HELLO·Android
系统源代码
IT资讯
技术文章
我的收藏
注册
登录
-
我收藏的文章
创建代码块
我的代码块
我的账号
Nougat 7.1
|
7.1.1_r28
下载
查看原文件
收藏
根目录
packages
apps
Test
connectivity
sl4n
rapidjson
test
unittest
readertest.cpp
// Tencent is pleased to support the open source community by making RapidJSON available. // // Copyright (C) 2015 THL A29 Limited, a Tencent company, and Milo Yip. All rights reserved. // // Licensed under the MIT License (the "License"); you may not use this file except // in compliance with the License. You may obtain a copy of the License at // // http://opensource.org/licenses/MIT // // Unless required by applicable law or agreed to in writing, software distributed // under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR // CONDITIONS OF ANY KIND, either express or implied. See the License for the // specific language governing permissions and limitations under the License. #include "unittest.h" #include "rapidjson/reader.h" #include "rapidjson/internal/dtoa.h" #include "rapidjson/internal/itoa.h" #include "rapidjson/memorystream.h" using namespace rapidjson; #ifdef __GNUC__ RAPIDJSON_DIAG_PUSH RAPIDJSON_DIAG_OFF(effc++) RAPIDJSON_DIAG_OFF(float-equal) #endif template
struct ParseBoolHandler : BaseReaderHandler
, ParseBoolHandler
> { ParseBoolHandler() : step_(0) {} bool Default() { ADD_FAILURE(); return false; } // gcc 4.8.x generates warning in EXPECT_EQ(bool, bool) on this gtest version. // Workaround with EXPECT_TRUE(). bool Bool(bool b) { /*EXPECT_EQ(expect, b); */EXPECT_TRUE(expect == b); ++step_; return true; } unsigned step_; }; TEST(Reader, ParseTrue) { StringStream s("true"); ParseBoolHandler
h; Reader reader; reader.Parse(s, h); EXPECT_EQ(1u, h.step_); } TEST(Reader, ParseFalse) { StringStream s("false"); ParseBoolHandler
h; Reader reader; reader.Parse(s, h); EXPECT_EQ(1u, h.step_); } struct ParseIntHandler : BaseReaderHandler
, ParseIntHandler> { ParseIntHandler() : step_(0), actual_() {} bool Default() { ADD_FAILURE(); return false; } bool Int(int i) { actual_ = i; step_++; return true; } unsigned step_; int actual_; }; struct ParseUintHandler : BaseReaderHandler
, ParseUintHandler> { ParseUintHandler() : step_(0), actual_() {} bool Default() { ADD_FAILURE(); return false; } bool Uint(unsigned i) { actual_ = i; step_++; return true; } unsigned step_; unsigned actual_; }; struct ParseInt64Handler : BaseReaderHandler
, ParseInt64Handler> { ParseInt64Handler() : step_(0), actual_() {} bool Default() { ADD_FAILURE(); return false; } bool Int64(int64_t i) { actual_ = i; step_++; return true; } unsigned step_; int64_t actual_; }; struct ParseUint64Handler : BaseReaderHandler
, ParseUint64Handler> { ParseUint64Handler() : step_(0), actual_() {} bool Default() { ADD_FAILURE(); return false; } bool Uint64(uint64_t i) { actual_ = i; step_++; return true; } unsigned step_; uint64_t actual_; }; struct ParseDoubleHandler : BaseReaderHandler
, ParseDoubleHandler> { ParseDoubleHandler() : step_(0), actual_() {} bool Default() { ADD_FAILURE(); return false; } bool Double(double d) { actual_ = d; step_++; return true; } unsigned step_; double actual_; }; TEST(Reader, ParseNumber_Integer) { #define TEST_INTEGER(Handler, str, x) \ { \ StringStream s(str); \ Handler h; \ Reader reader; \ reader.Parse(s, h); \ EXPECT_EQ(1u, h.step_); \ EXPECT_EQ(x, h.actual_); \ } TEST_INTEGER(ParseUintHandler, "0", 0u); TEST_INTEGER(ParseUintHandler, "123", 123u); TEST_INTEGER(ParseUintHandler, "2147483648", 2147483648u); // 2^31 - 1 (cannot be stored in int) TEST_INTEGER(ParseUintHandler, "4294967295", 4294967295u); TEST_INTEGER(ParseIntHandler, "-123", -123); TEST_INTEGER(ParseIntHandler, "-2147483648", static_cast
(0x80000000)); // -2^31 (min of int) TEST_INTEGER(ParseUint64Handler, "4294967296", RAPIDJSON_UINT64_C2(1, 0)); // 2^32 (max of unsigned + 1, force to use uint64_t) TEST_INTEGER(ParseUint64Handler, "18446744073709551615", RAPIDJSON_UINT64_C2(0xFFFFFFFF, 0xFFFFFFFF)); // 2^64 - 1 (max of uint64_t) TEST_INTEGER(ParseInt64Handler, "-2147483649", static_cast
(RAPIDJSON_UINT64_C2(0xFFFFFFFF, 0x7FFFFFFF))); // -2^31 -1 (min of int - 1, force to use int64_t) TEST_INTEGER(ParseInt64Handler, "-9223372036854775808", static_cast
(RAPIDJSON_UINT64_C2(0x80000000, 0x00000000))); // -2^63 (min of int64_t) // Random test for uint32_t/int32_t { union { uint32_t u; int32_t i; }u; Random r; for (unsigned i = 0; i < 100000; i++) { u.u = r(); char buffer[32]; *internal::u32toa(u.u, buffer) = '\0'; TEST_INTEGER(ParseUintHandler, buffer, u.u); if (u.i < 0) { *internal::i32toa(u.i, buffer) = '\0'; TEST_INTEGER(ParseIntHandler, buffer, u.i); } } } // Random test for uint64_t/int64_t { union { uint64_t u; int64_t i; }u; Random r; for (unsigned i = 0; i < 100000; i++) { u.u = uint64_t(r()) << 32; u.u |= r(); char buffer[32]; if (u.u >= 4294967296ULL) { *internal::u64toa(u.u, buffer) = '\0'; TEST_INTEGER(ParseUint64Handler, buffer, u.u); } if (u.i <= -2147483649LL) { *internal::i64toa(u.i, buffer) = '\0'; TEST_INTEGER(ParseInt64Handler, buffer, u.i); } } } #undef TEST_INTEGER } template
static void TestParseDouble() { #define TEST_DOUBLE(fullPrecision, str, x) \ { \ StringStream s(str); \ ParseDoubleHandler h; \ Reader reader; \ ASSERT_EQ(kParseErrorNone, reader.Parse
(s, h).Code()); \ EXPECT_EQ(1u, h.step_); \ internal::Double e(x), a(h.actual_); \ if (fullPrecision) { \ EXPECT_EQ(e.Uint64Value(), a.Uint64Value()); \ if (e.Uint64Value() != a.Uint64Value()) \ printf(" String: %s\n Actual: %.17g\nExpected: %.17g\n", str, h.actual_, x); \ } \ else { \ EXPECT_EQ(e.Sign(), a.Sign()); /* for 0.0 != -0.0 */ \ EXPECT_DOUBLE_EQ(x, h.actual_); \ } \ } TEST_DOUBLE(fullPrecision, "0.0", 0.0); TEST_DOUBLE(fullPrecision, "-0.0", -0.0); // For checking issue #289 TEST_DOUBLE(fullPrecision, "1.0", 1.0); TEST_DOUBLE(fullPrecision, "-1.0", -1.0); TEST_DOUBLE(fullPrecision, "1.5", 1.5); TEST_DOUBLE(fullPrecision, "-1.5", -1.5); TEST_DOUBLE(fullPrecision, "3.1416", 3.1416); TEST_DOUBLE(fullPrecision, "1E10", 1E10); TEST_DOUBLE(fullPrecision, "1e10", 1e10); TEST_DOUBLE(fullPrecision, "1E+10", 1E+10); TEST_DOUBLE(fullPrecision, "1E-10", 1E-10); TEST_DOUBLE(fullPrecision, "-1E10", -1E10); TEST_DOUBLE(fullPrecision, "-1e10", -1e10); TEST_DOUBLE(fullPrecision, "-1E+10", -1E+10); TEST_DOUBLE(fullPrecision, "-1E-10", -1E-10); TEST_DOUBLE(fullPrecision, "1.234E+10", 1.234E+10); TEST_DOUBLE(fullPrecision, "1.234E-10", 1.234E-10); TEST_DOUBLE(fullPrecision, "1.79769e+308", 1.79769e+308); TEST_DOUBLE(fullPrecision, "2.22507e-308", 2.22507e-308); TEST_DOUBLE(fullPrecision, "-1.79769e+308", -1.79769e+308); TEST_DOUBLE(fullPrecision, "-2.22507e-308", -2.22507e-308); TEST_DOUBLE(fullPrecision, "4.9406564584124654e-324", 4.9406564584124654e-324); // minimum denormal TEST_DOUBLE(fullPrecision, "2.2250738585072009e-308", 2.2250738585072009e-308); // Max subnormal double TEST_DOUBLE(fullPrecision, "2.2250738585072014e-308", 2.2250738585072014e-308); // Min normal positive double TEST_DOUBLE(fullPrecision, "1.7976931348623157e+308", 1.7976931348623157e+308); // Max double TEST_DOUBLE(fullPrecision, "1e-10000", 0.0); // must underflow TEST_DOUBLE(fullPrecision, "18446744073709551616", 18446744073709551616.0); // 2^64 (max of uint64_t + 1, force to use double) TEST_DOUBLE(fullPrecision, "-9223372036854775809", -9223372036854775809.0); // -2^63 - 1(min of int64_t + 1, force to use double) TEST_DOUBLE(fullPrecision, "0.9868011474609375", 0.9868011474609375); // https://github.com/miloyip/rapidjson/issues/120 TEST_DOUBLE(fullPrecision, "123e34", 123e34); // Fast Path Cases In Disguise TEST_DOUBLE(fullPrecision, "45913141877270640000.0", 45913141877270640000.0); TEST_DOUBLE(fullPrecision, "2.2250738585072011e-308", 2.2250738585072011e-308); // http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/ TEST_DOUBLE(fullPrecision, "1e-00011111111111", 0.0); // Issue #313 TEST_DOUBLE(fullPrecision, "-1e-00011111111111", -0.0); TEST_DOUBLE(fullPrecision, "1e-214748363", 0.0); // Maximum supported negative exponent TEST_DOUBLE(fullPrecision, "1e-214748364", 0.0); TEST_DOUBLE(fullPrecision, "1e-21474836311", 0.0); TEST_DOUBLE(fullPrecision, "0.017976931348623157e+310", 1.7976931348623157e+308); // Max double in another form // Since // abs((2^-1022 - 2^-1074) - 2.2250738585072012e-308) = 3.109754131239141401123495768877590405345064751974375599... 10^-324 // abs((2^-1022) - 2.2250738585072012e-308) = 1.830902327173324040642192159804623318305533274168872044... 10 ^ -324 // So 2.2250738585072012e-308 should round to 2^-1022 = 2.2250738585072014e-308 TEST_DOUBLE(fullPrecision, "2.2250738585072012e-308", 2.2250738585072014e-308); // http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/ // More closer to normal/subnormal boundary // boundary = 2^-1022 - 2^-1075 = 2.225073858507201136057409796709131975934819546351645648... 10^-308 TEST_DOUBLE(fullPrecision, "2.22507385850720113605740979670913197593481954635164564e-308", 2.2250738585072009e-308); TEST_DOUBLE(fullPrecision, "2.22507385850720113605740979670913197593481954635164565e-308", 2.2250738585072014e-308); // 1.0 is in (1.0 - 2^-54, 1.0 + 2^-53) // 1.0 - 2^-54 = 0.999999999999999944488848768742172978818416595458984375 TEST_DOUBLE(fullPrecision, "0.999999999999999944488848768742172978818416595458984375", 1.0); // round to even TEST_DOUBLE(fullPrecision, "0.999999999999999944488848768742172978818416595458984374", 0.99999999999999989); // previous double TEST_DOUBLE(fullPrecision, "0.999999999999999944488848768742172978818416595458984376", 1.0); // next double // 1.0 + 2^-53 = 1.00000000000000011102230246251565404236316680908203125 TEST_DOUBLE(fullPrecision, "1.00000000000000011102230246251565404236316680908203125", 1.0); // round to even TEST_DOUBLE(fullPrecision, "1.00000000000000011102230246251565404236316680908203124", 1.0); // previous double TEST_DOUBLE(fullPrecision, "1.00000000000000011102230246251565404236316680908203126", 1.00000000000000022); // next double // Numbers from https://github.com/floitsch/double-conversion/blob/master/test/cctest/test-strtod.cc TEST_DOUBLE(fullPrecision, "72057594037927928.0", 72057594037927928.0); TEST_DOUBLE(fullPrecision, "72057594037927936.0", 72057594037927936.0); TEST_DOUBLE(fullPrecision, "72057594037927932.0", 72057594037927936.0); TEST_DOUBLE(fullPrecision, "7205759403792793199999e-5", 72057594037927928.0); TEST_DOUBLE(fullPrecision, "7205759403792793200001e-5", 72057594037927936.0); TEST_DOUBLE(fullPrecision, "9223372036854774784.0", 9223372036854774784.0); TEST_DOUBLE(fullPrecision, "9223372036854775808.0", 9223372036854775808.0); TEST_DOUBLE(fullPrecision, "9223372036854775296.0", 9223372036854775808.0); TEST_DOUBLE(fullPrecision, "922337203685477529599999e-5", 9223372036854774784.0); TEST_DOUBLE(fullPrecision, "922337203685477529600001e-5", 9223372036854775808.0); TEST_DOUBLE(fullPrecision, "10141204801825834086073718800384", 10141204801825834086073718800384.0); TEST_DOUBLE(fullPrecision, "10141204801825835211973625643008", 10141204801825835211973625643008.0); TEST_DOUBLE(fullPrecision, "10141204801825834649023672221696", 10141204801825835211973625643008.0); TEST_DOUBLE(fullPrecision, "1014120480182583464902367222169599999e-5", 10141204801825834086073718800384.0); TEST_DOUBLE(fullPrecision, "1014120480182583464902367222169600001e-5", 10141204801825835211973625643008.0); TEST_DOUBLE(fullPrecision, "5708990770823838890407843763683279797179383808", 5708990770823838890407843763683279797179383808.0); TEST_DOUBLE(fullPrecision, "5708990770823839524233143877797980545530986496", 5708990770823839524233143877797980545530986496.0); TEST_DOUBLE(fullPrecision, "5708990770823839207320493820740630171355185152", 5708990770823839524233143877797980545530986496.0); TEST_DOUBLE(fullPrecision, "5708990770823839207320493820740630171355185151999e-3", 5708990770823838890407843763683279797179383808.0); TEST_DOUBLE(fullPrecision, "5708990770823839207320493820740630171355185152001e-3", 5708990770823839524233143877797980545530986496.0); { char n1e308[310]; // '1' followed by 308 '0' n1e308[0] = '1'; for (int i = 1; i < 309; i++) n1e308[i] = '0'; n1e308[309] = '\0'; TEST_DOUBLE(fullPrecision, n1e308, 1E308); } // Cover trimming TEST_DOUBLE(fullPrecision, "2.22507385850720113605740979670913197593481954635164564802342610972482222202107694551652952390813508" "7914149158913039621106870086438694594645527657207407820621743379988141063267329253552286881372149012" "9811224514518898490572223072852551331557550159143974763979834118019993239625482890171070818506906306" "6665599493827577257201576306269066333264756530000924588831643303777979186961204949739037782970490505" "1080609940730262937128958950003583799967207254304360284078895771796150945516748243471030702609144621" "5722898802581825451803257070188608721131280795122334262883686223215037756666225039825343359745688844" "2390026549819838548794829220689472168983109969836584681402285424333066033985088644580400103493397042" "7567186443383770486037861622771738545623065874679014086723327636718751234567890123456789012345678901" "e-308", 2.2250738585072014e-308); { static const unsigned count = 100; // Tested with 1000000 locally Random r; Reader reader; // Reusing reader to prevent heap allocation // Exhaustively test different exponents with random significant for (uint64_t exp = 0; exp < 2047; exp++) { ; for (unsigned i = 0; i < count; i++) { // Need to call r() in two statements for cross-platform coherent sequence. uint64_t u = (exp << 52) | uint64_t(r() & 0x000FFFFF) << 32; u |= uint64_t(r()); internal::Double d = internal::Double(u); char buffer[32]; *internal::dtoa(d.Value(), buffer) = '\0'; StringStream s(buffer); ParseDoubleHandler h; ASSERT_EQ(kParseErrorNone, reader.Parse
(s, h).Code()); EXPECT_EQ(1u, h.step_); internal::Double a(h.actual_); if (fullPrecision) { EXPECT_EQ(d.Uint64Value(), a.Uint64Value()); if (d.Uint64Value() != a.Uint64Value()) printf(" String: %s\n Actual: %.17g\nExpected: %.17g\n", buffer, h.actual_, d.Value()); } else { EXPECT_EQ(d.Sign(), a.Sign()); // for 0.0 != -0.0 EXPECT_DOUBLE_EQ(d.Value(), h.actual_); } } } } // Issue #340 TEST_DOUBLE(fullPrecision, "7.450580596923828e-9", 7.450580596923828e-9); { internal::Double d(1.0); for (int i = 0; i < 324; i++) { char buffer[32]; *internal::dtoa(d.Value(), buffer) = '\0'; StringStream s(buffer); ParseDoubleHandler h; Reader reader; ASSERT_EQ(kParseErrorNone, reader.Parse
(s, h).Code()); EXPECT_EQ(1u, h.step_); internal::Double a(h.actual_); if (fullPrecision) { EXPECT_EQ(d.Uint64Value(), a.Uint64Value()); if (d.Uint64Value() != a.Uint64Value()) printf(" String: %s\n Actual: %.17g\nExpected: %.17g\n", buffer, h.actual_, d.Value()); } else { EXPECT_EQ(d.Sign(), a.Sign()); // for 0.0 != -0.0 EXPECT_DOUBLE_EQ(d.Value(), h.actual_); } d = d.Value() * 0.5; } } #undef TEST_DOUBLE } TEST(Reader, ParseNumber_NormalPrecisionDouble) { TestParseDouble
(); } TEST(Reader, ParseNumber_FullPrecisionDouble) { TestParseDouble
(); } TEST(Reader, ParseNumber_NormalPrecisionError) { static unsigned count = 1000000; Random r; double ulpSum = 0.0; double ulpMax = 0.0; for (unsigned i = 0; i < count; i++) { internal::Double e, a; do { // Need to call r() in two statements for cross-platform coherent sequence. uint64_t u = uint64_t(r()) << 32; u |= uint64_t(r()); e = u; } while (e.IsNan() || e.IsInf() || !e.IsNormal()); char buffer[32]; *internal::dtoa(e.Value(), buffer) = '\0'; StringStream s(buffer); ParseDoubleHandler h; Reader reader; ASSERT_EQ(kParseErrorNone, reader.Parse(s, h).Code()); EXPECT_EQ(1u, h.step_); a = h.actual_; uint64_t bias1 = e.ToBias(); uint64_t bias2 = a.ToBias(); double ulp = bias1 >= bias2 ? bias1 - bias2 : bias2 - bias1; ulpMax = std::max(ulpMax, ulp); ulpSum += ulp; } printf("ULP Average = %g, Max = %g \n", ulpSum / count, ulpMax); } TEST(Reader, ParseNumber_Error) { #define TEST_NUMBER_ERROR(errorCode, str) \ { \ char buffer[1001]; \ sprintf(buffer, "%s", str); \ InsituStringStream s(buffer); \ BaseReaderHandler<> h; \ Reader reader; \ EXPECT_FALSE(reader.Parse(s, h)); \ EXPECT_EQ(errorCode, reader.GetParseErrorCode());\ } // Number too big to be stored in double. { char n1e309[311]; // '1' followed by 309 '0' n1e309[0] = '1'; for (int i = 1; i < 310; i++) n1e309[i] = '0'; n1e309[310] = '\0'; TEST_NUMBER_ERROR(kParseErrorNumberTooBig, n1e309); } TEST_NUMBER_ERROR(kParseErrorNumberTooBig, "1e309"); // Miss fraction part in number. TEST_NUMBER_ERROR(kParseErrorNumberMissFraction, "1."); TEST_NUMBER_ERROR(kParseErrorNumberMissFraction, "1.a"); // Miss exponent in number. TEST_NUMBER_ERROR(kParseErrorNumberMissExponent, "1e"); TEST_NUMBER_ERROR(kParseErrorNumberMissExponent, "1e_"); #undef TEST_NUMBER_ERROR } template
struct ParseStringHandler : BaseReaderHandler
> { ParseStringHandler() : str_(0), length_(0), copy_() {} ~ParseStringHandler() { EXPECT_TRUE(str_ != 0); if (copy_) free(const_cast
(str_)); } ParseStringHandler(const ParseStringHandler&); ParseStringHandler& operator=(const ParseStringHandler&); bool Default() { ADD_FAILURE(); return false; } bool String(const typename Encoding::Ch* str, size_t length, bool copy) { EXPECT_EQ(0, str_); if (copy) { str_ = (typename Encoding::Ch*)malloc((length + 1) * sizeof(typename Encoding::Ch)); memcpy(const_cast
(str_), str, (length + 1) * sizeof(typename Encoding::Ch)); } else str_ = str; length_ = length; copy_ = copy; return true; } const typename Encoding::Ch* str_; size_t length_; bool copy_; }; TEST(Reader, ParseString) { #define TEST_STRING(Encoding, e, x) \ { \ Encoding::Ch* buffer = StrDup(x); \ GenericInsituStringStream
is(buffer); \ ParseStringHandler
h; \ GenericReader
reader; \ reader.Parse
(is, h); \ EXPECT_EQ(0, StrCmp
(e, h.str_)); \ EXPECT_EQ(StrLen(e), h.length_); \ free(buffer); \ GenericStringStream
s(x); \ ParseStringHandler
h2; \ GenericReader
reader2; \ reader2.Parse(s, h2); \ EXPECT_EQ(0, StrCmp
(e, h2.str_)); \ EXPECT_EQ(StrLen(e), h2.length_); \ } // String constant L"\xXX" can only specify character code in bytes, which is not endianness-neutral. // And old compiler does not support u"" and U"" string literal. So here specify string literal by array of Ch. // In addition, GCC 4.8 generates -Wnarrowing warnings when character code >= 128 are assigned to signed integer types. // Therefore, utype is added for declaring unsigned array, and then cast it to Encoding::Ch. #define ARRAY(...) { __VA_ARGS__ } #define TEST_STRINGARRAY(Encoding, utype, array, x) \ { \ static const utype ue[] = array; \ static const Encoding::Ch* e = reinterpret_cast
(&ue[0]); \ TEST_STRING(Encoding, e, x); \ } #define TEST_STRINGARRAY2(Encoding, utype, earray, xarray) \ { \ static const utype ue[] = earray; \ static const utype xe[] = xarray; \ static const Encoding::Ch* e = reinterpret_cast
(&ue[0]); \ static const Encoding::Ch* x = reinterpret_cast
(&xe[0]); \ TEST_STRING(Encoding, e, x); \ } TEST_STRING(UTF8<>, "", "\"\""); TEST_STRING(UTF8<>, "Hello", "\"Hello\""); TEST_STRING(UTF8<>, "Hello\nWorld", "\"Hello\\nWorld\""); TEST_STRING(UTF8<>, "\"\\/\b\f\n\r\t", "\"\\\"\\\\/\\b\\f\\n\\r\\t\""); TEST_STRING(UTF8<>, "\x24", "\"\\u0024\""); // Dollar sign U+0024 TEST_STRING(UTF8<>, "\xC2\xA2", "\"\\u00A2\""); // Cents sign U+00A2 TEST_STRING(UTF8<>, "\xE2\x82\xAC", "\"\\u20AC\""); // Euro sign U+20AC TEST_STRING(UTF8<>, "\xF0\x9D\x84\x9E", "\"\\uD834\\uDD1E\""); // G clef sign U+1D11E // UTF16 TEST_STRING(UTF16<>, L"", L"\"\""); TEST_STRING(UTF16<>, L"Hello", L"\"Hello\""); TEST_STRING(UTF16<>, L"Hello\nWorld", L"\"Hello\\nWorld\""); TEST_STRING(UTF16<>, L"\"\\/\b\f\n\r\t", L"\"\\\"\\\\/\\b\\f\\n\\r\\t\""); TEST_STRINGARRAY(UTF16<>, wchar_t, ARRAY(0x0024, 0x0000), L"\"\\u0024\""); TEST_STRINGARRAY(UTF16<>, wchar_t, ARRAY(0x00A2, 0x0000), L"\"\\u00A2\""); // Cents sign U+00A2 TEST_STRINGARRAY(UTF16<>, wchar_t, ARRAY(0x20AC, 0x0000), L"\"\\u20AC\""); // Euro sign U+20AC TEST_STRINGARRAY(UTF16<>, wchar_t, ARRAY(0xD834, 0xDD1E, 0x0000), L"\"\\uD834\\uDD1E\""); // G clef sign U+1D11E // UTF32 TEST_STRINGARRAY2(UTF32<>, unsigned, ARRAY('\0'), ARRAY('\"', '\"', '\0')); TEST_STRINGARRAY2(UTF32<>, unsigned, ARRAY('H', 'e', 'l', 'l', 'o', '\0'), ARRAY('\"', 'H', 'e', 'l', 'l', 'o', '\"', '\0')); TEST_STRINGARRAY2(UTF32<>, unsigned, ARRAY('H', 'e', 'l', 'l', 'o', '\n', 'W', 'o', 'r', 'l', 'd', '\0'), ARRAY('\"', 'H', 'e', 'l', 'l', 'o', '\\', 'n', 'W', 'o', 'r', 'l', 'd', '\"', '\0')); TEST_STRINGARRAY2(UTF32<>, unsigned, ARRAY('\"', '\\', '/', '\b', '\f', '\n', '\r', '\t', '\0'), ARRAY('\"', '\\', '\"', '\\', '\\', '/', '\\', 'b', '\\', 'f', '\\', 'n', '\\', 'r', '\\', 't', '\"', '\0')); TEST_STRINGARRAY2(UTF32<>, unsigned, ARRAY(0x00024, 0x0000), ARRAY('\"', '\\', 'u', '0', '0', '2', '4', '\"', '\0')); TEST_STRINGARRAY2(UTF32<>, unsigned, ARRAY(0x000A2, 0x0000), ARRAY('\"', '\\', 'u', '0', '0', 'A', '2', '\"', '\0')); // Cents sign U+00A2 TEST_STRINGARRAY2(UTF32<>, unsigned, ARRAY(0x020AC, 0x0000), ARRAY('\"', '\\', 'u', '2', '0', 'A', 'C', '\"', '\0')); // Euro sign U+20AC TEST_STRINGARRAY2(UTF32<>, unsigned, ARRAY(0x1D11E, 0x0000), ARRAY('\"', '\\', 'u', 'D', '8', '3', '4', '\\', 'u', 'D', 'D', '1', 'E', '\"', '\0')); // G clef sign U+1D11E #undef TEST_STRINGARRAY #undef ARRAY #undef TEST_STRING // Support of null character in string { StringStream s("\"Hello\\u0000World\""); const char e[] = "Hello\0World"; ParseStringHandler
> h; Reader reader; reader.Parse(s, h); EXPECT_EQ(0, memcmp(e, h.str_, h.length_ + 1)); EXPECT_EQ(11u, h.length_); } } TEST(Reader, ParseString_Transcoding) { const char* x = "\"Hello\""; const wchar_t* e = L"Hello"; GenericStringStream
> is(x); GenericReader
, UTF16<> > reader; ParseStringHandler
> h; reader.Parse(is, h); EXPECT_EQ(0, StrCmp
::Ch>(e, h.str_)); EXPECT_EQ(StrLen(e), h.length_); } TEST(Reader, ParseString_TranscodingWithValidation) { const char* x = "\"Hello\""; const wchar_t* e = L"Hello"; GenericStringStream
> is(x); GenericReader
, UTF16<> > reader; ParseStringHandler
> h; reader.Parse
(is, h); EXPECT_EQ(0, StrCmp
::Ch>(e, h.str_)); EXPECT_EQ(StrLen(e), h.length_); } TEST(Reader, ParseString_NonDestructive) { StringStream s("\"Hello\\nWorld\""); ParseStringHandler
> h; Reader reader; reader.Parse(s, h); EXPECT_EQ(0, StrCmp("Hello\nWorld", h.str_)); EXPECT_EQ(11u, h.length_); } template
ParseErrorCode TestString(const typename Encoding::Ch* str) { GenericStringStream
s(str); BaseReaderHandler
h; GenericReader
reader; reader.template Parse
(s, h); return reader.GetParseErrorCode(); } TEST(Reader, ParseString_Error) { #define TEST_STRING_ERROR(errorCode, str)\ EXPECT_EQ(errorCode, TestString
>(str)) #define ARRAY(...) { __VA_ARGS__ } #define TEST_STRINGENCODING_ERROR(Encoding, TargetEncoding, utype, array) \ { \ static const utype ue[] = array; \ static const Encoding::Ch* e = reinterpret_cast
(&ue[0]); \ EXPECT_EQ(kParseErrorStringInvalidEncoding, TestString
(e));\ /* decode error */\ GenericStringStream
s(e);\ BaseReaderHandler
h;\ GenericReader
reader;\ reader.Parse(s, h);\ EXPECT_EQ(kParseErrorStringInvalidEncoding, reader.GetParseErrorCode());\ } // Invalid escape character in string. TEST_STRING_ERROR(kParseErrorStringEscapeInvalid, "[\"\\a\"]"); // Incorrect hex digit after \\u escape in string. TEST_STRING_ERROR(kParseErrorStringUnicodeEscapeInvalidHex, "[\"\\uABCG\"]"); // Quotation in \\u escape in string (Issue #288) TEST_STRING_ERROR(kParseErrorStringUnicodeEscapeInvalidHex, "[\"\\uaaa\"]"); TEST_STRING_ERROR(kParseErrorStringUnicodeEscapeInvalidHex, "[\"\\uD800\\uFFF\"]"); // The surrogate pair in string is invalid. TEST_STRING_ERROR(kParseErrorStringUnicodeSurrogateInvalid, "[\"\\uD800X\"]"); TEST_STRING_ERROR(kParseErrorStringUnicodeSurrogateInvalid, "[\"\\uD800\\uFFFF\"]"); // Missing a closing quotation mark in string. TEST_STRING_ERROR(kParseErrorStringMissQuotationMark, "[\"Test]"); // http://www.cl.cam.ac.uk/~mgk25/ucs/examples/UTF-8-test.txt // 3 Malformed sequences // 3.1 Unexpected continuation bytes { char e[] = { '[', '\"', 0, '\"', ']', '\0' }; for (unsigned char c = 0x80u; c <= 0xBFu; c++) { e[2] = c; ParseErrorCode error = TestString
>(e); EXPECT_EQ(kParseErrorStringInvalidEncoding, error); if (error != kParseErrorStringInvalidEncoding) std::cout << (unsigned)(unsigned char)c << std::endl; } } // 3.2 Lonely start characters, 3.5 Impossible bytes { char e[] = { '[', '\"', 0, ' ', '\"', ']', '\0' }; for (unsigned c = 0xC0u; c <= 0xFFu; c++) { e[2] = (char)c; TEST_STRING_ERROR(kParseErrorStringInvalidEncoding, e); } } // 4 Overlong sequences // 4.1 Examples of an overlong ASCII character TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xC0u, 0xAFu, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xE0u, 0x80u, 0xAFu, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xF0u, 0x80u, 0x80u, 0xAFu, '\"', ']', '\0')); // 4.2 Maximum overlong sequences TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xC1u, 0xBFu, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xE0u, 0x9Fu, 0xBFu, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xF0u, 0x8Fu, 0xBFu, 0xBFu, '\"', ']', '\0')); // 4.3 Overlong representation of the NUL character TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xC0u, 0x80u, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xE0u, 0x80u, 0x80u, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xF0u, 0x80u, 0x80u, 0x80u, '\"', ']', '\0')); // 5 Illegal code positions // 5.1 Single UTF-16 surrogates TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xEDu, 0xA0u, 0x80u, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xEDu, 0xADu, 0xBFu, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xEDu, 0xAEu, 0x80u, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xEDu, 0xAFu, 0xBFu, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xEDu, 0xB0u, 0x80u, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xEDu, 0xBEu, 0x80u, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF8<>, UTF16<>, unsigned char, ARRAY('[', '\"', 0xEDu, 0xBFu, 0xBFu, '\"', ']', '\0')); // Malform UTF-16 sequences TEST_STRINGENCODING_ERROR(UTF16<>, UTF8<>, wchar_t, ARRAY('[', '\"', 0xDC00, 0xDC00, '\"', ']', '\0')); TEST_STRINGENCODING_ERROR(UTF16<>, UTF8<>, wchar_t, ARRAY('[', '\"', 0xD800, 0xD800, '\"', ']', '\0')); // Malform UTF-32 sequence TEST_STRINGENCODING_ERROR(UTF32<>, UTF8<>, unsigned, ARRAY('[', '\"', 0x110000, '\"', ']', '\0')); // Malform ASCII sequence TEST_STRINGENCODING_ERROR(ASCII<>, UTF8<>, char, ARRAY('[', '\"', char(0x80), '\"', ']', '\0')); #undef ARRAY #undef TEST_STRINGARRAY_ERROR } template
struct ParseArrayHandler : BaseReaderHandler
, ParseArrayHandler
> { ParseArrayHandler() : step_(0) {} bool Default() { ADD_FAILURE(); return false; } bool Uint(unsigned i) { EXPECT_EQ(step_, i); step_++; return true; } bool StartArray() { EXPECT_EQ(0u, step_); step_++; return true; } bool EndArray(SizeType) { step_++; return true; } unsigned step_; }; TEST(Reader, ParseEmptyArray) { char *json = StrDup("[ ] "); InsituStringStream s(json); ParseArrayHandler<0> h; Reader reader; reader.Parse(s, h); EXPECT_EQ(2u, h.step_); free(json); } TEST(Reader, ParseArray) { char *json = StrDup("[1, 2, 3, 4]"); InsituStringStream s(json); ParseArrayHandler<4> h; Reader reader; reader.Parse(s, h); EXPECT_EQ(6u, h.step_); free(json); } TEST(Reader, ParseArray_Error) { #define TEST_ARRAY_ERROR(errorCode, str) \ { \ char buffer[1001]; \ strncpy(buffer, str, 1000); \ InsituStringStream s(buffer); \ BaseReaderHandler<> h; \ GenericReader
, UTF8<>, CrtAllocator> reader; \ EXPECT_FALSE(reader.Parse(s, h)); \ EXPECT_EQ(errorCode, reader.GetParseErrorCode());\ } // Missing a comma or ']' after an array element. TEST_ARRAY_ERROR(kParseErrorArrayMissCommaOrSquareBracket, "[1"); TEST_ARRAY_ERROR(kParseErrorArrayMissCommaOrSquareBracket, "[1}"); TEST_ARRAY_ERROR(kParseErrorArrayMissCommaOrSquareBracket, "[1 2]"); #undef TEST_ARRAY_ERROR } struct ParseObjectHandler : BaseReaderHandler
, ParseObjectHandler> { ParseObjectHandler() : step_(0) {} bool Default() { ADD_FAILURE(); return false; } bool Null() { EXPECT_EQ(8u, step_); step_++; return true; } bool Bool(bool b) { switch(step_) { case 4: EXPECT_TRUE(b); step_++; return true; case 6: EXPECT_FALSE(b); step_++; return true; default: ADD_FAILURE(); return false; } } bool Int(int i) { switch(step_) { case 10: EXPECT_EQ(123, i); step_++; return true; case 15: EXPECT_EQ(1, i); step_++; return true; case 16: EXPECT_EQ(2, i); step_++; return true; case 17: EXPECT_EQ(3, i); step_++; return true; default: ADD_FAILURE(); return false; } } bool Uint(unsigned i) { return Int(i); } bool Double(double d) { EXPECT_EQ(12u, step_); EXPECT_DOUBLE_EQ(3.1416, d); step_++; return true; } bool String(const char* str, size_t, bool) { switch(step_) { case 1: EXPECT_STREQ("hello", str); step_++; return true; case 2: EXPECT_STREQ("world", str); step_++; return true; case 3: EXPECT_STREQ("t", str); step_++; return true; case 5: EXPECT_STREQ("f", str); step_++; return true; case 7: EXPECT_STREQ("n", str); step_++; return true; case 9: EXPECT_STREQ("i", str); step_++; return true; case 11: EXPECT_STREQ("pi", str); step_++; return true; case 13: EXPECT_STREQ("a", str); step_++; return true; default: ADD_FAILURE(); return false; } } bool StartObject() { EXPECT_EQ(0u, step_); step_++; return true; } bool EndObject(SizeType memberCount) { EXPECT_EQ(19u, step_); EXPECT_EQ(7u, memberCount); step_++; return true; } bool StartArray() { EXPECT_EQ(14u, step_); step_++; return true; } bool EndArray(SizeType elementCount) { EXPECT_EQ(18u, step_); EXPECT_EQ(3u, elementCount); step_++; return true; } unsigned step_; }; TEST(Reader, ParseObject) { const char* json = "{ \"hello\" : \"world\", \"t\" : true , \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3] } "; // Insitu { char* json2 = StrDup(json); InsituStringStream s(json2); ParseObjectHandler h; Reader reader; reader.Parse
(s, h); EXPECT_EQ(20u, h.step_); free(json2); } // Normal { StringStream s(json); ParseObjectHandler h; Reader reader; reader.Parse(s, h); EXPECT_EQ(20u, h.step_); } } struct ParseEmptyObjectHandler : BaseReaderHandler
, ParseEmptyObjectHandler> { ParseEmptyObjectHandler() : step_(0) {} bool Default() { ADD_FAILURE(); return false; } bool StartObject() { EXPECT_EQ(0u, step_); step_++; return true; } bool EndObject(SizeType) { EXPECT_EQ(1u, step_); step_++; return true; } unsigned step_; }; TEST(Reader, Parse_EmptyObject) { StringStream s("{ } "); ParseEmptyObjectHandler h; Reader reader; reader.Parse(s, h); EXPECT_EQ(2u, h.step_); } struct ParseMultipleRootHandler : BaseReaderHandler
, ParseMultipleRootHandler> { ParseMultipleRootHandler() : step_(0) {} bool Default() { ADD_FAILURE(); return false; } bool StartObject() { EXPECT_EQ(0u, step_); step_++; return true; } bool EndObject(SizeType) { EXPECT_EQ(1u, step_); step_++; return true; } bool StartArray() { EXPECT_EQ(2u, step_); step_++; return true; } bool EndArray(SizeType) { EXPECT_EQ(3u, step_); step_++; return true; } unsigned step_; }; template
void TestMultipleRoot() { StringStream s("{}[] a"); ParseMultipleRootHandler h; Reader reader; EXPECT_TRUE(reader.Parse
(s, h)); EXPECT_EQ(2u, h.step_); EXPECT_TRUE(reader.Parse
(s, h)); EXPECT_EQ(4u, h.step_); EXPECT_EQ(' ', s.Take()); EXPECT_EQ('a', s.Take()); } TEST(Reader, Parse_MultipleRoot) { TestMultipleRoot
(); } TEST(Reader, ParseIterative_MultipleRoot) { TestMultipleRoot
(); } template
void TestInsituMultipleRoot() { char* buffer = strdup("{}[] a"); InsituStringStream s(buffer); ParseMultipleRootHandler h; Reader reader; EXPECT_TRUE(reader.Parse
(s, h)); EXPECT_EQ(2u, h.step_); EXPECT_TRUE(reader.Parse
(s, h)); EXPECT_EQ(4u, h.step_); EXPECT_EQ(' ', s.Take()); EXPECT_EQ('a', s.Take()); free(buffer); } TEST(Reader, ParseInsitu_MultipleRoot) { TestInsituMultipleRoot
(); } TEST(Reader, ParseInsituIterative_MultipleRoot) { TestInsituMultipleRoot
(); } #define TEST_ERROR(errorCode, str) \ { \ char buffer[1001]; \ strncpy(buffer, str, 1000); \ InsituStringStream s(buffer); \ BaseReaderHandler<> h; \ Reader reader; \ EXPECT_FALSE(reader.Parse(s, h)); \ EXPECT_EQ(errorCode, reader.GetParseErrorCode());\ } TEST(Reader, ParseDocument_Error) { // The document is empty. TEST_ERROR(kParseErrorDocumentEmpty, ""); TEST_ERROR(kParseErrorDocumentEmpty, " "); TEST_ERROR(kParseErrorDocumentEmpty, " \n"); // The document root must not follow by other values. TEST_ERROR(kParseErrorDocumentRootNotSingular, "[] 0"); TEST_ERROR(kParseErrorDocumentRootNotSingular, "{} 0"); TEST_ERROR(kParseErrorDocumentRootNotSingular, "null []"); TEST_ERROR(kParseErrorDocumentRootNotSingular, "0 {}"); } TEST(Reader, ParseValue_Error) { // Invalid value. TEST_ERROR(kParseErrorValueInvalid, "nulL"); TEST_ERROR(kParseErrorValueInvalid, "truE"); TEST_ERROR(kParseErrorValueInvalid, "falsE"); TEST_ERROR(kParseErrorValueInvalid, "a]"); TEST_ERROR(kParseErrorValueInvalid, ".1"); } TEST(Reader, ParseObject_Error) { // Missing a name for object member. TEST_ERROR(kParseErrorObjectMissName, "{1}"); TEST_ERROR(kParseErrorObjectMissName, "{:1}"); TEST_ERROR(kParseErrorObjectMissName, "{null:1}"); TEST_ERROR(kParseErrorObjectMissName, "{true:1}"); TEST_ERROR(kParseErrorObjectMissName, "{false:1}"); TEST_ERROR(kParseErrorObjectMissName, "{1:1}"); TEST_ERROR(kParseErrorObjectMissName, "{[]:1}"); TEST_ERROR(kParseErrorObjectMissName, "{{}:1}"); TEST_ERROR(kParseErrorObjectMissName, "{xyz:1}"); // Missing a colon after a name of object member. TEST_ERROR(kParseErrorObjectMissColon, "{\"a\" 1}"); TEST_ERROR(kParseErrorObjectMissColon, "{\"a\",1}"); // Must be a comma or '}' after an object member TEST_ERROR(kParseErrorObjectMissCommaOrCurlyBracket, "{\"a\":1]"); // This tests that MemoryStream is checking the length in Peek(). { MemoryStream ms("{\"a\"", 1); BaseReaderHandler<> h; Reader reader; EXPECT_FALSE(reader.Parse
(ms, h)); EXPECT_EQ(kParseErrorObjectMissName, reader.GetParseErrorCode()); } } #undef TEST_ERROR TEST(Reader, SkipWhitespace) { StringStream ss(" A \t\tB\n \n\nC\r\r \rD \t\n\r E"); const char* expected = "ABCDE"; for (size_t i = 0; i < 5; i++) { SkipWhitespace(ss); EXPECT_EQ(expected[i], ss.Take()); } } // Test implementing a stream without copy stream optimization. // Clone from GenericStringStream except that copy constructor is disabled. template
class CustomStringStream { public: typedef typename Encoding::Ch Ch; CustomStringStream(const Ch *src) : src_(src), head_(src) {} Ch Peek() const { return *src_; } Ch Take() { return *src_++; } size_t Tell() const { return static_cast
(src_ - head_); } Ch* PutBegin() { RAPIDJSON_ASSERT(false); return 0; } void Put(Ch) { RAPIDJSON_ASSERT(false); } void Flush() { RAPIDJSON_ASSERT(false); } size_t PutEnd(Ch*) { RAPIDJSON_ASSERT(false); return 0; } private: // Prohibit copy constructor & assignment operator. CustomStringStream(const CustomStringStream&); CustomStringStream& operator=(const CustomStringStream&); const Ch* src_; //!< Current read position. const Ch* head_; //!< Original head of the string. }; // If the following code is compiled, it should generate compilation error as predicted. // Because CustomStringStream<> is not copyable via making copy constructor private. #if 0 namespace rapidjson { template
struct StreamTraits
> { enum { copyOptimization = 1 }; }; } // namespace rapidjson #endif TEST(Reader, CustomStringStream) { const char* json = "{ \"hello\" : \"world\", \"t\" : true , \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3] } "; CustomStringStream
> s(json); ParseObjectHandler h; Reader reader; reader.Parse(s, h); EXPECT_EQ(20u, h.step_); } #include
class IStreamWrapper { public: typedef char Ch; IStreamWrapper(std::istream& is) : is_(is) {} Ch Peek() const { int c = is_.peek(); return c == std::char_traits
::eof() ? '\0' : (Ch)c; } Ch Take() { int c = is_.get(); return c == std::char_traits
::eof() ? '\0' : (Ch)c; } size_t Tell() const { return (size_t)is_.tellg(); } Ch* PutBegin() { assert(false); return 0; } void Put(Ch) { assert(false); } void Flush() { assert(false); } size_t PutEnd(Ch*) { assert(false); return 0; } private: IStreamWrapper(const IStreamWrapper&); IStreamWrapper& operator=(const IStreamWrapper&); std::istream& is_; }; TEST(Reader, Parse_IStreamWrapper_StringStream) { const char* json = "[1,2,3,4]"; std::stringstream ss(json); IStreamWrapper is(ss); Reader reader; ParseArrayHandler<4> h; reader.Parse(is, h); EXPECT_FALSE(reader.HasParseError()); } // Test iterative parsing. #define TESTERRORHANDLING(text, errorCode, offset)\ {\ StringStream json(text); \ BaseReaderHandler<> handler; \ Reader reader; \ reader.Parse
(json, handler); \ EXPECT_TRUE(reader.HasParseError()); \ EXPECT_EQ(errorCode, reader.GetParseErrorCode()); \ EXPECT_EQ(offset, reader.GetErrorOffset()); \ } TEST(Reader, IterativeParsing_ErrorHandling) { TESTERRORHANDLING("{\"a\": a}", kParseErrorValueInvalid, 6u); TESTERRORHANDLING("", kParseErrorDocumentEmpty, 0u); TESTERRORHANDLING("{}{}", kParseErrorDocumentRootNotSingular, 2u); TESTERRORHANDLING("{1}", kParseErrorObjectMissName, 1u); TESTERRORHANDLING("{\"a\", 1}", kParseErrorObjectMissColon, 4u); TESTERRORHANDLING("{\"a\"}", kParseErrorObjectMissColon, 4u); TESTERRORHANDLING("{\"a\": 1", kParseErrorObjectMissCommaOrCurlyBracket, 7u); TESTERRORHANDLING("[1 2 3]", kParseErrorArrayMissCommaOrSquareBracket, 3u); TESTERRORHANDLING("{\"a: 1", kParseErrorStringMissQuotationMark, 5u); // Any JSON value can be a valid root element in RFC7159. TESTERRORHANDLING("\"ab", kParseErrorStringMissQuotationMark, 2u); TESTERRORHANDLING("truE", kParseErrorValueInvalid, 3u); TESTERRORHANDLING("False", kParseErrorValueInvalid, 0u); TESTERRORHANDLING("true, false", kParseErrorDocumentRootNotSingular, 4u); TESTERRORHANDLING("false, false", kParseErrorDocumentRootNotSingular, 5u); TESTERRORHANDLING("nulL", kParseErrorValueInvalid, 3u); TESTERRORHANDLING("null , null", kParseErrorDocumentRootNotSingular, 5u); TESTERRORHANDLING("1a", kParseErrorDocumentRootNotSingular, 1u); } template
> struct IterativeParsingReaderHandler { typedef typename Encoding::Ch Ch; const static int LOG_NULL = -1; const static int LOG_BOOL = -2; const static int LOG_INT = -3; const static int LOG_UINT = -4; const static int LOG_INT64 = -5; const static int LOG_UINT64 = -6; const static int LOG_DOUBLE = -7; const static int LOG_STRING = -8; const static int LOG_STARTOBJECT = -9; const static int LOG_KEY = -10; const static int LOG_ENDOBJECT = -11; const static int LOG_STARTARRAY = -12; const static int LOG_ENDARRAY = -13; const static size_t LogCapacity = 256; int Logs[LogCapacity]; size_t LogCount; IterativeParsingReaderHandler() : LogCount(0) { } bool Null() { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_NULL; return true; } bool Bool(bool) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_BOOL; return true; } bool Int(int) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_INT; return true; } bool Uint(unsigned) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_INT; return true; } bool Int64(int64_t) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_INT64; return true; } bool Uint64(uint64_t) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_UINT64; return true; } bool Double(double) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_DOUBLE; return true; } bool String(const Ch*, SizeType, bool) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_STRING; return true; } bool StartObject() { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_STARTOBJECT; return true; } bool Key (const Ch*, SizeType, bool) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_KEY; return true; } bool EndObject(SizeType c) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_ENDOBJECT; Logs[LogCount++] = (int)c; return true; } bool StartArray() { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_STARTARRAY; return true; } bool EndArray(SizeType c) { RAPIDJSON_ASSERT(LogCount < LogCapacity); Logs[LogCount++] = LOG_ENDARRAY; Logs[LogCount++] = (int)c; return true; } }; TEST(Reader, IterativeParsing_General) { { StringStream is("[1, {\"k\": [1, 2]}, null, false, true, \"string\", 1.2]"); Reader reader; IterativeParsingReaderHandler<> handler; ParseResult r = reader.Parse
(is, handler); EXPECT_FALSE(r.IsError()); EXPECT_FALSE(reader.HasParseError()); int e[] = { handler.LOG_STARTARRAY, handler.LOG_INT, handler.LOG_STARTOBJECT, handler.LOG_KEY, handler.LOG_STARTARRAY, handler.LOG_INT, handler.LOG_INT, handler.LOG_ENDARRAY, 2, handler.LOG_ENDOBJECT, 1, handler.LOG_NULL, handler.LOG_BOOL, handler.LOG_BOOL, handler.LOG_STRING, handler.LOG_DOUBLE, handler.LOG_ENDARRAY, 7 }; EXPECT_EQ(sizeof(e) / sizeof(int), handler.LogCount); for (size_t i = 0; i < handler.LogCount; ++i) { EXPECT_EQ(e[i], handler.Logs[i]) << "i = " << i; } } } TEST(Reader, IterativeParsing_Count) { { StringStream is("[{}, {\"k\": 1}, [1], []]"); Reader reader; IterativeParsingReaderHandler<> handler; ParseResult r = reader.Parse
(is, handler); EXPECT_FALSE(r.IsError()); EXPECT_FALSE(reader.HasParseError()); int e[] = { handler.LOG_STARTARRAY, handler.LOG_STARTOBJECT, handler.LOG_ENDOBJECT, 0, handler.LOG_STARTOBJECT, handler.LOG_KEY, handler.LOG_INT, handler.LOG_ENDOBJECT, 1, handler.LOG_STARTARRAY, handler.LOG_INT, handler.LOG_ENDARRAY, 1, handler.LOG_STARTARRAY, handler.LOG_ENDARRAY, 0, handler.LOG_ENDARRAY, 4 }; EXPECT_EQ(sizeof(e) / sizeof(int), handler.LogCount); for (size_t i = 0; i < handler.LogCount; ++i) { EXPECT_EQ(e[i], handler.Logs[i]) << "i = " << i; } } } // Test iterative parsing on kParseErrorTermination. struct HandlerTerminateAtStartObject : public IterativeParsingReaderHandler<> { bool StartObject() { return false; } }; struct HandlerTerminateAtStartArray : public IterativeParsingReaderHandler<> { bool StartArray() { return false; } }; struct HandlerTerminateAtEndObject : public IterativeParsingReaderHandler<> { bool EndObject(SizeType) { return false; } }; struct HandlerTerminateAtEndArray : public IterativeParsingReaderHandler<> { bool EndArray(SizeType) { return false; } }; TEST(Reader, IterativeParsing_ShortCircuit) { { HandlerTerminateAtStartObject handler; Reader reader; StringStream is("[1, {}]"); ParseResult r = reader.Parse
(is, handler); EXPECT_TRUE(reader.HasParseError()); EXPECT_EQ(kParseErrorTermination, r.Code()); EXPECT_EQ(4u, r.Offset()); } { HandlerTerminateAtStartArray handler; Reader reader; StringStream is("{\"a\": []}"); ParseResult r = reader.Parse
(is, handler); EXPECT_TRUE(reader.HasParseError()); EXPECT_EQ(kParseErrorTermination, r.Code()); EXPECT_EQ(6u, r.Offset()); } { HandlerTerminateAtEndObject handler; Reader reader; StringStream is("[1, {}]"); ParseResult r = reader.Parse
(is, handler); EXPECT_TRUE(reader.HasParseError()); EXPECT_EQ(kParseErrorTermination, r.Code()); EXPECT_EQ(5u, r.Offset()); } { HandlerTerminateAtEndArray handler; Reader reader; StringStream is("{\"a\": []}"); ParseResult r = reader.Parse
(is, handler); EXPECT_TRUE(reader.HasParseError()); EXPECT_EQ(kParseErrorTermination, r.Code()); EXPECT_EQ(7u, r.Offset()); } } // For covering BaseReaderHandler default functions TEST(Reader, BaseReaderHandler_Default) { BaseReaderHandler<> h; Reader reader; StringStream is("[null, true, -1, 1, -1234567890123456789, 1234567890123456789, 3.14, \"s\", { \"a\" : 1 }]"); EXPECT_TRUE(reader.Parse(is, h)); } template
struct TerminateHandler { bool Null() { return e != 0; } bool Bool(bool) { return e != 1; } bool Int(int) { return e != 2; } bool Uint(unsigned) { return e != 3; } bool Int64(int64_t) { return e != 4; } bool Uint64(uint64_t) { return e != 5; } bool Double(double) { return e != 6; } bool String(const char*, SizeType, bool) { return e != 7; } bool StartObject() { return e != 8; } bool Key(const char*, SizeType, bool) { return e != 9; } bool EndObject(SizeType) { return e != 10; } bool StartArray() { return e != 11; } bool EndArray(SizeType) { return e != 12; } }; #define TEST_TERMINATION(e, json)\ {\ Reader reader;\ TerminateHandler
h;\ StringStream is(json);\ EXPECT_FALSE(reader.Parse(is, h));\ EXPECT_EQ(kParseErrorTermination, reader.GetParseErrorCode());\ } TEST(Reader, ParseTerminationByHandler) { TEST_TERMINATION(0, "[null"); TEST_TERMINATION(1, "[true"); TEST_TERMINATION(1, "[false"); TEST_TERMINATION(2, "[-1"); TEST_TERMINATION(3, "[1"); TEST_TERMINATION(4, "[-1234567890123456789"); TEST_TERMINATION(5, "[1234567890123456789"); TEST_TERMINATION(6, "[0.5]"); TEST_TERMINATION(7, "[\"a\""); TEST_TERMINATION(8, "[{"); TEST_TERMINATION(9, "[{\"a\""); TEST_TERMINATION(10, "[{}"); TEST_TERMINATION(10, "[{\"a\":1}"); // non-empty object TEST_TERMINATION(11, "{\"a\":["); TEST_TERMINATION(12, "{\"a\":[]"); TEST_TERMINATION(12, "{\"a\":[1]"); // non-empty array } #ifdef __GNUC__ RAPIDJSON_DIAG_POP #endif
C++程序
|
1355行
|
53.09 KB
原始内容
高亮显示
复制内容
×
已收藏
收藏成功,您可以在我收藏的代码页面中查看,其地址为:
https://www.androidos.net.cn/my/collect/code
。
登录后可以享受更多权益
您还没有登录,登录后您可以:
收藏Android系统代码
收藏喜欢的文章
多个平台共享账号
去登录
首次使用?从这里
注册