// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"io"
. "runtime"
"runtime/debug"
"testing"
"unsafe"
)
var errf error
func errfn() error {
return errf
}
func errfn1() error {
return io.EOF
}
func BenchmarkIfaceCmp100(b *testing.B) {
for i := 0; i < b.N; i++ {
for j := 0; j < 100; j++ {
if errfn() == io.EOF {
b.Fatal("bad comparison")
}
}
}
}
func BenchmarkIfaceCmpNil100(b *testing.B) {
for i := 0; i < b.N; i++ {
for j := 0; j < 100; j++ {
if errfn1() == nil {
b.Fatal("bad comparison")
}
}
}
}
func BenchmarkDefer(b *testing.B) {
for i := 0; i < b.N; i++ {
defer1()
}
}
func defer1() {
defer func(x, y, z int) {
if recover() != nil || x != 1 || y != 2 || z != 3 {
panic("bad recover")
}
}(1, 2, 3)
return
}
func BenchmarkDefer10(b *testing.B) {
for i := 0; i < b.N/10; i++ {
defer2()
}
}
func defer2() {
for i := 0; i < 10; i++ {
defer func(x, y, z int) {
if recover() != nil || x != 1 || y != 2 || z != 3 {
panic("bad recover")
}
}(1, 2, 3)
}
}
func BenchmarkDeferMany(b *testing.B) {
for i := 0; i < b.N; i++ {
defer func(x, y, z int) {
if recover() != nil || x != 1 || y != 2 || z != 3 {
panic("bad recover")
}
}(1, 2, 3)
}
}
// golang.org/issue/7063
func TestStopCPUProfilingWithProfilerOff(t *testing.T) {
SetCPUProfileRate(0)
}
// Addresses to test for faulting behavior.
// This is less a test of SetPanicOnFault and more a check that
// the operating system and the runtime can process these faults
// correctly. That is, we're indirectly testing that without SetPanicOnFault
// these would manage to turn into ordinary crashes.
// Note that these are truncated on 32-bit systems, so the bottom 32 bits
// of the larger addresses must themselves be invalid addresses.
// We might get unlucky and the OS might have mapped one of these
// addresses, but probably not: they're all in the first page, very high
// adderesses that normally an OS would reserve for itself, or malformed
// addresses. Even so, we might have to remove one or two on different
// systems. We will see.
var faultAddrs = []uint64{
// low addresses
0,
1,
0xfff,
// high (kernel) addresses
// or else malformed.
0xffffffffffffffff,
0xfffffffffffff001,
0xffffffffffff0001,
0xfffffffffff00001,
0xffffffffff000001,
0xfffffffff0000001,
0xffffffff00000001,
0xfffffff000000001,
0xffffff0000000001,
0xfffff00000000001,
0xffff000000000001,
0xfff0000000000001,
0xff00000000000001,
0xf000000000000001,
0x8000000000000001,
}
func TestSetPanicOnFault(t *testing.T) {
old := debug.SetPanicOnFault(true)
defer debug.SetPanicOnFault(old)
nfault := 0
for _, addr := range faultAddrs {
testSetPanicOnFault(t, uintptr(addr), &nfault)
}
if nfault == 0 {
t.Fatalf("none of the addresses faulted")
}
}
func testSetPanicOnFault(t *testing.T, addr uintptr, nfault *int) {
if GOOS == "nacl" {
t.Skip("nacl doesn't seem to fault on high addresses")
}
defer func() {
if err := recover(); err != nil {
*nfault++
}
}()
// The read should fault, except that sometimes we hit
// addresses that have had C or kernel pages mapped there
// readable by user code. So just log the content.
// If no addresses fault, we'll fail the test.
v := *(*byte)(unsafe.Pointer(addr))
t.Logf("addr %#x: %#x\n", addr, v)
}
func eqstring_generic(s1, s2 string) bool {
if len(s1) != len(s2) {
return false
}
// optimization in assembly versions:
// if s1.str == s2.str { return true }
for i := 0; i < len(s1); i++ {
if s1[i] != s2[i] {
return false
}
}
return true
}
func TestEqString(t *testing.T) {
// This isn't really an exhaustive test of eqstring, it's
// just a convenient way of documenting (via eqstring_generic)
// what eqstring does.
s := []string{
"",
"a",
"c",
"aaa",
"ccc",
"cccc"[:3], // same contents, different string
"1234567890",
}
for _, s1 := range s {
for _, s2 := range s {
x := s1 == s2
y := eqstring_generic(s1, s2)
if x != y {
t.Errorf(`eqstring("%s","%s") = %t, want %t`, s1, s2, x, y)
}
}
}
}
func TestTrailingZero(t *testing.T) {
// make sure we add padding for structs with trailing zero-sized fields
type T1 struct {
n int32
z [0]byte
}
if unsafe.Sizeof(T1{}) != 8 {
t.Errorf("sizeof(%#v)==%d, want 8", T1{}, unsafe.Sizeof(T1{}))
}
type T2 struct {
n int64
z struct{}
}
if unsafe.Sizeof(T2{}) != 8+unsafe.Sizeof(Uintreg(0)) {
t.Errorf("sizeof(%#v)==%d, want %d", T2{}, unsafe.Sizeof(T2{}), 8+unsafe.Sizeof(Uintreg(0)))
}
type T3 struct {
n byte
z [4]struct{}
}
if unsafe.Sizeof(T3{}) != 2 {
t.Errorf("sizeof(%#v)==%d, want 2", T3{}, unsafe.Sizeof(T3{}))
}
// make sure padding can double for both zerosize and alignment
type T4 struct {
a int32
b int16
c int8
z struct{}
}
if unsafe.Sizeof(T4{}) != 8 {
t.Errorf("sizeof(%#v)==%d, want 8", T4{}, unsafe.Sizeof(T4{}))
}
// make sure we don't pad a zero-sized thing
type T5 struct {
}
if unsafe.Sizeof(T5{}) != 0 {
t.Errorf("sizeof(%#v)==%d, want 0", T5{}, unsafe.Sizeof(T5{}))
}
}
func TestBadOpen(t *testing.T) {
if GOOS == "windows" || GOOS == "nacl" {
t.Skip("skipping OS that doesn't have open/read/write/close")
}
// make sure we get the correct error code if open fails. Same for
// read/write/close on the resulting -1 fd. See issue 10052.
nonfile := []byte("/notreallyafile")
fd := Open(&nonfile[0], 0, 0)
if fd != -1 {
t.Errorf("open(\"%s\")=%d, want -1", string(nonfile), fd)
}
var buf [32]byte
r := Read(-1, unsafe.Pointer(&buf[0]), int32(len(buf)))
if r != -1 {
t.Errorf("read()=%d, want -1", r)
}
w := Write(^uintptr(0), unsafe.Pointer(&buf[0]), int32(len(buf)))
if w != -1 {
t.Errorf("write()=%d, want -1", w)
}
c := Close(-1)
if c != -1 {
t.Errorf("close()=%d, want -1", c)
}
}
func TestAppendGrowth(t *testing.T) {
var x []int64
check := func(want int) {
if cap(x) != want {
t.Errorf("len=%d, cap=%d, want cap=%d", len(x), cap(x), want)
}
}
check(0)
want := 1
for i := 1; i <= 100; i++ {
x = append(x, 1)
check(want)
if i&(i-1) == 0 {
want = 2 * i
}
}
}
var One = []int64{1}
func TestAppendSliceGrowth(t *testing.T) {
var x []int64
check := func(want int) {
if cap(x) != want {
t.Errorf("len=%d, cap=%d, want cap=%d", len(x), cap(x), want)
}
}
check(0)
want := 1
for i := 1; i <= 100; i++ {
x = append(x, One...)
check(want)
if i&(i-1) == 0 {
want = 2 * i
}
}
}