/*
* Copyright (C) 2016 Google, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <cassert>
#include <cmath>
#include <cstring>
#include <array>
#include <unordered_map>
#include "Helpers.h"
#include "Meshes.h"
namespace {
class Mesh {
public:
struct Position {
float x;
float y;
float z;
};
struct Normal {
float x;
float y;
float z;
};
struct Face {
int v0;
int v1;
int v2;
};
static uint32_t vertex_stride()
{
// Position + Normal
const int comp_count = 6;
return sizeof(float) * comp_count;
}
static VkVertexInputBindingDescription vertex_input_binding()
{
VkVertexInputBindingDescription vi_binding = {};
vi_binding.binding = 0;
vi_binding.stride = vertex_stride();
vi_binding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
return vi_binding;
}
static std::vector<VkVertexInputAttributeDescription> vertex_input_attributes()
{
std::vector<VkVertexInputAttributeDescription> vi_attrs(2);
// Position
vi_attrs[0].location = 0;
vi_attrs[0].binding = 0;
vi_attrs[0].format = VK_FORMAT_R32G32B32_SFLOAT;
vi_attrs[0].offset = 0;
// Normal
vi_attrs[1].location = 1;
vi_attrs[1].binding = 0;
vi_attrs[1].format = VK_FORMAT_R32G32B32_SFLOAT;
vi_attrs[1].offset = sizeof(float) * 3;
return vi_attrs;
}
static VkIndexType index_type()
{
return VK_INDEX_TYPE_UINT32;
}
static VkPipelineInputAssemblyStateCreateInfo input_assembly_state()
{
VkPipelineInputAssemblyStateCreateInfo ia_info = {};
ia_info.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
ia_info.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
ia_info.primitiveRestartEnable = false;
return ia_info;
}
void build(const std::vector<std::array<float, 6>> &vertices, const std::vector<std::array<int, 3>> &faces)
{
positions_.reserve(vertices.size());
normals_.reserve(vertices.size());
for (const auto &v : vertices) {
positions_.emplace_back(Position{ v[0], v[1], v[2] });
normals_.emplace_back(Normal{ v[3], v[4], v[5] });
}
faces_.reserve(faces.size());
for (const auto &f : faces)
faces_.emplace_back(Face{ f[0], f[1], f[2] });
}
uint32_t vertex_count() const
{
return positions_.size();
}
VkDeviceSize vertex_buffer_size() const
{
return vertex_stride() * vertex_count();
}
void vertex_buffer_write(void *data) const
{
float *dst = reinterpret_cast<float *>(data);
for (size_t i = 0; i < positions_.size(); i++) {
const Position &pos = positions_[i];
const Normal &normal = normals_[i];
dst[0] = pos.x;
dst[1] = pos.y;
dst[2] = pos.z;
dst[3] = normal.x;
dst[4] = normal.y;
dst[5] = normal.z;
dst += 6;
}
}
uint32_t index_count() const
{
return faces_.size() * 3;
}
VkDeviceSize index_buffer_size() const
{
return sizeof(uint32_t) * index_count();
}
void index_buffer_write(void *data) const
{
uint32_t *dst = reinterpret_cast<uint32_t *>(data);
for (const auto &face : faces_) {
dst[0] = face.v0;
dst[1] = face.v1;
dst[2] = face.v2;
dst += 3;
}
}
std::vector<Position> positions_;
std::vector<Normal> normals_;
std::vector<Face> faces_;
};
class BuildPyramid {
public:
BuildPyramid(Mesh &mesh)
{
const std::vector<std::array<float, 6>> vertices = {
// position normal
{ 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f },
{ -1.0f, -1.0f, -1.0f, -1.0f, -1.0f, -1.0f },
{ 1.0f, -1.0f, -1.0f, 1.0f, -1.0f, -1.0f },
{ 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f },
{ -1.0f, 1.0f, -1.0f, -1.0f, 1.0f, -1.0f },
};
const std::vector<std::array<int, 3>> faces = {
{ 0, 1, 2 },
{ 0, 2, 3 },
{ 0, 3, 4 },
{ 0, 4, 1 },
{ 1, 4, 3 },
{ 1, 3, 2 },
};
mesh.build(vertices, faces);
}
};
class BuildIcosphere {
public:
BuildIcosphere(Mesh &mesh) : mesh_(mesh), radius_(1.0f)
{
const int tessellate_level = 2;
build_icosahedron();
for (int i = 0; i < tessellate_level; i++)
tessellate();
}
private:
void build_icosahedron()
{
// https://en.wikipedia.org/wiki/Regular_icosahedron
const float l1 = std::sqrt(2.0f / (5.0f + std::sqrt(5.0f))) * radius_;
const float l2 = std::sqrt(2.0f / (5.0f - std::sqrt(5.0f))) * radius_;
// vertices are from three golden rectangles
const std::vector<std::array<float, 6>> icosahedron_vertices = {
// position normal
{ -l1, -l2, 0.0f, -l1, -l2, 0.0f, },
{ l1, -l2, 0.0f, l1, -l2, 0.0f, },
{ l1, l2, 0.0f, l1, l2, 0.0f, },
{ -l1, l2, 0.0f, -l1, l2, 0.0f, },
{ -l2, 0.0f, -l1, -l2, 0.0f, -l1, },
{ l2, 0.0f, -l1, l2, 0.0f, -l1, },
{ l2, 0.0f, l1, l2, 0.0f, l1, },
{ -l2, 0.0f, l1, -l2, 0.0f, l1, },
{ 0.0f, -l1, -l2, 0.0f, -l1, -l2, },
{ 0.0f, l1, -l2, 0.0f, l1, -l2, },
{ 0.0f, l1, l2, 0.0f, l1, l2, },
{ 0.0f, -l1, l2, 0.0f, -l1, l2, },
};
const std::vector<std::array<int, 3>> icosahedron_faces = {
// triangles sharing vertex 0
{ 0, 1, 11 },
{ 0, 11, 7 },
{ 0, 7, 4 },
{ 0, 4, 8 },
{ 0, 8, 1 },
// adjacent triangles
{ 11, 1, 6 },
{ 7, 11, 10 },
{ 4, 7, 3 },
{ 8, 4, 9 },
{ 1, 8, 5 },
// triangles sharing vertex 2
{ 2, 3, 10 },
{ 2, 10, 6 },
{ 2, 6, 5 },
{ 2, 5, 9 },
{ 2, 9, 3 },
// adjacent triangles
{ 10, 3, 7 },
{ 6, 10, 11 },
{ 5, 6, 1 },
{ 9, 5, 8 },
{ 3, 9, 4 },
};
mesh_.build(icosahedron_vertices, icosahedron_faces);
}
void tessellate()
{
size_t middle_point_count = mesh_.faces_.size() * 3 / 2;
size_t final_face_count = mesh_.faces_.size() * 4;
std::vector<Mesh::Face> faces;
faces.reserve(final_face_count);
middle_points_.clear();
middle_points_.reserve(middle_point_count);
mesh_.positions_.reserve(mesh_.vertex_count() + middle_point_count);
mesh_.normals_.reserve(mesh_.vertex_count() + middle_point_count);
for (const auto &f : mesh_.faces_) {
int v0 = f.v0;
int v1 = f.v1;
int v2 = f.v2;
int v01 = add_middle_point(v0, v1);
int v12 = add_middle_point(v1, v2);
int v20 = add_middle_point(v2, v0);
faces.emplace_back(Mesh::Face{ v0, v01, v20 });
faces.emplace_back(Mesh::Face{ v1, v12, v01 });
faces.emplace_back(Mesh::Face{ v2, v20, v12 });
faces.emplace_back(Mesh::Face{ v01, v12, v20 });
}
mesh_.faces_.swap(faces);
}
int add_middle_point(int a, int b)
{
uint64_t key = (a < b) ? ((uint64_t) a << 32 | b) : ((uint64_t) b << 32 | a);
auto it = middle_points_.find(key);
if (it != middle_points_.end())
return it->second;
const Mesh::Position &pos_a = mesh_.positions_[a];
const Mesh::Position &pos_b = mesh_.positions_[b];
Mesh::Position pos_mid = {
(pos_a.x + pos_b.x) / 2.0f,
(pos_a.y + pos_b.y) / 2.0f,
(pos_a.z + pos_b.z) / 2.0f,
};
float scale = radius_ / std::sqrt(pos_mid.x * pos_mid.x +
pos_mid.y * pos_mid.y +
pos_mid.z * pos_mid.z);
pos_mid.x *= scale;
pos_mid.y *= scale;
pos_mid.z *= scale;
Mesh::Normal normal_mid = { pos_mid.x, pos_mid.y, pos_mid.z };
normal_mid.x /= radius_;
normal_mid.y /= radius_;
normal_mid.z /= radius_;
mesh_.positions_.emplace_back(pos_mid);
mesh_.normals_.emplace_back(normal_mid);
int mid = mesh_.vertex_count() - 1;
middle_points_.emplace(std::make_pair(key, mid));
return mid;
}
Mesh &mesh_;
const float radius_;
std::unordered_map<uint64_t, uint32_t> middle_points_;
};
class BuildTeapot {
public:
BuildTeapot(Mesh &mesh)
{
#include "Meshes.teapot.h"
const int position_count = sizeof(teapot_positions) / sizeof(teapot_positions[0]);
const int index_count = sizeof(teapot_indices) / sizeof(teapot_indices[0]);
assert(position_count % 3 == 0 && index_count % 3 == 0);
Mesh::Position translate;
float scale;
get_transform(teapot_positions, position_count, translate, scale);
for (int i = 0; i < position_count; i += 3) {
mesh.positions_.emplace_back(Mesh::Position{
(teapot_positions[i + 0] + translate.x) * scale,
(teapot_positions[i + 1] + translate.y) * scale,
(teapot_positions[i + 2] + translate.z) * scale,
});
mesh.normals_.emplace_back(Mesh::Normal{
teapot_normals[i + 0],
teapot_normals[i + 1],
teapot_normals[i + 2],
});
}
for (int i = 0; i < index_count; i += 3) {
mesh.faces_.emplace_back(Mesh::Face{
teapot_indices[i + 0],
teapot_indices[i + 1],
teapot_indices[i + 2]
});
}
}
void get_transform(const float *positions, int position_count,
Mesh::Position &translate, float &scale)
{
float min[3] = {
positions[0],
positions[1],
positions[2],
};
float max[3] = {
positions[0],
positions[1],
positions[2],
};
for (int i = 3; i < position_count; i += 3) {
for (int j = 0; j < 3; j++) {
if (min[j] > positions[i + j])
min[j] = positions[i + j];
if (max[j] < positions[i + j])
max[j] = positions[i + j];
}
}
translate.x = -(min[0] + max[0]) / 2.0f;
translate.y = -(min[1] + max[1]) / 2.0f;
translate.z = -(min[2] + max[2]) / 2.0f;
float extents[3] = {
max[0] + translate.x,
max[1] + translate.y,
max[2] + translate.z,
};
float max_extent = extents[0];
if (max_extent < extents[1])
max_extent = extents[1];
if (max_extent < extents[2])
max_extent = extents[2];
scale = 1.0f / max_extent;
}
};
void build_meshes(std::array<Mesh, Meshes::MESH_COUNT> &meshes)
{
BuildPyramid build_pyramid(meshes[Meshes::MESH_PYRAMID]);
BuildIcosphere build_icosphere(meshes[Meshes::MESH_ICOSPHERE]);
BuildTeapot build_teapot(meshes[Meshes::MESH_TEAPOT]);
}
} // namespace
Meshes::Meshes(VkDevice dev, const std::vector<VkMemoryPropertyFlags> &mem_flags)
: dev_(dev),
vertex_input_binding_(Mesh::vertex_input_binding()),
vertex_input_attrs_(Mesh::vertex_input_attributes()),
vertex_input_state_(),
input_assembly_state_(Mesh::input_assembly_state()),
index_type_(Mesh::index_type())
{
vertex_input_state_.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
vertex_input_state_.vertexBindingDescriptionCount = 1;
vertex_input_state_.pVertexBindingDescriptions = &vertex_input_binding_;
vertex_input_state_.vertexAttributeDescriptionCount = static_cast<uint32_t>(vertex_input_attrs_.size());
vertex_input_state_.pVertexAttributeDescriptions = vertex_input_attrs_.data();
std::array<Mesh, MESH_COUNT> meshes;
build_meshes(meshes);
draw_commands_.reserve(meshes.size());
uint32_t first_index = 0;
int32_t vertex_offset = 0;
VkDeviceSize vb_size = 0;
VkDeviceSize ib_size = 0;
for (const auto &mesh : meshes) {
VkDrawIndexedIndirectCommand draw = {};
draw.indexCount = mesh.index_count();
draw.instanceCount = 1;
draw.firstIndex = first_index;
draw.vertexOffset = vertex_offset;
draw.firstInstance = 0;
draw_commands_.push_back(draw);
first_index += mesh.index_count();
vertex_offset += mesh.vertex_count();
vb_size += mesh.vertex_buffer_size();
ib_size += mesh.index_buffer_size();
}
allocate_resources(vb_size, ib_size, mem_flags);
uint8_t *vb_data, *ib_data;
vk::assert_success(vk::MapMemory(dev_, mem_, 0, VK_WHOLE_SIZE,
0, reinterpret_cast<void **>(&vb_data)));
ib_data = vb_data + ib_mem_offset_;
for (const auto &mesh : meshes) {
mesh.vertex_buffer_write(vb_data);
mesh.index_buffer_write(ib_data);
vb_data += mesh.vertex_buffer_size();
ib_data += mesh.index_buffer_size();
}
vk::UnmapMemory(dev_, mem_);
}
Meshes::~Meshes()
{
vk::FreeMemory(dev_, mem_, nullptr);
vk::DestroyBuffer(dev_, vb_, nullptr);
vk::DestroyBuffer(dev_, ib_, nullptr);
}
void Meshes::cmd_bind_buffers(VkCommandBuffer cmd) const
{
const VkDeviceSize vb_offset = 0;
vk::CmdBindVertexBuffers(cmd, 0, 1, &vb_, &vb_offset);
vk::CmdBindIndexBuffer(cmd, ib_, 0, index_type_);
}
void Meshes::cmd_draw(VkCommandBuffer cmd, Type type) const
{
const auto &draw = draw_commands_[type];
vk::CmdDrawIndexed(cmd, draw.indexCount, draw.instanceCount,
draw.firstIndex, draw.vertexOffset, draw.firstInstance);
}
void Meshes::allocate_resources(VkDeviceSize vb_size, VkDeviceSize ib_size, const std::vector<VkMemoryPropertyFlags> &mem_flags)
{
VkBufferCreateInfo buf_info = {};
buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buf_info.size = vb_size;
buf_info.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT;
buf_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
vk::CreateBuffer(dev_, &buf_info, nullptr, &vb_);
buf_info.size = ib_size;
buf_info.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT;
vk::CreateBuffer(dev_, &buf_info, nullptr, &ib_);
VkMemoryRequirements vb_mem_reqs, ib_mem_reqs;
vk::GetBufferMemoryRequirements(dev_, vb_, &vb_mem_reqs);
vk::GetBufferMemoryRequirements(dev_, ib_, &ib_mem_reqs);
// indices follow vertices
ib_mem_offset_ = vb_mem_reqs.size +
(ib_mem_reqs.alignment - (vb_mem_reqs.size % ib_mem_reqs.alignment));
VkMemoryAllocateInfo mem_info = {};
mem_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
mem_info.allocationSize = ib_mem_offset_ + ib_mem_reqs.size;
// find any supported and mappable memory type
uint32_t mem_types = (vb_mem_reqs.memoryTypeBits & ib_mem_reqs.memoryTypeBits);
for (uint32_t idx = 0; idx < mem_flags.size(); idx++) {
if ((mem_types & (1 << idx)) &&
(mem_flags[idx] & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) &&
(mem_flags[idx] & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) {
// TODO this may not be reachable
mem_info.memoryTypeIndex = idx;
break;
}
}
vk::AllocateMemory(dev_, &mem_info, nullptr, &mem_);
vk::BindBufferMemory(dev_, vb_, mem_, 0);
vk::BindBufferMemory(dev_, ib_, mem_, ib_mem_offset_);
}