/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "rsCpuCore.h"
#include "rsCpuScript.h"
#include "rsCpuScriptGroup.h"
#include "rsCpuScriptGroup2.h"
#include <malloc.h>
#include "rsContext.h"
#include <sys/types.h>
#include <sys/resource.h>
#include <sched.h>
#include <sys/syscall.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#if !defined(RS_SERVER) && !defined(RS_COMPATIBILITY_LIB)
#include <cutils/properties.h>
#include "utils/StopWatch.h"
#endif
#ifdef RS_SERVER
// Android exposes gettid(), standard Linux does not
static pid_t gettid() {
return syscall(SYS_gettid);
}
#endif
using namespace android;
using namespace android::renderscript;
#define REDUCE_ALOGV(mtls, level, ...) do { if ((mtls)->logReduce >= (level)) ALOGV(__VA_ARGS__); } while(0)
static pthread_key_t gThreadTLSKey = 0;
static uint32_t gThreadTLSKeyCount = 0;
static pthread_mutex_t gInitMutex = PTHREAD_MUTEX_INITIALIZER;
bool android::renderscript::gArchUseSIMD = false;
RsdCpuReference::~RsdCpuReference() {
}
RsdCpuReference * RsdCpuReference::create(Context *rsc, uint32_t version_major,
uint32_t version_minor, sym_lookup_t lfn, script_lookup_t slfn
, RSSelectRTCallback pSelectRTCallback,
const char *pBccPluginName
) {
RsdCpuReferenceImpl *cpu = new RsdCpuReferenceImpl(rsc);
if (!cpu) {
return nullptr;
}
if (!cpu->init(version_major, version_minor, lfn, slfn)) {
delete cpu;
return nullptr;
}
cpu->setSelectRTCallback(pSelectRTCallback);
if (pBccPluginName) {
cpu->setBccPluginName(pBccPluginName);
}
return cpu;
}
Context * RsdCpuReference::getTlsContext() {
ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey);
return tls->mContext;
}
const Script * RsdCpuReference::getTlsScript() {
ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey);
return tls->mScript;
}
pthread_key_t RsdCpuReference::getThreadTLSKey(){ return gThreadTLSKey; }
////////////////////////////////////////////////////////////
///
RsdCpuReferenceImpl::RsdCpuReferenceImpl(Context *rsc) {
mRSC = rsc;
version_major = 0;
version_minor = 0;
mInKernel = false;
memset(&mWorkers, 0, sizeof(mWorkers));
memset(&mTlsStruct, 0, sizeof(mTlsStruct));
mExit = false;
mSelectRTCallback = nullptr;
mEmbedGlobalInfo = true;
mEmbedGlobalInfoSkipConstant = true;
}
void * RsdCpuReferenceImpl::helperThreadProc(void *vrsc) {
RsdCpuReferenceImpl *dc = (RsdCpuReferenceImpl *)vrsc;
uint32_t idx = __sync_fetch_and_add(&dc->mWorkers.mLaunchCount, 1);
//ALOGV("RS helperThread starting %p idx=%i", dc, idx);
dc->mWorkers.mLaunchSignals[idx].init();
dc->mWorkers.mNativeThreadId[idx] = gettid();
memset(&dc->mTlsStruct, 0, sizeof(dc->mTlsStruct));
int status = pthread_setspecific(gThreadTLSKey, &dc->mTlsStruct);
if (status) {
ALOGE("pthread_setspecific %i", status);
}
#if 0
typedef struct {uint64_t bits[1024 / 64]; } cpu_set_t;
cpu_set_t cpuset;
memset(&cpuset, 0, sizeof(cpuset));
cpuset.bits[idx / 64] |= 1ULL << (idx % 64);
int ret = syscall(241, rsc->mWorkers.mNativeThreadId[idx],
sizeof(cpuset), &cpuset);
ALOGE("SETAFFINITY ret = %i %s", ret, EGLUtils::strerror(ret));
#endif
while (!dc->mExit) {
dc->mWorkers.mLaunchSignals[idx].wait();
if (dc->mWorkers.mLaunchCallback) {
// idx +1 is used because the calling thread is always worker 0.
dc->mWorkers.mLaunchCallback(dc->mWorkers.mLaunchData, idx+1);
}
__sync_fetch_and_sub(&dc->mWorkers.mRunningCount, 1);
dc->mWorkers.mCompleteSignal.set();
}
//ALOGV("RS helperThread exited %p idx=%i", dc, idx);
return nullptr;
}
// Launch a kernel.
// The callback function is called to execute the kernel.
void RsdCpuReferenceImpl::launchThreads(WorkerCallback_t cbk, void *data) {
mWorkers.mLaunchData = data;
mWorkers.mLaunchCallback = cbk;
// fast path for very small launches
MTLaunchStructCommon *mtls = (MTLaunchStructCommon *)data;
if (mtls && mtls->dimPtr->y <= 1 && mtls->end.x <= mtls->start.x + mtls->mSliceSize) {
if (mWorkers.mLaunchCallback) {
mWorkers.mLaunchCallback(mWorkers.mLaunchData, 0);
}
return;
}
mWorkers.mRunningCount = mWorkers.mCount;
__sync_synchronize();
for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) {
mWorkers.mLaunchSignals[ct].set();
}
// We use the calling thread as one of the workers so we can start without
// the delay of the thread wakeup.
if (mWorkers.mLaunchCallback) {
mWorkers.mLaunchCallback(mWorkers.mLaunchData, 0);
}
while (__sync_fetch_and_or(&mWorkers.mRunningCount, 0) != 0) {
mWorkers.mCompleteSignal.wait();
}
}
void RsdCpuReferenceImpl::lockMutex() {
pthread_mutex_lock(&gInitMutex);
}
void RsdCpuReferenceImpl::unlockMutex() {
pthread_mutex_unlock(&gInitMutex);
}
// Determine if the CPU we're running on supports SIMD instructions.
static void GetCpuInfo() {
// Read the CPU flags from /proc/cpuinfo.
FILE *cpuinfo = fopen("/proc/cpuinfo", "r");
if (!cpuinfo) {
return;
}
char cpuinfostr[4096];
// fgets() ends with newline or EOF, need to check the whole
// "cpuinfo" file to make sure we can use SIMD or not.
while (fgets(cpuinfostr, sizeof(cpuinfostr), cpuinfo)) {
#if defined(ARCH_ARM_HAVE_VFP) || defined(ARCH_ARM_USE_INTRINSICS)
gArchUseSIMD = strstr(cpuinfostr, " neon") || strstr(cpuinfostr, " asimd");
#elif defined(ARCH_X86_HAVE_SSSE3)
gArchUseSIMD = strstr(cpuinfostr, " ssse3");
#endif
if (gArchUseSIMD) {
break;
}
}
fclose(cpuinfo);
}
bool RsdCpuReferenceImpl::init(uint32_t version_major, uint32_t version_minor,
sym_lookup_t lfn, script_lookup_t slfn) {
mSymLookupFn = lfn;
mScriptLookupFn = slfn;
lockMutex();
if (!gThreadTLSKeyCount) {
int status = pthread_key_create(&gThreadTLSKey, nullptr);
if (status) {
ALOGE("Failed to init thread tls key.");
unlockMutex();
return false;
}
}
gThreadTLSKeyCount++;
unlockMutex();
mTlsStruct.mContext = mRSC;
mTlsStruct.mScript = nullptr;
int status = pthread_setspecific(gThreadTLSKey, &mTlsStruct);
if (status) {
ALOGE("pthread_setspecific %i", status);
}
mPageSize = sysconf(_SC_PAGE_SIZE);
// ALOGV("page size = %ld", mPageSize);
GetCpuInfo();
int cpu = sysconf(_SC_NPROCESSORS_CONF);
if(mRSC->props.mDebugMaxThreads) {
cpu = mRSC->props.mDebugMaxThreads;
}
if (cpu < 2) {
mWorkers.mCount = 0;
return true;
}
// Subtract one from the cpu count because we also use the command thread as a worker.
mWorkers.mCount = (uint32_t)(cpu - 1);
if (mRSC->props.mLogScripts) {
ALOGV("%p Launching thread(s), CPUs %i", mRSC, mWorkers.mCount + 1);
}
mWorkers.mThreadId = (pthread_t *) calloc(mWorkers.mCount, sizeof(pthread_t));
mWorkers.mNativeThreadId = (pid_t *) calloc(mWorkers.mCount, sizeof(pid_t));
mWorkers.mLaunchSignals = new Signal[mWorkers.mCount];
mWorkers.mLaunchCallback = nullptr;
mWorkers.mCompleteSignal.init();
mWorkers.mRunningCount = mWorkers.mCount;
mWorkers.mLaunchCount = 0;
__sync_synchronize();
pthread_attr_t threadAttr;
status = pthread_attr_init(&threadAttr);
if (status) {
ALOGE("Failed to init thread attribute.");
return false;
}
for (uint32_t ct=0; ct < mWorkers.mCount; ct++) {
status = pthread_create(&mWorkers.mThreadId[ct], &threadAttr, helperThreadProc, this);
if (status) {
mWorkers.mCount = ct;
ALOGE("Created fewer than expected number of RS threads.");
break;
}
}
while (__sync_fetch_and_or(&mWorkers.mRunningCount, 0) != 0) {
usleep(100);
}
pthread_attr_destroy(&threadAttr);
return true;
}
void RsdCpuReferenceImpl::setPriority(int32_t priority) {
for (uint32_t ct=0; ct < mWorkers.mCount; ct++) {
setpriority(PRIO_PROCESS, mWorkers.mNativeThreadId[ct], priority);
}
}
RsdCpuReferenceImpl::~RsdCpuReferenceImpl() {
mExit = true;
mWorkers.mLaunchData = nullptr;
mWorkers.mLaunchCallback = nullptr;
mWorkers.mRunningCount = mWorkers.mCount;
__sync_synchronize();
for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) {
mWorkers.mLaunchSignals[ct].set();
}
void *res;
for (uint32_t ct = 0; ct < mWorkers.mCount; ct++) {
pthread_join(mWorkers.mThreadId[ct], &res);
}
rsAssert(__sync_fetch_and_or(&mWorkers.mRunningCount, 0) == 0);
free(mWorkers.mThreadId);
free(mWorkers.mNativeThreadId);
delete[] mWorkers.mLaunchSignals;
// Global structure cleanup.
lockMutex();
--gThreadTLSKeyCount;
if (!gThreadTLSKeyCount) {
pthread_key_delete(gThreadTLSKey);
}
unlockMutex();
}
// Set up the appropriate input and output pointers to the kernel driver info structure.
// Inputs:
// mtls - The MTLaunchStruct holding information about the kernel launch
// fep - The forEach parameters (driver info structure)
// x, y, z, lod, face, a1, a2, a3, a4 - The start offsets into each dimension
static inline void FepPtrSetup(const MTLaunchStructForEach *mtls, RsExpandKernelDriverInfo *fep,
uint32_t x, uint32_t y,
uint32_t z = 0, uint32_t lod = 0,
RsAllocationCubemapFace face = RS_ALLOCATION_CUBEMAP_FACE_POSITIVE_X,
uint32_t a1 = 0, uint32_t a2 = 0, uint32_t a3 = 0, uint32_t a4 = 0) {
for (uint32_t i = 0; i < fep->inLen; i++) {
fep->inPtr[i] = (const uint8_t *)mtls->ains[i]->getPointerUnchecked(x, y, z, lod, face, a1, a2, a3, a4);
}
if (mtls->aout[0] != nullptr) {
fep->outPtr[0] = (uint8_t *)mtls->aout[0]->getPointerUnchecked(x, y, z, lod, face, a1, a2, a3, a4);
}
}
// Set up the appropriate input and output pointers to the kernel driver info structure.
// Inputs:
// mtls - The MTLaunchStruct holding information about the kernel launch
// redp - The reduce parameters (driver info structure)
// x, y, z - The start offsets into each dimension
static inline void RedpPtrSetup(const MTLaunchStructReduce *mtls, RsExpandKernelDriverInfo *redp,
uint32_t x, uint32_t y, uint32_t z) {
for (uint32_t i = 0; i < redp->inLen; i++) {
redp->inPtr[i] = (const uint8_t *)mtls->ains[i]->getPointerUnchecked(x, y, z);
}
}
static uint32_t sliceInt(uint32_t *p, uint32_t val, uint32_t start, uint32_t end) {
if (start >= end) {
*p = start;
return val;
}
uint32_t div = end - start;
uint32_t n = val / div;
*p = (val - (n * div)) + start;
return n;
}
static bool SelectOuterSlice(const MTLaunchStructCommon *mtls, RsExpandKernelDriverInfo* info, uint32_t sliceNum) {
uint32_t r = sliceNum;
r = sliceInt(&info->current.z, r, mtls->start.z, mtls->end.z);
r = sliceInt(&info->current.lod, r, mtls->start.lod, mtls->end.lod);
r = sliceInt(&info->current.face, r, mtls->start.face, mtls->end.face);
r = sliceInt(&info->current.array[0], r, mtls->start.array[0], mtls->end.array[0]);
r = sliceInt(&info->current.array[1], r, mtls->start.array[1], mtls->end.array[1]);
r = sliceInt(&info->current.array[2], r, mtls->start.array[2], mtls->end.array[2]);
r = sliceInt(&info->current.array[3], r, mtls->start.array[3], mtls->end.array[3]);
return r == 0;
}
static bool SelectZSlice(const MTLaunchStructCommon *mtls, RsExpandKernelDriverInfo* info, uint32_t sliceNum) {
return sliceInt(&info->current.z, sliceNum, mtls->start.z, mtls->end.z) == 0;
}
static void walk_general_foreach(void *usr, uint32_t idx) {
MTLaunchStructForEach *mtls = (MTLaunchStructForEach *)usr;
RsExpandKernelDriverInfo fep = mtls->fep;
fep.lid = idx;
ForEachFunc_t fn = mtls->kernel;
while(1) {
uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
if (!SelectOuterSlice(mtls, &fep, slice)) {
return;
}
for (fep.current.y = mtls->start.y; fep.current.y < mtls->end.y;
fep.current.y++) {
FepPtrSetup(mtls, &fep, mtls->start.x,
fep.current.y, fep.current.z, fep.current.lod,
(RsAllocationCubemapFace)fep.current.face,
fep.current.array[0], fep.current.array[1],
fep.current.array[2], fep.current.array[3]);
fn(&fep, mtls->start.x, mtls->end.x, mtls->fep.outStride[0]);
}
}
}
static void walk_2d_foreach(void *usr, uint32_t idx) {
MTLaunchStructForEach *mtls = (MTLaunchStructForEach *)usr;
RsExpandKernelDriverInfo fep = mtls->fep;
fep.lid = idx;
ForEachFunc_t fn = mtls->kernel;
while (1) {
uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
uint32_t yStart = mtls->start.y + slice * mtls->mSliceSize;
uint32_t yEnd = yStart + mtls->mSliceSize;
yEnd = rsMin(yEnd, mtls->end.y);
if (yEnd <= yStart) {
return;
}
for (fep.current.y = yStart; fep.current.y < yEnd; fep.current.y++) {
FepPtrSetup(mtls, &fep, mtls->start.x, fep.current.y);
fn(&fep, mtls->start.x, mtls->end.x, fep.outStride[0]);
}
}
}
static void walk_1d_foreach(void *usr, uint32_t idx) {
MTLaunchStructForEach *mtls = (MTLaunchStructForEach *)usr;
RsExpandKernelDriverInfo fep = mtls->fep;
fep.lid = idx;
ForEachFunc_t fn = mtls->kernel;
while (1) {
uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
uint32_t xStart = mtls->start.x + slice * mtls->mSliceSize;
uint32_t xEnd = xStart + mtls->mSliceSize;
xEnd = rsMin(xEnd, mtls->end.x);
if (xEnd <= xStart) {
return;
}
FepPtrSetup(mtls, &fep, xStart, 0);
fn(&fep, xStart, xEnd, fep.outStride[0]);
}
}
// The function format_bytes() is an auxiliary function to assist in logging.
//
// Bytes are read from an input (inBuf) and written (as pairs of hex digits)
// to an output (outBuf).
//
// Output format:
// - starts with ": "
// - each input byte is translated to a pair of hex digits
// - bytes are separated by "." except that every fourth separator is "|"
// - if the input is sufficiently long, the output is truncated and terminated with "..."
//
// Arguments:
// - outBuf -- Pointer to buffer of type "FormatBuf" into which output is written
// - inBuf -- Pointer to bytes which are to be formatted into outBuf
// - inBytes -- Number of bytes in inBuf
//
// Constant:
// - kFormatInBytesMax -- Only min(kFormatInBytesMax, inBytes) bytes will be read
// from inBuf
//
// Return value:
// - pointer (const char *) to output (which is part of outBuf)
//
static const int kFormatInBytesMax = 16;
// ": " + 2 digits per byte + 1 separator between bytes + "..." + null
typedef char FormatBuf[2 + kFormatInBytesMax*2 + (kFormatInBytesMax - 1) + 3 + 1];
static const char *format_bytes(FormatBuf *outBuf, const uint8_t *inBuf, const int inBytes) {
strcpy(*outBuf, ": ");
int pos = 2;
const int lim = std::min(kFormatInBytesMax, inBytes);
for (int i = 0; i < lim; ++i) {
if (i) {
sprintf(*outBuf + pos, (i % 4 ? "." : "|"));
++pos;
}
sprintf(*outBuf + pos, "%02x", inBuf[i]);
pos += 2;
}
if (kFormatInBytesMax < inBytes)
strcpy(*outBuf + pos, "...");
return *outBuf;
}
static void reduce_get_accumulator(uint8_t *&accumPtr, const MTLaunchStructReduce *mtls,
const char *walkerName, uint32_t threadIdx) {
rsAssert(!accumPtr);
uint32_t accumIdx = (uint32_t)__sync_fetch_and_add(&mtls->accumCount, 1);
if (mtls->outFunc) {
accumPtr = mtls->accumAlloc + mtls->accumStride * accumIdx;
} else {
if (accumIdx == 0) {
accumPtr = mtls->redp.outPtr[0];
} else {
accumPtr = mtls->accumAlloc + mtls->accumStride * (accumIdx - 1);
}
}
REDUCE_ALOGV(mtls, 2, "%s(%p): idx = %u got accumCount %u and accumPtr %p",
walkerName, mtls->accumFunc, threadIdx, accumIdx, accumPtr);
// initialize accumulator
if (mtls->initFunc) {
mtls->initFunc(accumPtr);
} else {
memset(accumPtr, 0, mtls->accumSize);
}
}
static void walk_1d_reduce(void *usr, uint32_t idx) {
const MTLaunchStructReduce *mtls = (const MTLaunchStructReduce *)usr;
RsExpandKernelDriverInfo redp = mtls->redp;
// find accumulator
uint8_t *&accumPtr = mtls->accumPtr[idx];
if (!accumPtr) {
reduce_get_accumulator(accumPtr, mtls, __func__, idx);
}
// accumulate
const ReduceAccumulatorFunc_t fn = mtls->accumFunc;
while (1) {
uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
uint32_t xStart = mtls->start.x + slice * mtls->mSliceSize;
uint32_t xEnd = xStart + mtls->mSliceSize;
xEnd = rsMin(xEnd, mtls->end.x);
if (xEnd <= xStart) {
return;
}
RedpPtrSetup(mtls, &redp, xStart, 0, 0);
fn(&redp, xStart, xEnd, accumPtr);
// Emit log line after slice has been run, so that we can include
// the results of the run on that line.
FormatBuf fmt;
if (mtls->logReduce >= 3) {
format_bytes(&fmt, accumPtr, mtls->accumSize);
} else {
fmt[0] = 0;
}
REDUCE_ALOGV(mtls, 2, "walk_1d_reduce(%p): idx = %u, x in [%u, %u)%s",
mtls->accumFunc, idx, xStart, xEnd, fmt);
}
}
static void walk_2d_reduce(void *usr, uint32_t idx) {
const MTLaunchStructReduce *mtls = (const MTLaunchStructReduce *)usr;
RsExpandKernelDriverInfo redp = mtls->redp;
// find accumulator
uint8_t *&accumPtr = mtls->accumPtr[idx];
if (!accumPtr) {
reduce_get_accumulator(accumPtr, mtls, __func__, idx);
}
// accumulate
const ReduceAccumulatorFunc_t fn = mtls->accumFunc;
while (1) {
uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
uint32_t yStart = mtls->start.y + slice * mtls->mSliceSize;
uint32_t yEnd = yStart + mtls->mSliceSize;
yEnd = rsMin(yEnd, mtls->end.y);
if (yEnd <= yStart) {
return;
}
for (redp.current.y = yStart; redp.current.y < yEnd; redp.current.y++) {
RedpPtrSetup(mtls, &redp, mtls->start.x, redp.current.y, 0);
fn(&redp, mtls->start.x, mtls->end.x, accumPtr);
}
FormatBuf fmt;
if (mtls->logReduce >= 3) {
format_bytes(&fmt, accumPtr, mtls->accumSize);
} else {
fmt[0] = 0;
}
REDUCE_ALOGV(mtls, 2, "walk_2d_reduce(%p): idx = %u, y in [%u, %u)%s",
mtls->accumFunc, idx, yStart, yEnd, fmt);
}
}
static void walk_3d_reduce(void *usr, uint32_t idx) {
const MTLaunchStructReduce *mtls = (const MTLaunchStructReduce *)usr;
RsExpandKernelDriverInfo redp = mtls->redp;
// find accumulator
uint8_t *&accumPtr = mtls->accumPtr[idx];
if (!accumPtr) {
reduce_get_accumulator(accumPtr, mtls, __func__, idx);
}
// accumulate
const ReduceAccumulatorFunc_t fn = mtls->accumFunc;
while (1) {
uint32_t slice = (uint32_t)__sync_fetch_and_add(&mtls->mSliceNum, 1);
if (!SelectZSlice(mtls, &redp, slice)) {
return;
}
for (redp.current.y = mtls->start.y; redp.current.y < mtls->end.y; redp.current.y++) {
RedpPtrSetup(mtls, &redp, mtls->start.x, redp.current.y, redp.current.z);
fn(&redp, mtls->start.x, mtls->end.x, accumPtr);
}
FormatBuf fmt;
if (mtls->logReduce >= 3) {
format_bytes(&fmt, accumPtr, mtls->accumSize);
} else {
fmt[0] = 0;
}
REDUCE_ALOGV(mtls, 2, "walk_3d_reduce(%p): idx = %u, z = %u%s",
mtls->accumFunc, idx, redp.current.z, fmt);
}
}
// Launch a general reduce-style kernel.
// Inputs:
// ains[0..inLen-1]: Array of allocations that contain the inputs
// aout: The allocation that will hold the output
// mtls: Holds launch parameters
void RsdCpuReferenceImpl::launchReduce(const Allocation ** ains,
uint32_t inLen,
Allocation * aout,
MTLaunchStructReduce *mtls) {
mtls->logReduce = mRSC->props.mLogReduce;
if ((mWorkers.mCount >= 1) && mtls->isThreadable && !mInKernel) {
launchReduceParallel(ains, inLen, aout, mtls);
} else {
launchReduceSerial(ains, inLen, aout, mtls);
}
}
// Launch a general reduce-style kernel, single-threaded.
// Inputs:
// ains[0..inLen-1]: Array of allocations that contain the inputs
// aout: The allocation that will hold the output
// mtls: Holds launch parameters
void RsdCpuReferenceImpl::launchReduceSerial(const Allocation ** ains,
uint32_t inLen,
Allocation * aout,
MTLaunchStructReduce *mtls) {
REDUCE_ALOGV(mtls, 1, "launchReduceSerial(%p): %u x %u x %u", mtls->accumFunc,
mtls->redp.dim.x, mtls->redp.dim.y, mtls->redp.dim.z);
// In the presence of outconverter, we allocate temporary memory for
// the accumulator.
//
// In the absence of outconverter, we use the output allocation as the
// accumulator.
uint8_t *const accumPtr = (mtls->outFunc
? static_cast<uint8_t *>(malloc(mtls->accumSize))
: mtls->redp.outPtr[0]);
// initialize
if (mtls->initFunc) {
mtls->initFunc(accumPtr);
} else {
memset(accumPtr, 0, mtls->accumSize);
}
// accumulate
const ReduceAccumulatorFunc_t fn = mtls->accumFunc;
uint32_t slice = 0;
while (SelectOuterSlice(mtls, &mtls->redp, slice++)) {
for (mtls->redp.current.y = mtls->start.y;
mtls->redp.current.y < mtls->end.y;
mtls->redp.current.y++) {
RedpPtrSetup(mtls, &mtls->redp, mtls->start.x, mtls->redp.current.y, mtls->redp.current.z);
fn(&mtls->redp, mtls->start.x, mtls->end.x, accumPtr);
}
}
// outconvert
if (mtls->outFunc) {
mtls->outFunc(mtls->redp.outPtr[0], accumPtr);
free(accumPtr);
}
}
// Launch a general reduce-style kernel, multi-threaded.
// Inputs:
// ains[0..inLen-1]: Array of allocations that contain the inputs
// aout: The allocation that will hold the output
// mtls: Holds launch parameters
void RsdCpuReferenceImpl::launchReduceParallel(const Allocation ** ains,
uint32_t inLen,
Allocation * aout,
MTLaunchStructReduce *mtls) {
// For now, we don't know how to go parallel in the absence of a combiner.
if (!mtls->combFunc) {
launchReduceSerial(ains, inLen, aout, mtls);
return;
}
// Number of threads = "main thread" + number of other (worker) threads
const uint32_t numThreads = mWorkers.mCount + 1;
// In the absence of outconverter, we use the output allocation as
// an accumulator, and therefore need to allocate one fewer accumulator.
const uint32_t numAllocAccum = numThreads - (mtls->outFunc == nullptr);
// If mDebugReduceSplitAccum, then we want each accumulator to start
// on a page boundary. (TODO: Would some unit smaller than a page
// be sufficient to avoid false sharing?)
if (mRSC->props.mDebugReduceSplitAccum) {
// Round up accumulator size to an integral number of pages
mtls->accumStride =
(unsigned(mtls->accumSize) + unsigned(mPageSize)-1) &
~(unsigned(mPageSize)-1);
// Each accumulator gets its own page. Alternatively, if we just
// wanted to make sure no two accumulators are on the same page,
// we could instead do
// allocSize = mtls->accumStride * (numAllocation - 1) + mtls->accumSize
const size_t allocSize = mtls->accumStride * numAllocAccum;
mtls->accumAlloc = static_cast<uint8_t *>(memalign(mPageSize, allocSize));
} else {
mtls->accumStride = mtls->accumSize;
mtls->accumAlloc = static_cast<uint8_t *>(malloc(mtls->accumStride * numAllocAccum));
}
const size_t accumPtrArrayBytes = sizeof(uint8_t *) * numThreads;
mtls->accumPtr = static_cast<uint8_t **>(malloc(accumPtrArrayBytes));
memset(mtls->accumPtr, 0, accumPtrArrayBytes);
mtls->accumCount = 0;
rsAssert(!mInKernel);
mInKernel = true;
REDUCE_ALOGV(mtls, 1, "launchReduceParallel(%p): %u x %u x %u, %u threads, accumAlloc = %p",
mtls->accumFunc,
mtls->redp.dim.x, mtls->redp.dim.y, mtls->redp.dim.z,
numThreads, mtls->accumAlloc);
if (mtls->redp.dim.z > 1) {
mtls->mSliceSize = 1;
launchThreads(walk_3d_reduce, mtls);
} else if (mtls->redp.dim.y > 1) {
mtls->mSliceSize = rsMax(1U, mtls->redp.dim.y / (numThreads * 4));
launchThreads(walk_2d_reduce, mtls);
} else {
mtls->mSliceSize = rsMax(1U, mtls->redp.dim.x / (numThreads * 4));
launchThreads(walk_1d_reduce, mtls);
}
mInKernel = false;
// Combine accumulators and identify final accumulator
uint8_t *finalAccumPtr = (mtls->outFunc ? nullptr : mtls->redp.outPtr[0]);
// Loop over accumulators, combining into finalAccumPtr. If finalAccumPtr
// is null, then the first accumulator I find becomes finalAccumPtr.
for (unsigned idx = 0; idx < mtls->accumCount; ++idx) {
uint8_t *const thisAccumPtr = mtls->accumPtr[idx];
if (finalAccumPtr) {
if (finalAccumPtr != thisAccumPtr) {
if (mtls->combFunc) {
if (mtls->logReduce >= 3) {
FormatBuf fmt;
REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): accumulating into%s",
mtls->accumFunc,
format_bytes(&fmt, finalAccumPtr, mtls->accumSize));
REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): accumulator[%d]%s",
mtls->accumFunc, idx,
format_bytes(&fmt, thisAccumPtr, mtls->accumSize));
}
mtls->combFunc(finalAccumPtr, thisAccumPtr);
} else {
rsAssert(!"expected combiner");
}
}
} else {
finalAccumPtr = thisAccumPtr;
}
}
rsAssert(finalAccumPtr != nullptr);
if (mtls->logReduce >= 3) {
FormatBuf fmt;
REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): final accumulator%s",
mtls->accumFunc, format_bytes(&fmt, finalAccumPtr, mtls->accumSize));
}
// Outconvert
if (mtls->outFunc) {
mtls->outFunc(mtls->redp.outPtr[0], finalAccumPtr);
if (mtls->logReduce >= 3) {
FormatBuf fmt;
REDUCE_ALOGV(mtls, 3, "launchReduceParallel(%p): final outconverted result%s",
mtls->accumFunc,
format_bytes(&fmt, mtls->redp.outPtr[0], mtls->redp.outStride[0]));
}
}
// Clean up
free(mtls->accumPtr);
free(mtls->accumAlloc);
}
void RsdCpuReferenceImpl::launchForEach(const Allocation ** ains,
uint32_t inLen,
Allocation* aout,
const RsScriptCall* sc,
MTLaunchStructForEach* mtls) {
//android::StopWatch kernel_time("kernel time");
bool outerDims = (mtls->start.z != mtls->end.z) ||
(mtls->start.face != mtls->end.face) ||
(mtls->start.lod != mtls->end.lod) ||
(mtls->start.array[0] != mtls->end.array[0]) ||
(mtls->start.array[1] != mtls->end.array[1]) ||
(mtls->start.array[2] != mtls->end.array[2]) ||
(mtls->start.array[3] != mtls->end.array[3]);
if ((mWorkers.mCount >= 1) && mtls->isThreadable && !mInKernel) {
const size_t targetByteChunk = 16 * 1024;
mInKernel = true; // NOTE: The guard immediately above ensures this was !mInKernel
if (outerDims) {
// No fancy logic for chunk size
mtls->mSliceSize = 1;
launchThreads(walk_general_foreach, mtls);
} else if (mtls->fep.dim.y > 1) {
uint32_t s1 = mtls->fep.dim.y / ((mWorkers.mCount + 1) * 4);
uint32_t s2 = 0;
// This chooses our slice size to rate limit atomic ops to
// one per 16k bytes of reads/writes.
if ((mtls->aout[0] != nullptr) && mtls->aout[0]->mHal.drvState.lod[0].stride) {
s2 = targetByteChunk / mtls->aout[0]->mHal.drvState.lod[0].stride;
} else if (mtls->ains[0]) {
s2 = targetByteChunk / mtls->ains[0]->mHal.drvState.lod[0].stride;
} else {
// Launch option only case
// Use s1 based only on the dimensions
s2 = s1;
}
mtls->mSliceSize = rsMin(s1, s2);
if(mtls->mSliceSize < 1) {
mtls->mSliceSize = 1;
}
launchThreads(walk_2d_foreach, mtls);
} else {
uint32_t s1 = mtls->fep.dim.x / ((mWorkers.mCount + 1) * 4);
uint32_t s2 = 0;
// This chooses our slice size to rate limit atomic ops to
// one per 16k bytes of reads/writes.
if ((mtls->aout[0] != nullptr) && mtls->aout[0]->getType()->getElementSizeBytes()) {
s2 = targetByteChunk / mtls->aout[0]->getType()->getElementSizeBytes();
} else if (mtls->ains[0]) {
s2 = targetByteChunk / mtls->ains[0]->getType()->getElementSizeBytes();
} else {
// Launch option only case
// Use s1 based only on the dimensions
s2 = s1;
}
mtls->mSliceSize = rsMin(s1, s2);
if (mtls->mSliceSize < 1) {
mtls->mSliceSize = 1;
}
launchThreads(walk_1d_foreach, mtls);
}
mInKernel = false;
} else {
ForEachFunc_t fn = mtls->kernel;
uint32_t slice = 0;
while(SelectOuterSlice(mtls, &mtls->fep, slice++)) {
for (mtls->fep.current.y = mtls->start.y;
mtls->fep.current.y < mtls->end.y;
mtls->fep.current.y++) {
FepPtrSetup(mtls, &mtls->fep, mtls->start.x,
mtls->fep.current.y, mtls->fep.current.z, mtls->fep.current.lod,
(RsAllocationCubemapFace) mtls->fep.current.face,
mtls->fep.current.array[0], mtls->fep.current.array[1],
mtls->fep.current.array[2], mtls->fep.current.array[3]);
fn(&mtls->fep, mtls->start.x, mtls->end.x, mtls->fep.outStride[0]);
}
}
}
}
RsdCpuScriptImpl * RsdCpuReferenceImpl::setTLS(RsdCpuScriptImpl *sc) {
//ALOGE("setTls %p", sc);
ScriptTLSStruct * tls = (ScriptTLSStruct *)pthread_getspecific(gThreadTLSKey);
rsAssert(tls);
RsdCpuScriptImpl *old = tls->mImpl;
tls->mImpl = sc;
tls->mContext = mRSC;
if (sc) {
tls->mScript = sc->getScript();
} else {
tls->mScript = nullptr;
}
return old;
}
const RsdCpuReference::CpuSymbol * RsdCpuReferenceImpl::symLookup(const char *name) {
return mSymLookupFn(mRSC, name);
}
RsdCpuReference::CpuScript * RsdCpuReferenceImpl::createScript(const ScriptC *s,
char const *resName, char const *cacheDir,
uint8_t const *bitcode, size_t bitcodeSize,
uint32_t flags) {
RsdCpuScriptImpl *i = new RsdCpuScriptImpl(this, s);
if (!i->init(resName, cacheDir, bitcode, bitcodeSize, flags
, getBccPluginName()
)) {
delete i;
return nullptr;
}
return i;
}
extern RsdCpuScriptImpl * rsdIntrinsic_3DLUT(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_Convolve3x3(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_ColorMatrix(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_LUT(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_Convolve5x5(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_Blur(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_YuvToRGB(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_Blend(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_Histogram(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_Resize(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
extern RsdCpuScriptImpl * rsdIntrinsic_BLAS(RsdCpuReferenceImpl *ctx,
const Script *s, const Element *e);
RsdCpuReference::CpuScript * RsdCpuReferenceImpl::createIntrinsic(const Script *s,
RsScriptIntrinsicID iid, Element *e) {
RsdCpuScriptImpl *i = nullptr;
switch (iid) {
case RS_SCRIPT_INTRINSIC_ID_3DLUT:
i = rsdIntrinsic_3DLUT(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_CONVOLVE_3x3:
i = rsdIntrinsic_Convolve3x3(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_COLOR_MATRIX:
i = rsdIntrinsic_ColorMatrix(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_LUT:
i = rsdIntrinsic_LUT(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_CONVOLVE_5x5:
i = rsdIntrinsic_Convolve5x5(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_BLUR:
i = rsdIntrinsic_Blur(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_YUV_TO_RGB:
i = rsdIntrinsic_YuvToRGB(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_BLEND:
i = rsdIntrinsic_Blend(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_HISTOGRAM:
i = rsdIntrinsic_Histogram(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_RESIZE:
i = rsdIntrinsic_Resize(this, s, e);
break;
case RS_SCRIPT_INTRINSIC_ID_BLAS:
i = rsdIntrinsic_BLAS(this, s, e);
break;
default:
rsAssert(0);
}
return i;
}
void* RsdCpuReferenceImpl::createScriptGroup(const ScriptGroupBase *sg) {
switch (sg->getApiVersion()) {
case ScriptGroupBase::SG_V1: {
CpuScriptGroupImpl *sgi = new CpuScriptGroupImpl(this, sg);
if (!sgi->init()) {
delete sgi;
return nullptr;
}
return sgi;
}
case ScriptGroupBase::SG_V2: {
return new CpuScriptGroup2Impl(this, sg);
}
}
return nullptr;
}