(const Immediate& x);
void SafeMove(Register dst, const Immediate& x);
void SafePush(const Immediate& x);
// Compare object type for heap object.
// Incoming register is heap_object and outgoing register is map.
void CmpObjectType(Register heap_object, InstanceType type, Register map);
// Compare instance type for map.
void CmpInstanceType(Register map, InstanceType type);
// Check if a map for a JSObject indicates that the object has fast elements.
// Jump to the specified label if it does not.
void CheckFastElements(Register map, Label* fail,
Label::Distance distance = Label::kFar);
// Check if a map for a JSObject indicates that the object can have both smi
// and HeapObject elements. Jump to the specified label if it does not.
void CheckFastObjectElements(Register map, Label* fail,
Label::Distance distance = Label::kFar);
// Check if a map for a JSObject indicates that the object has fast smi only
// elements. Jump to the specified label if it does not.
void CheckFastSmiElements(Register map, Label* fail,
Label::Distance distance = Label::kFar);
// Check to see if maybe_number can be stored as a double in
// FastDoubleElements. If it can, store it at the index specified by key in
// the FastDoubleElements array elements, otherwise jump to fail.
void StoreNumberToDoubleElements(Register maybe_number, Register elements,
Register key, Register scratch1,
XMMRegister scratch2, Label* fail,
int offset = 0);
// Compare an object's map with the specified map.
void CompareMap(Register obj, Handle<Map> map);
// Check if the map of an object is equal to a specified map and branch to
// label if not. Skip the smi check if not required (object is known to be a
// heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
// against maps that are ElementsKind transition maps of the specified map.
void CheckMap(Register obj, Handle<Map> map, Label* fail,
SmiCheckType smi_check_type);
// Check if the map of an object is equal to a specified weak map and branch
// to a specified target if equal. Skip the smi check if not required
// (object is known to be a heap object)
void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
Handle<WeakCell> cell, Handle<Code> success,
SmiCheckType smi_check_type);
// Check if the object in register heap_object is a string. Afterwards the
// register map contains the object map and the register instance_type
// contains the instance_type. The registers map and instance_type can be the
// same in which case it contains the instance type afterwards. Either of the
// registers map and instance_type can be the same as heap_object.
Condition IsObjectStringType(Register heap_object, Register map,
Register instance_type);
// Check if the object in register heap_object is a name. Afterwards the
// register map contains the object map and the register instance_type
// contains the instance_type. The registers map and instance_type can be the
// same in which case it contains the instance type afterwards. Either of the
// registers map and instance_type can be the same as heap_object.
Condition IsObjectNameType(Register heap_object, Register map,
Register instance_type);
// FCmp is similar to integer cmp, but requires unsigned
// jcc instructions (je, ja, jae, jb, jbe, je, and jz).
void FCmp();
void ClampUint8(Register reg);
void ClampDoubleToUint8(XMMRegister input_reg, XMMRegister scratch_reg,
Register result_reg);
void SlowTruncateToI(Register result_reg, Register input_reg,
int offset = HeapNumber::kValueOffset - kHeapObjectTag);
void TruncateHeapNumberToI(Register result_reg, Register input_reg);
void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
void DoubleToI(Register result_reg, XMMRegister input_reg,
XMMRegister scratch, MinusZeroMode minus_zero_mode,
Label* lost_precision, Label* is_nan, Label* minus_zero,
Label::Distance dst = Label::kFar);
// Smi tagging support.
void SmiTag(Register reg) {
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1);
add(reg, reg);
}
void SmiUntag(Register reg) {
sar(reg, kSmiTagSize);
}
// Modifies the register even if it does not contain a Smi!
void SmiUntag(Register reg, Label* is_smi) {
STATIC_ASSERT(kSmiTagSize == 1);
sar(reg, kSmiTagSize);
STATIC_ASSERT(kSmiTag == 0);
j(not_carry, is_smi);
}
void LoadUint32(XMMRegister dst, Register src) {
LoadUint32(dst, Operand(src));
}
void LoadUint32(XMMRegister dst, const Operand& src);
// Jump the register contains a smi.
inline void JumpIfSmi(Register value, Label* smi_label,
Label::Distance distance = Label::kFar) {
test(value, Immediate(kSmiTagMask));
j(zero, smi_label, distance);
}
// Jump if the operand is a smi.
inline void JumpIfSmi(Operand value, Label* smi_label,
Label::Distance distance = Label::kFar) {
test(value, Immediate(kSmiTagMask));
j(zero, smi_label, distance);
}
// Jump if register contain a non-smi.
inline void JumpIfNotSmi(Register value, Label* not_smi_label,
Label::Distance distance = Label::kFar) {
test(value, Immediate(kSmiTagMask));
j(not_zero, not_smi_label, distance);
}
// Jump if the value cannot be represented by a smi.
inline void JumpIfNotValidSmiValue(Register value, Register scratch,
Label* on_invalid,
Label::Distance distance = Label::kFar) {
mov(scratch, value);
add(scratch, Immediate(0x40000000U));
j(sign, on_invalid, distance);
}
// Jump if the unsigned integer value cannot be represented by a smi.
inline void JumpIfUIntNotValidSmiValue(
Register value, Label* on_invalid,
Label::Distance distance = Label::kFar) {
cmp(value, Immediate(0x40000000U));
j(above_equal, on_invalid, distance);
}
void LoadInstanceDescriptors(Register map, Register descriptors);
void EnumLength(Register dst, Register map);
void NumberOfOwnDescriptors(Register dst, Register map);
void LoadAccessor(Register dst, Register holder, int accessor_index,
AccessorComponent accessor);
template<typename Field>
void DecodeField(Register reg) {
static const int shift = Field::kShift;
static const int mask = Field::kMask >> Field::kShift;
if (shift != 0) {
sar(reg, shift);
}
and_(reg, Immediate(mask));
}
template<typename Field>
void DecodeFieldToSmi(Register reg) {
static const int shift = Field::kShift;
static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
STATIC_ASSERT(kSmiTag == 0);
if (shift < kSmiTagSize) {
shl(reg, kSmiTagSize - shift);
} else if (shift > kSmiTagSize) {
sar(reg, shift - kSmiTagSize);
}
and_(reg, Immediate(mask));
}
void LoadPowerOf2(XMMRegister dst, Register scratch, int power);
// Abort execution if argument is not a number, enabled via --debug-code.
void AssertNumber(Register object);
void AssertNotNumber(Register object);
// Abort execution if argument is not a smi, enabled via --debug-code.
void AssertSmi(Register object);
// Abort execution if argument is a smi, enabled via --debug-code.
void AssertNotSmi(Register object);
// Abort execution if argument is not a string, enabled via --debug-code.
void AssertString(Register object);
// Abort execution if argument is not a name, enabled via --debug-code.
void AssertName(Register object);
// Abort execution if argument is not a JSFunction, enabled via --debug-code.
void AssertFunction(Register object);
// Abort execution if argument is not a JSBoundFunction,
// enabled via --debug-code.
void AssertBoundFunction(Register object);
// Abort execution if argument is not a JSGeneratorObject,
// enabled via --debug-code.
void AssertGeneratorObject(Register object);
// Abort execution if argument is not a JSReceiver, enabled via --debug-code.
void AssertReceiver(Register object);
// Abort execution if argument is not undefined or an AllocationSite, enabled
// via --debug-code.
void AssertUndefinedOrAllocationSite(Register object);
// ---------------------------------------------------------------------------
// Exception handling
// Push a new stack handler and link it into stack handler chain.
void PushStackHandler();
// Unlink the stack handler on top of the stack from the stack handler chain.
void PopStackHandler();
// ---------------------------------------------------------------------------
// Inline caching support
// Generate code for checking access rights - used for security checks
// on access to global objects across environments. The holder register
// is left untouched, but the scratch register is clobbered.
void CheckAccessGlobalProxy(Register holder_reg, Register scratch1,
Register scratch2, Label* miss);
void GetNumberHash(Register r0, Register scratch);
void LoadFromNumberDictionary(Label* miss, Register elements, Register key,
Register r0, Register r1, Register r2,
Register result);
// ---------------------------------------------------------------------------
// Allocation support
// Allocate an object in new space or old space. If the given space
// is exhausted control continues at the gc_required label. The allocated
// object is returned in result and end of the new object is returned in
// result_end. The register scratch can be passed as no_reg in which case
// an additional object reference will be added to the reloc info. The
// returned pointers in result and result_end have not yet been tagged as
// heap objects. If result_contains_top_on_entry is true the content of
// result is known to be the allocation top on entry (could be result_end
// from a previous call). If result_contains_top_on_entry is true scratch
// should be no_reg as it is never used.
void Allocate(int object_size, Register result, Register result_end,
Register scratch, Label* gc_required, AllocationFlags flags);
void Allocate(int header_size, ScaleFactor element_size,
Register element_count, RegisterValueType element_count_type,
Register result, Register result_end, Register scratch,
Label* gc_required, AllocationFlags flags);
void Allocate(Register object_size, Register result, Register result_end,
Register scratch, Label* gc_required, AllocationFlags flags);
// FastAllocate is right now only used for folded allocations. It just
// increments the top pointer without checking against limit. This can only
// be done if it was proved earlier that the allocation will succeed.
void FastAllocate(int object_size, Register result, Register result_end,
AllocationFlags flags);
void FastAllocate(Register object_size, Register result, Register result_end,
AllocationFlags flags);
// Allocate a heap number in new space with undefined value. The
// register scratch2 can be passed as no_reg; the others must be
// valid registers. Returns tagged pointer in result register, or
// jumps to gc_required if new space is full.
void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
Label* gc_required, MutableMode mode = IMMUTABLE);
// Allocate a sequential string. All the header fields of the string object
// are initialized.
void AllocateTwoByteString(Register result, Register length,
Register scratch1, Register scratch2,
Register scratch3, Label* gc_required);
void AllocateOneByteString(Register result, Register length,
Register scratch1, Register scratch2,
Register scratch3, Label* gc_required);
void AllocateOneByteString(Register result, int length, Register scratch1,
Register scratch2, Label* gc_required);
// Allocate a raw cons string object. Only the map field of the result is
// initialized.
void AllocateTwoByteConsString(Register result, Register scratch1,
Register scratch2, Label* gc_required);
void AllocateOneByteConsString(Register result, Register scratch1,
Register scratch2, Label* gc_required);
// Allocate a raw sliced string object. Only the map field of the result is
// initialized.
void AllocateTwoByteSlicedString(Register result, Register scratch1,
Register scratch2, Label* gc_required);
void AllocateOneByteSlicedString(Register result, Register scratch1,
Register scratch2, Label* gc_required);
// Allocate and initialize a JSValue wrapper with the specified {constructor}
// and {value}.
void AllocateJSValue(Register result, Register constructor, Register value,
Register scratch, Label* gc_required);
// Copy memory, byte-by-byte, from source to destination. Not optimized for
// long or aligned copies.
// The contents of index and scratch are destroyed.
void CopyBytes(Register source, Register destination, Register length,
Register scratch);
// Initialize fields with filler values. Fields starting at |current_address|
// not including |end_address| are overwritten with the value in |filler|. At
// the end the loop, |current_address| takes the value of |end_address|.
void InitializeFieldsWithFiller(Register current_address,
Register end_address, Register filler);
// ---------------------------------------------------------------------------
// Support functions.
// Check a boolean-bit of a Smi field.
void BooleanBitTest(Register object, int field_offset, int bit_index);
// Check if result is zero and op is negative.
void NegativeZeroTest(Register result, Register op, Label* then_label);
// Check if result is zero and any of op1 and op2 are negative.
// Register scratch is destroyed, and it must be different from op2.
void NegativeZeroTest(Register result, Register op1, Register op2,
Register scratch, Label* then_label);
// Machine code version of Map::GetConstructor().
// |temp| holds |result|'s map when done.
void GetMapConstructor(Register result, Register map, Register temp);
// Try to get function prototype of a function and puts the value in
// the result register. Checks that the function really is a
// function and jumps to the miss label if the fast checks fail. The
// function register will be untouched; the other registers may be
// clobbered.
void TryGetFunctionPrototype(Register function, Register result,
Register scratch, Label* miss);
// Picks out an array index from the hash field.
// Register use:
// hash - holds the index's hash. Clobbered.
// index - holds the overwritten index on exit.
void IndexFromHash(Register hash, Register index);
// ---------------------------------------------------------------------------
// Runtime calls
// Call a code stub. Generate the code if necessary.
void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
// Tail call a code stub (jump). Generate the code if necessary.
void TailCallStub(CodeStub* stub);
// Return from a code stub after popping its arguments.
void StubReturn(int argc);
// Call a runtime routine.
void CallRuntime(const Runtime::Function* f, int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs);
void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, kSaveFPRegs);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
const Runtime::Function* function = Runtime::FunctionForId(fid);
CallRuntime(function, function->nargs, save_doubles);
}
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments,
SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
}
// Convenience function: call an external reference.
void CallExternalReference(ExternalReference ref, int num_arguments);
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid);
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, arguments must be stored in esp[0], esp[4],
// etc., not pushed. The argument count assumes all arguments are word sized.
// Some compilers/platforms require the stack to be aligned when calling
// C++ code.
// Needs a scratch register to do some arithmetic. This register will be
// trashed.
void PrepareCallCFunction(int num_arguments, Register scratch);
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
// Jump to a runtime routine.
void JumpToExternalReference(const ExternalReference& ext);
// ---------------------------------------------------------------------------
// Utilities
void Ret();
// Return and drop arguments from stack, where the number of arguments
// may be bigger than 2^16 - 1. Requires a scratch register.
void Ret(int bytes_dropped, Register scratch);
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the esp register.
void Drop(int element_count);
void Call(Label* target) { call(target); }
void Call(Handle<Code> target, RelocInfo::Mode rmode) { call(target, rmode); }
void Jump(Handle<Code> target, RelocInfo::Mode rmode) { jmp(target, rmode); }
void Push(Register src) { push(src); }
void Push(const Operand& src) { push(src); }
void Push(Immediate value) { push(value); }
void Pop(Register dst) { pop(dst); }
void Pop(const Operand& dst) { pop(dst); }
void PushReturnAddressFrom(Register src) { push(src); }
void PopReturnAddressTo(Register dst) { pop(dst); }
// Non-SSE2 instructions.
void Pextrd(Register dst, XMMRegister src, int8_t imm8);
void Pinsrd(XMMRegister dst, Register src, int8_t imm8) {
Pinsrd(dst, Operand(src), imm8);
}
void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); }
void Lzcnt(Register dst, const Operand& src);
void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); }
void Tzcnt(Register dst, const Operand& src);
void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); }
void Popcnt(Register dst, const Operand& src);
// Move if the registers are not identical.
void Move(Register target, Register source);
// Move a constant into a destination using the most efficient encoding.
void Move(Register dst, const Immediate& x);
void Move(const Operand& dst, const Immediate& x);
// Move an immediate into an XMM register.
void Move(XMMRegister dst, uint32_t src);
void Move(XMMRegister dst, uint64_t src);
void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
void Move(Register dst, Handle<Object> handle) { LoadObject(dst, handle); }
void Move(Register dst, Smi* source) { Move(dst, Immediate(source)); }
// Push a handle value.
void Push(Handle<Object> handle) { push(Immediate(handle)); }
void Push(Smi* smi) { Push(Immediate(smi)); }
Handle<Object> CodeObject() {
DCHECK(!code_object_.is_null());
return code_object_;
}
// Emit code for a truncating division by a constant. The dividend register is
// unchanged, the result is in edx, and eax gets clobbered.
void TruncatingDiv(Register dividend, int32_t divisor);
// ---------------------------------------------------------------------------
// StatsCounter support
void SetCounter(StatsCounter* counter, int value);
void IncrementCounter(StatsCounter* counter, int value);
void DecrementCounter(StatsCounter* counter, int value);
void IncrementCounter(Condition cc, StatsCounter* counter, int value);
void DecrementCounter(Condition cc, StatsCounter* counter, int value);
// ---------------------------------------------------------------------------
// Debugging
// Calls Abort(msg) if the condition cc is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cc, BailoutReason reason);
void AssertFastElements(Register elements);
// Like Assert(), but always enabled.
void Check(Condition cc, BailoutReason reason);
// Print a message to stdout and abort execution.
void Abort(BailoutReason reason);
// Check that the stack is aligned.
void CheckStackAlignment();
// Verify restrictions about code generated in stubs.
void set_generating_stub(bool value) { generating_stub_ = value; }
bool generating_stub() { return generating_stub_; }
void set_has_frame(bool value) { has_frame_ = value; }
bool has_frame() { return has_frame_; }
inline bool AllowThisStubCall(CodeStub* stub);
// ---------------------------------------------------------------------------
// String utilities.
// Check whether the instance type represents a flat one-byte string. Jump to
// the label if not. If the instance type can be scratched specify same
// register for both instance type and scratch.
void JumpIfInstanceTypeIsNotSequentialOneByte(
Register instance_type, Register scratch,
Label* on_not_flat_one_byte_string);
// Checks if both objects are sequential one-byte strings, and jumps to label
// if either is not.
void JumpIfNotBothSequentialOneByteStrings(
Register object1, Register object2, Register scratch1, Register scratch2,
Label* on_not_flat_one_byte_strings);
// Checks if the given register or operand is a unique name
void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
Label::Distance distance = Label::kFar) {
JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
}
void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
Label::Distance distance = Label::kFar);
void EmitSeqStringSetCharCheck(Register string, Register index,
Register value, uint32_t encoding_mask);
static int SafepointRegisterStackIndex(Register reg) {
return SafepointRegisterStackIndex(reg.code());
}
// Load the type feedback vector from a JavaScript frame.
void EmitLoadTypeFeedbackVector(Register vector);
// Activation support.
void EnterFrame(StackFrame::Type type);
void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
void LeaveFrame(StackFrame::Type type);
// Expects object in eax and returns map with validated enum cache
// in eax. Assumes that any other register can be used as a scratch.
void CheckEnumCache(Label* call_runtime);
// AllocationMemento support. Arrays may have an associated
// AllocationMemento object that can be checked for in order to pretransition
// to another type.
// On entry, receiver_reg should point to the array object.
// scratch_reg gets clobbered.
// If allocation info is present, conditional code is set to equal.
void TestJSArrayForAllocationMemento(Register receiver_reg,
Register scratch_reg,
Label* no_memento_found);
void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
Register scratch_reg,
Label* memento_found) {
Label no_memento_found;
TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
&no_memento_found);
j(equal, memento_found);
bind(&no_memento_found);
}
// Jumps to found label if a prototype map has dictionary elements.
void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
Register scratch1, Label* found);
private:
bool generating_stub_;
bool has_frame_;
// This handle will be patched with the code object on installation.
Handle<Object> code_object_;
// Helper functions for generating invokes.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual, Label* done,
bool* definitely_mismatches, InvokeFlag flag,
Label::Distance done_distance,
const CallWrapper& call_wrapper);
void EnterExitFramePrologue();
void EnterExitFrameEpilogue(int argc, bool save_doubles);
void LeaveExitFrameEpilogue(bool restore_context);
// Allocation support helpers.
void LoadAllocationTopHelper(Register result, Register scratch,
AllocationFlags flags);
void UpdateAllocationTopHelper(Register result_end, Register scratch,
AllocationFlags flags);
// Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
void InNewSpace(Register object, Register scratch, Condition cc,
Label* condition_met,
Label::Distance condition_met_distance = Label::kFar);
// Helper for finding the mark bits for an address. Afterwards, the
// bitmap register points at the word with the mark bits and the mask
// the position of the first bit. Uses ecx as scratch and leaves addr_reg
// unchanged.
inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
Register mask_reg);
// Compute memory operands for safepoint stack slots.
Operand SafepointRegisterSlot(Register reg);
static int SafepointRegisterStackIndex(int reg_code);
// Needs access to SafepointRegisterStackIndex for compiled frame
// traversal.
friend class StandardFrame;
};
// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. Is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion.
class CodePatcher {
public:
CodePatcher(Isolate* isolate, byte* address, int size);
~CodePatcher();
// Macro assembler to emit code.
MacroAssembler* masm() { return &masm_; }
private:
byte* address_; // The address of the code being patched.
int size_; // Number of bytes of the expected patch size.
MacroAssembler masm_; // Macro assembler used to generate the code.
};
// -----------------------------------------------------------------------------
// Static helper functions.
// Generate an Operand for loading a field from an object.
inline Operand FieldOperand(Register object, int offset) {
return Operand(object, offset - kHeapObjectTag);
}
// Generate an Operand for loading an indexed field from an object.
inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
int offset) {
return Operand(object, index, scale, offset - kHeapObjectTag);
}
inline Operand FixedArrayElementOperand(Register array, Register index_as_smi,
int additional_offset = 0) {
int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
}
inline Operand ContextOperand(Register context, int index) {
return Operand(context, Context::SlotOffset(index));
}
inline Operand ContextOperand(Register context, Register index) {
return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
}
inline Operand NativeContextOperand() {
return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX);
}
#ifdef GENERATED_CODE_COVERAGE
extern void LogGeneratedCodeCoverage(const char* file_line);
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) { \
byte* ia32_coverage_function = \
reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
masm->pushfd(); \
masm->pushad(); \
masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
masm->call(ia32_coverage_function, RelocInfo::RUNTIME_ENTRY); \
masm->pop(eax); \
masm->popad(); \
masm->popfd(); \
} \
masm->
#else
#define ACCESS_MASM(masm) masm->
#endif
} // namespace internal
} // namespace v8
#endif // V8_IA32_MACRO_ASSEMBLER_IA32_H_