// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Features shared by parsing and pre-parsing scanners.
#ifndef V8_PARSING_SCANNER_H_
#define V8_PARSING_SCANNER_H_
#include "src/allocation.h"
#include "src/base/hashmap.h"
#include "src/base/logging.h"
#include "src/char-predicates.h"
#include "src/collector.h"
#include "src/globals.h"
#include "src/list.h"
#include "src/messages.h"
#include "src/parsing/token.h"
#include "src/unicode-decoder.h"
#include "src/unicode.h"
namespace v8 {
namespace internal {
class AstRawString;
class AstValueFactory;
class ParserRecorder;
class UnicodeCache;
// ---------------------------------------------------------------------
// Buffered stream of UTF-16 code units, using an internal UTF-16 buffer.
// A code unit is a 16 bit value representing either a 16 bit code point
// or one part of a surrogate pair that make a single 21 bit code point.
class Utf16CharacterStream {
public:
Utf16CharacterStream() : pos_(0) { }
virtual ~Utf16CharacterStream() { }
// Returns and advances past the next UTF-16 code unit in the input
// stream. If there are no more code units, it returns a negative
// value.
inline uc32 Advance() {
if (buffer_cursor_ < buffer_end_ || ReadBlock()) {
pos_++;
return static_cast<uc32>(*(buffer_cursor_++));
}
// Note: currently the following increment is necessary to avoid a
// parser problem! The scanner treats the final kEndOfInput as
// a code unit with a position, and does math relative to that
// position.
pos_++;
return kEndOfInput;
}
// Return the current position in the code unit stream.
// Starts at zero.
inline size_t pos() const { return pos_; }
// Skips forward past the next code_unit_count UTF-16 code units
// in the input, or until the end of input if that comes sooner.
// Returns the number of code units actually skipped. If less
// than code_unit_count,
inline size_t SeekForward(size_t code_unit_count) {
size_t buffered_chars = buffer_end_ - buffer_cursor_;
if (code_unit_count <= buffered_chars) {
buffer_cursor_ += code_unit_count;
pos_ += code_unit_count;
return code_unit_count;
}
return SlowSeekForward(code_unit_count);
}
// Pushes back the most recently read UTF-16 code unit (or negative
// value if at end of input), i.e., the value returned by the most recent
// call to Advance.
// Must not be used right after calling SeekForward.
virtual void PushBack(int32_t code_unit) = 0;
virtual bool SetBookmark();
virtual void ResetToBookmark();
protected:
static const uc32 kEndOfInput = -1;
// Ensures that the buffer_cursor_ points to the code_unit at
// position pos_ of the input, if possible. If the position
// is at or after the end of the input, return false. If there
// are more code_units available, return true.
virtual bool ReadBlock() = 0;
virtual size_t SlowSeekForward(size_t code_unit_count) = 0;
const uint16_t* buffer_cursor_;
const uint16_t* buffer_end_;
size_t pos_;
};
// ---------------------------------------------------------------------
// DuplicateFinder discovers duplicate symbols.
class DuplicateFinder {
public:
explicit DuplicateFinder(UnicodeCache* constants)
: unicode_constants_(constants),
backing_store_(16),
map_(&Match) { }
int AddOneByteSymbol(Vector<const uint8_t> key, int value);
int AddTwoByteSymbol(Vector<const uint16_t> key, int value);
// Add a a number literal by converting it (if necessary)
// to the string that ToString(ToNumber(literal)) would generate.
// and then adding that string with AddOneByteSymbol.
// This string is the actual value used as key in an object literal,
// and the one that must be different from the other keys.
int AddNumber(Vector<const uint8_t> key, int value);
private:
int AddSymbol(Vector<const uint8_t> key, bool is_one_byte, int value);
// Backs up the key and its length in the backing store.
// The backup is stored with a base 127 encoding of the
// length (plus a bit saying whether the string is one byte),
// followed by the bytes of the key.
uint8_t* BackupKey(Vector<const uint8_t> key, bool is_one_byte);
// Compare two encoded keys (both pointing into the backing store)
// for having the same base-127 encoded lengths and representation.
// and then having the same 'length' bytes following.
static bool Match(void* first, void* second);
// Creates a hash from a sequence of bytes.
static uint32_t Hash(Vector<const uint8_t> key, bool is_one_byte);
// Checks whether a string containing a JS number is its canonical
// form.
static bool IsNumberCanonical(Vector<const uint8_t> key);
// Size of buffer. Sufficient for using it to call DoubleToCString in
// from conversions.h.
static const int kBufferSize = 100;
UnicodeCache* unicode_constants_;
// Backing store used to store strings used as hashmap keys.
SequenceCollector<unsigned char> backing_store_;
base::HashMap map_;
// Buffer used for string->number->canonical string conversions.
char number_buffer_[kBufferSize];
};
// ----------------------------------------------------------------------------
// LiteralBuffer - Collector of chars of literals.
const int kMaxAscii = 127;
class LiteralBuffer {
public:
LiteralBuffer() : is_one_byte_(true), position_(0), backing_store_() { }
~LiteralBuffer() { backing_store_.Dispose(); }
INLINE(void AddChar(char code_unit)) {
if (position_ >= backing_store_.length()) ExpandBuffer();
DCHECK(is_one_byte_);
DCHECK(0 <= code_unit && code_unit <= kMaxAscii);
backing_store_[position_] = static_cast<byte>(code_unit);
position_ += kOneByteSize;
return;
}
INLINE(void AddChar(uc32 code_unit)) {
if (position_ >= backing_store_.length()) ExpandBuffer();
if (is_one_byte_) {
if (code_unit <= unibrow::Latin1::kMaxChar) {
backing_store_[position_] = static_cast<byte>(code_unit);
position_ += kOneByteSize;
return;
}
ConvertToTwoByte();
}
if (code_unit <= unibrow::Utf16::kMaxNonSurrogateCharCode) {
*reinterpret_cast<uint16_t*>(&backing_store_[position_]) = code_unit;
position_ += kUC16Size;
} else {
*reinterpret_cast<uint16_t*>(&backing_store_[position_]) =
unibrow::Utf16::LeadSurrogate(code_unit);
position_ += kUC16Size;
if (position_ >= backing_store_.length()) ExpandBuffer();
*reinterpret_cast<uint16_t*>(&backing_store_[position_]) =
unibrow::Utf16::TrailSurrogate(code_unit);
position_ += kUC16Size;
}
}
bool is_one_byte() const { return is_one_byte_; }
bool is_contextual_keyword(Vector<const char> keyword) const {
return is_one_byte() && keyword.length() == position_ &&
(memcmp(keyword.start(), backing_store_.start(), position_) == 0);
}
Vector<const uint16_t> two_byte_literal() const {
DCHECK(!is_one_byte_);
DCHECK((position_ & 0x1) == 0);
return Vector<const uint16_t>(
reinterpret_cast<const uint16_t*>(backing_store_.start()),
position_ >> 1);
}
Vector<const uint8_t> one_byte_literal() const {
DCHECK(is_one_byte_);
return Vector<const uint8_t>(
reinterpret_cast<const uint8_t*>(backing_store_.start()),
position_);
}
int length() const {
return is_one_byte_ ? position_ : (position_ >> 1);
}
void ReduceLength(int delta) {
position_ -= delta * (is_one_byte_ ? kOneByteSize : kUC16Size);
}
void Reset() {
position_ = 0;
is_one_byte_ = true;
}
Handle<String> Internalize(Isolate* isolate) const;
void CopyFrom(const LiteralBuffer* other) {
if (other == nullptr) {
Reset();
} else {
is_one_byte_ = other->is_one_byte_;
position_ = other->position_;
if (position_ < backing_store_.length()) {
std::copy(other->backing_store_.begin(),
other->backing_store_.begin() + position_,
backing_store_.begin());
} else {
backing_store_.Dispose();
backing_store_ = other->backing_store_.Clone();
}
}
}
private:
static const int kInitialCapacity = 16;
static const int kGrowthFactory = 4;
static const int kMinConversionSlack = 256;
static const int kMaxGrowth = 1 * MB;
inline int NewCapacity(int min_capacity) {
int capacity = Max(min_capacity, backing_store_.length());
int new_capacity = Min(capacity * kGrowthFactory, capacity + kMaxGrowth);
return new_capacity;
}
void ExpandBuffer() {
Vector<byte> new_store = Vector<byte>::New(NewCapacity(kInitialCapacity));
MemCopy(new_store.start(), backing_store_.start(), position_);
backing_store_.Dispose();
backing_store_ = new_store;
}
void ConvertToTwoByte() {
DCHECK(is_one_byte_);
Vector<byte> new_store;
int new_content_size = position_ * kUC16Size;
if (new_content_size >= backing_store_.length()) {
// Ensure room for all currently read code units as UC16 as well
// as the code unit about to be stored.
new_store = Vector<byte>::New(NewCapacity(new_content_size));
} else {
new_store = backing_store_;
}
uint8_t* src = backing_store_.start();
uint16_t* dst = reinterpret_cast<uint16_t*>(new_store.start());
for (int i = position_ - 1; i >= 0; i--) {
dst[i] = src[i];
}
if (new_store.start() != backing_store_.start()) {
backing_store_.Dispose();
backing_store_ = new_store;
}
position_ = new_content_size;
is_one_byte_ = false;
}
bool is_one_byte_;
int position_;
Vector<byte> backing_store_;
DISALLOW_COPY_AND_ASSIGN(LiteralBuffer);
};
// ----------------------------------------------------------------------------
// JavaScript Scanner.
class Scanner {
public:
// Scoped helper for literal recording. Automatically drops the literal
// if aborting the scanning before it's complete.
class LiteralScope {
public:
explicit LiteralScope(Scanner* self) : scanner_(self), complete_(false) {
scanner_->StartLiteral();
}
~LiteralScope() {
if (!complete_) scanner_->DropLiteral();
}
void Complete() {
complete_ = true;
}
private:
Scanner* scanner_;
bool complete_;
};
// Scoped helper for a re-settable bookmark.
class BookmarkScope {
public:
explicit BookmarkScope(Scanner* scanner) : scanner_(scanner) {
DCHECK_NOT_NULL(scanner_);
}
~BookmarkScope() { scanner_->DropBookmark(); }
bool Set() { return scanner_->SetBookmark(); }
void Reset() { scanner_->ResetToBookmark(); }
bool HasBeenSet() { return scanner_->BookmarkHasBeenSet(); }
bool HasBeenReset() { return scanner_->BookmarkHasBeenReset(); }
private:
Scanner* scanner_;
DISALLOW_COPY_AND_ASSIGN(BookmarkScope);
};
// Representation of an interval of source positions.
struct Location {
Location(int b, int e) : beg_pos(b), end_pos(e) { }
Location() : beg_pos(0), end_pos(0) { }
bool IsValid() const {
return beg_pos >= 0 && end_pos >= beg_pos;
}
static Location invalid() { return Location(-1, -1); }
int beg_pos;
int end_pos;
};
// -1 is outside of the range of any real source code.
static const int kNoOctalLocation = -1;
explicit Scanner(UnicodeCache* scanner_contants);
void Initialize(Utf16CharacterStream* source);
// Returns the next token and advances input.
Token::Value Next();
// Returns the token following peek()
Token::Value PeekAhead();
// Returns the current token again.
Token::Value current_token() { return current_.token; }
// Returns the location information for the current token
// (the token last returned by Next()).
Location location() const { return current_.location; }
bool has_error() const { return scanner_error_ != MessageTemplate::kNone; }
MessageTemplate::Template error() const { return scanner_error_; }
Location error_location() const { return scanner_error_location_; }
// Similar functions for the upcoming token.
// One token look-ahead (past the token returned by Next()).
Token::Value peek() const { return next_.token; }
Location peek_location() const { return next_.location; }
bool literal_contains_escapes() const {
return LiteralContainsEscapes(current_);
}
bool next_literal_contains_escapes() const {
return LiteralContainsEscapes(next_);
}
bool is_literal_contextual_keyword(Vector<const char> keyword) {
DCHECK_NOT_NULL(current_.literal_chars);
return current_.literal_chars->is_contextual_keyword(keyword);
}
bool is_next_contextual_keyword(Vector<const char> keyword) {
DCHECK_NOT_NULL(next_.literal_chars);
return next_.literal_chars->is_contextual_keyword(keyword);
}
const AstRawString* CurrentSymbol(AstValueFactory* ast_value_factory);
const AstRawString* NextSymbol(AstValueFactory* ast_value_factory);
const AstRawString* CurrentRawSymbol(AstValueFactory* ast_value_factory);
double DoubleValue();
bool ContainsDot();
bool LiteralMatches(const char* data, int length, bool allow_escapes = true) {
if (is_literal_one_byte() &&
literal_length() == length &&
(allow_escapes || !literal_contains_escapes())) {
const char* token =
reinterpret_cast<const char*>(literal_one_byte_string().start());
return !strncmp(token, data, length);
}
return false;
}
inline bool UnescapedLiteralMatches(const char* data, int length) {
return LiteralMatches(data, length, false);
}
void IsGetOrSet(bool* is_get, bool* is_set) {
if (is_literal_one_byte() &&
literal_length() == 3 &&
!literal_contains_escapes()) {
const char* token =
reinterpret_cast<const char*>(literal_one_byte_string().start());
*is_get = strncmp(token, "get", 3) == 0;
*is_set = !*is_get && strncmp(token, "set", 3) == 0;
}
}
int FindSymbol(DuplicateFinder* finder, int value);
UnicodeCache* unicode_cache() { return unicode_cache_; }
// Returns the location of the last seen octal literal.
Location octal_position() const { return octal_pos_; }
void clear_octal_position() { octal_pos_ = Location::invalid(); }
// Returns the location of the last seen decimal literal with a leading zero.
Location decimal_with_leading_zero_position() const {
return decimal_with_leading_zero_pos_;
}
void clear_decimal_with_leading_zero_position() {
decimal_with_leading_zero_pos_ = Location::invalid();
}
// Returns the value of the last smi that was scanned.
int smi_value() const { return current_.smi_value_; }
// Seek forward to the given position. This operation does not
// work in general, for instance when there are pushed back
// characters, but works for seeking forward until simple delimiter
// tokens, which is what it is used for.
void SeekForward(int pos);
// Returns true if there was a line terminator before the peek'ed token,
// possibly inside a multi-line comment.
bool HasAnyLineTerminatorBeforeNext() const {
return has_line_terminator_before_next_ ||
has_multiline_comment_before_next_;
}
bool HasAnyLineTerminatorAfterNext() {
Token::Value ensure_next_next = PeekAhead();
USE(ensure_next_next);
return has_line_terminator_after_next_;
}
// Scans the input as a regular expression pattern, previous
// character(s) must be /(=). Returns true if a pattern is scanned.
bool ScanRegExpPattern(bool seen_equal);
// Scans the input as regular expression flags. Returns the flags on success.
Maybe<RegExp::Flags> ScanRegExpFlags();
// Scans the input as a template literal
Token::Value ScanTemplateStart();
Token::Value ScanTemplateContinuation();
const LiteralBuffer* source_url() const { return &source_url_; }
const LiteralBuffer* source_mapping_url() const {
return &source_mapping_url_;
}
bool IdentifierIsFutureStrictReserved(const AstRawString* string) const;
bool FoundHtmlComment() const { return found_html_comment_; }
#define DECLARE_ACCESSORS(name) \
inline bool allow_##name() const { return allow_##name##_; } \
inline void set_allow_##name(bool allow) { allow_##name##_ = allow; }
DECLARE_ACCESSORS(harmony_exponentiation_operator)
#undef ACCESSOR
private:
// The current and look-ahead token.
struct TokenDesc {
Token::Value token;
Location location;
LiteralBuffer* literal_chars;
LiteralBuffer* raw_literal_chars;
int smi_value_;
};
static const int kCharacterLookaheadBufferSize = 1;
// Scans octal escape sequence. Also accepts "\0" decimal escape sequence.
template <bool capture_raw>
uc32 ScanOctalEscape(uc32 c, int length);
// Call this after setting source_ to the input.
void Init() {
// Set c0_ (one character ahead)
STATIC_ASSERT(kCharacterLookaheadBufferSize == 1);
Advance();
// Initialize current_ to not refer to a literal.
current_.literal_chars = NULL;
current_.raw_literal_chars = NULL;
next_next_.token = Token::UNINITIALIZED;
found_html_comment_ = false;
scanner_error_ = MessageTemplate::kNone;
}
// Support BookmarkScope functionality.
bool SetBookmark();
void ResetToBookmark();
bool BookmarkHasBeenSet();
bool BookmarkHasBeenReset();
void DropBookmark();
static void CopyTokenDesc(TokenDesc* to, TokenDesc* from);
void ReportScannerError(const Location& location,
MessageTemplate::Template error) {
if (has_error()) return;
scanner_error_ = error;
scanner_error_location_ = location;
}
void ReportScannerError(int pos, MessageTemplate::Template error) {
if (has_error()) return;
scanner_error_ = error;
scanner_error_location_ = Location(pos, pos + 1);
}
// Literal buffer support
inline void StartLiteral() {
LiteralBuffer* free_buffer =
(current_.literal_chars == &literal_buffer0_)
? &literal_buffer1_
: (current_.literal_chars == &literal_buffer1_) ? &literal_buffer2_
: &literal_buffer0_;
free_buffer->Reset();
next_.literal_chars = free_buffer;
}
inline void StartRawLiteral() {
LiteralBuffer* free_buffer =
(current_.raw_literal_chars == &raw_literal_buffer0_)
? &raw_literal_buffer1_
: (current_.raw_literal_chars == &raw_literal_buffer1_)
? &raw_literal_buffer2_
: &raw_literal_buffer0_;
free_buffer->Reset();
next_.raw_literal_chars = free_buffer;
}
INLINE(void AddLiteralChar(uc32 c)) {
DCHECK_NOT_NULL(next_.literal_chars);
next_.literal_chars->AddChar(c);
}
INLINE(void AddLiteralChar(char c)) {
DCHECK_NOT_NULL(next_.literal_chars);
next_.literal_chars->AddChar(c);
}
INLINE(void AddRawLiteralChar(uc32 c)) {
DCHECK_NOT_NULL(next_.raw_literal_chars);
next_.raw_literal_chars->AddChar(c);
}
INLINE(void ReduceRawLiteralLength(int delta)) {
DCHECK_NOT_NULL(next_.raw_literal_chars);
next_.raw_literal_chars->ReduceLength(delta);
}
// Stops scanning of a literal and drop the collected characters,
// e.g., due to an encountered error.
inline void DropLiteral() {
next_.literal_chars = NULL;
next_.raw_literal_chars = NULL;
}
inline void AddLiteralCharAdvance() {
AddLiteralChar(c0_);
Advance();
}
// Low-level scanning support.
template <bool capture_raw = false, bool check_surrogate = true>
void Advance() {
if (capture_raw) {
AddRawLiteralChar(c0_);
}
c0_ = source_->Advance();
if (check_surrogate) HandleLeadSurrogate();
}
void HandleLeadSurrogate() {
if (unibrow::Utf16::IsLeadSurrogate(c0_)) {
uc32 c1 = source_->Advance();
if (!unibrow::Utf16::IsTrailSurrogate(c1)) {
source_->PushBack(c1);
} else {
c0_ = unibrow::Utf16::CombineSurrogatePair(c0_, c1);
}
}
}
void PushBack(uc32 ch) {
if (c0_ > static_cast<uc32>(unibrow::Utf16::kMaxNonSurrogateCharCode)) {
source_->PushBack(unibrow::Utf16::TrailSurrogate(c0_));
source_->PushBack(unibrow::Utf16::LeadSurrogate(c0_));
} else {
source_->PushBack(c0_);
}
c0_ = ch;
}
inline Token::Value Select(Token::Value tok) {
Advance();
return tok;
}
inline Token::Value Select(uc32 next, Token::Value then, Token::Value else_) {
Advance();
if (c0_ == next) {
Advance();
return then;
} else {
return else_;
}
}
// Returns the literal string, if any, for the current token (the
// token last returned by Next()). The string is 0-terminated.
// Literal strings are collected for identifiers, strings, numbers as well
// as for template literals. For template literals we also collect the raw
// form.
// These functions only give the correct result if the literal was scanned
// when a LiteralScope object is alive.
Vector<const uint8_t> literal_one_byte_string() {
DCHECK_NOT_NULL(current_.literal_chars);
return current_.literal_chars->one_byte_literal();
}
Vector<const uint16_t> literal_two_byte_string() {
DCHECK_NOT_NULL(current_.literal_chars);
return current_.literal_chars->two_byte_literal();
}
bool is_literal_one_byte() {
DCHECK_NOT_NULL(current_.literal_chars);
return current_.literal_chars->is_one_byte();
}
int literal_length() const {
DCHECK_NOT_NULL(current_.literal_chars);
return current_.literal_chars->length();
}
// Returns the literal string for the next token (the token that
// would be returned if Next() were called).
Vector<const uint8_t> next_literal_one_byte_string() {
DCHECK_NOT_NULL(next_.literal_chars);
return next_.literal_chars->one_byte_literal();
}
Vector<const uint16_t> next_literal_two_byte_string() {
DCHECK_NOT_NULL(next_.literal_chars);
return next_.literal_chars->two_byte_literal();
}
bool is_next_literal_one_byte() {
DCHECK_NOT_NULL(next_.literal_chars);
return next_.literal_chars->is_one_byte();
}
Vector<const uint8_t> raw_literal_one_byte_string() {
DCHECK_NOT_NULL(current_.raw_literal_chars);
return current_.raw_literal_chars->one_byte_literal();
}
Vector<const uint16_t> raw_literal_two_byte_string() {
DCHECK_NOT_NULL(current_.raw_literal_chars);
return current_.raw_literal_chars->two_byte_literal();
}
bool is_raw_literal_one_byte() {
DCHECK_NOT_NULL(current_.raw_literal_chars);
return current_.raw_literal_chars->is_one_byte();
}
template <bool capture_raw, bool unicode = false>
uc32 ScanHexNumber(int expected_length);
// Scan a number of any length but not bigger than max_value. For example, the
// number can be 000000001, so it's very long in characters but its value is
// small.
template <bool capture_raw>
uc32 ScanUnlimitedLengthHexNumber(int max_value, int beg_pos);
// Scans a single JavaScript token.
void Scan();
bool SkipWhiteSpace();
Token::Value SkipSingleLineComment();
Token::Value SkipSourceURLComment();
void TryToParseSourceURLComment();
Token::Value SkipMultiLineComment();
// Scans a possible HTML comment -- begins with '<!'.
Token::Value ScanHtmlComment();
void ScanDecimalDigits();
Token::Value ScanNumber(bool seen_period);
Token::Value ScanIdentifierOrKeyword();
Token::Value ScanIdentifierSuffix(LiteralScope* literal, bool escaped);
Token::Value ScanString();
// Scans an escape-sequence which is part of a string and adds the
// decoded character to the current literal. Returns true if a pattern
// is scanned.
template <bool capture_raw, bool in_template_literal>
bool ScanEscape();
// Decodes a Unicode escape-sequence which is part of an identifier.
// If the escape sequence cannot be decoded the result is kBadChar.
uc32 ScanIdentifierUnicodeEscape();
// Helper for the above functions.
template <bool capture_raw>
uc32 ScanUnicodeEscape();
Token::Value ScanTemplateSpan();
// Return the current source position.
int source_pos() {
return static_cast<int>(source_->pos()) - kCharacterLookaheadBufferSize;
}
static bool LiteralContainsEscapes(const TokenDesc& token) {
Location location = token.location;
int source_length = (location.end_pos - location.beg_pos);
if (token.token == Token::STRING) {
// Subtract delimiters.
source_length -= 2;
}
return token.literal_chars->length() != source_length;
}
UnicodeCache* unicode_cache_;
// Buffers collecting literal strings, numbers, etc.
LiteralBuffer literal_buffer0_;
LiteralBuffer literal_buffer1_;
LiteralBuffer literal_buffer2_;
// Values parsed from magic comments.
LiteralBuffer source_url_;
LiteralBuffer source_mapping_url_;
// Buffer to store raw string values
LiteralBuffer raw_literal_buffer0_;
LiteralBuffer raw_literal_buffer1_;
LiteralBuffer raw_literal_buffer2_;
TokenDesc current_; // desc for current token (as returned by Next())
TokenDesc next_; // desc for next token (one token look-ahead)
TokenDesc next_next_; // desc for the token after next (after PeakAhead())
// Variables for Scanner::BookmarkScope and the *Bookmark implementation.
// These variables contain the scanner state when a bookmark is set.
//
// We will use bookmark_c0_ as a 'control' variable, where:
// - bookmark_c0_ >= 0: A bookmark has been set and this contains c0_.
// - bookmark_c0_ == -1: No bookmark has been set.
// - bookmark_c0_ == -2: The bookmark has been applied (ResetToBookmark).
//
// Which state is being bookmarked? The parser state is distributed over
// several variables, roughly like this:
// ... 1234 + 5678 ..... [character stream]
// [current_] [next_] c0_ | [scanner state]
// So when the scanner is logically at the beginning of an expression
// like "1234 + 4567", then:
// - current_ contains "1234"
// - next_ contains "+"
// - c0_ contains ' ' (the space between "+" and "5678",
// - the source_ character stream points to the beginning of "5678".
// To be able to restore this state, we will keep copies of current_, next_,
// and c0_; we'll ask the stream to bookmark itself, and we'll copy the
// contents of current_'s and next_'s literal buffers to bookmark_*_literal_.
static const uc32 kNoBookmark = -1;
static const uc32 kBookmarkWasApplied = -2;
uc32 bookmark_c0_;
TokenDesc bookmark_current_;
TokenDesc bookmark_next_;
LiteralBuffer bookmark_current_literal_;
LiteralBuffer bookmark_current_raw_literal_;
LiteralBuffer bookmark_next_literal_;
LiteralBuffer bookmark_next_raw_literal_;
// Input stream. Must be initialized to an Utf16CharacterStream.
Utf16CharacterStream* source_;
// Last-seen positions of potentially problematic tokens.
Location octal_pos_;
Location decimal_with_leading_zero_pos_;
// One Unicode character look-ahead; c0_ < 0 at the end of the input.
uc32 c0_;
// Whether there is a line terminator whitespace character after
// the current token, and before the next. Does not count newlines
// inside multiline comments.
bool has_line_terminator_before_next_;
// Whether there is a multi-line comment that contains a
// line-terminator after the current token, and before the next.
bool has_multiline_comment_before_next_;
bool has_line_terminator_after_next_;
// Whether this scanner encountered an HTML comment.
bool found_html_comment_;
bool allow_harmony_exponentiation_operator_;
MessageTemplate::Template scanner_error_;
Location scanner_error_location_;
};
} // namespace internal
} // namespace v8
#endif // V8_PARSING_SCANNER_H_