// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package profile provides a representation of profile.proto and
// methods to encode/decode profiles in this format.
package profile
import (
"bytes"
"compress/gzip"
"fmt"
"io"
"io/ioutil"
"regexp"
"strings"
"time"
)
// Profile is an in-memory representation of profile.proto.
type Profile struct {
SampleType []*ValueType
Sample []*Sample
Mapping []*Mapping
Location []*Location
Function []*Function
DropFrames string
KeepFrames string
TimeNanos int64
DurationNanos int64
PeriodType *ValueType
Period int64
dropFramesX int64
keepFramesX int64
stringTable []string
}
// ValueType corresponds to Profile.ValueType
type ValueType struct {
Type string // cpu, wall, inuse_space, etc
Unit string // seconds, nanoseconds, bytes, etc
typeX int64
unitX int64
}
// Sample corresponds to Profile.Sample
type Sample struct {
Location []*Location
Value []int64
Label map[string][]string
NumLabel map[string][]int64
locationIDX []uint64
labelX []Label
}
// Label corresponds to Profile.Label
type Label struct {
keyX int64
// Exactly one of the two following values must be set
strX int64
numX int64 // Integer value for this label
}
// Mapping corresponds to Profile.Mapping
type Mapping struct {
ID uint64
Start uint64
Limit uint64
Offset uint64
File string
BuildID string
HasFunctions bool
HasFilenames bool
HasLineNumbers bool
HasInlineFrames bool
fileX int64
buildIDX int64
}
// Location corresponds to Profile.Location
type Location struct {
ID uint64
Mapping *Mapping
Address uint64
Line []Line
mappingIDX uint64
}
// Line corresponds to Profile.Line
type Line struct {
Function *Function
Line int64
functionIDX uint64
}
// Function corresponds to Profile.Function
type Function struct {
ID uint64
Name string
SystemName string
Filename string
StartLine int64
nameX int64
systemNameX int64
filenameX int64
}
// Parse parses a profile and checks for its validity. The input
// may be a gzip-compressed encoded protobuf or one of many legacy
// profile formats which may be unsupported in the future.
func Parse(r io.Reader) (*Profile, error) {
orig, err := ioutil.ReadAll(r)
if err != nil {
return nil, err
}
var p *Profile
if len(orig) >= 2 && orig[0] == 0x1f && orig[1] == 0x8b {
gz, err := gzip.NewReader(bytes.NewBuffer(orig))
if err != nil {
return nil, fmt.Errorf("decompressing profile: %v", err)
}
data, err := ioutil.ReadAll(gz)
if err != nil {
return nil, fmt.Errorf("decompressing profile: %v", err)
}
orig = data
}
if p, err = parseUncompressed(orig); err != nil {
if p, err = parseLegacy(orig); err != nil {
return nil, fmt.Errorf("parsing profile: %v", err)
}
}
if err := p.CheckValid(); err != nil {
return nil, fmt.Errorf("malformed profile: %v", err)
}
return p, nil
}
var errUnrecognized = fmt.Errorf("unrecognized profile format")
var errMalformed = fmt.Errorf("malformed profile format")
func parseLegacy(data []byte) (*Profile, error) {
parsers := []func([]byte) (*Profile, error){
parseCPU,
parseHeap,
parseGoCount, // goroutine, threadcreate
parseThread,
parseContention,
}
for _, parser := range parsers {
p, err := parser(data)
if err == nil {
p.setMain()
p.addLegacyFrameInfo()
return p, nil
}
if err != errUnrecognized {
return nil, err
}
}
return nil, errUnrecognized
}
func parseUncompressed(data []byte) (*Profile, error) {
p := &Profile{}
if err := unmarshal(data, p); err != nil {
return nil, err
}
if err := p.postDecode(); err != nil {
return nil, err
}
return p, nil
}
var libRx = regexp.MustCompile(`([.]so$|[.]so[._][0-9]+)`)
// setMain scans Mapping entries and guesses which entry is main
// because legacy profiles don't obey the convention of putting main
// first.
func (p *Profile) setMain() {
for i := 0; i < len(p.Mapping); i++ {
file := strings.TrimSpace(strings.Replace(p.Mapping[i].File, "(deleted)", "", -1))
if len(file) == 0 {
continue
}
if len(libRx.FindStringSubmatch(file)) > 0 {
continue
}
if strings.HasPrefix(file, "[") {
continue
}
// Swap what we guess is main to position 0.
tmp := p.Mapping[i]
p.Mapping[i] = p.Mapping[0]
p.Mapping[0] = tmp
break
}
}
// Write writes the profile as a gzip-compressed marshaled protobuf.
func (p *Profile) Write(w io.Writer) error {
p.preEncode()
b := marshal(p)
zw := gzip.NewWriter(w)
defer zw.Close()
_, err := zw.Write(b)
return err
}
// CheckValid tests whether the profile is valid. Checks include, but are
// not limited to:
// - len(Profile.Sample[n].value) == len(Profile.value_unit)
// - Sample.id has a corresponding Profile.Location
func (p *Profile) CheckValid() error {
// Check that sample values are consistent
sampleLen := len(p.SampleType)
if sampleLen == 0 && len(p.Sample) != 0 {
return fmt.Errorf("missing sample type information")
}
for _, s := range p.Sample {
if len(s.Value) != sampleLen {
return fmt.Errorf("mismatch: sample has: %d values vs. %d types", len(s.Value), len(p.SampleType))
}
}
// Check that all mappings/locations/functions are in the tables
// Check that there are no duplicate ids
mappings := make(map[uint64]*Mapping, len(p.Mapping))
for _, m := range p.Mapping {
if m.ID == 0 {
return fmt.Errorf("found mapping with reserved ID=0")
}
if mappings[m.ID] != nil {
return fmt.Errorf("multiple mappings with same id: %d", m.ID)
}
mappings[m.ID] = m
}
functions := make(map[uint64]*Function, len(p.Function))
for _, f := range p.Function {
if f.ID == 0 {
return fmt.Errorf("found function with reserved ID=0")
}
if functions[f.ID] != nil {
return fmt.Errorf("multiple functions with same id: %d", f.ID)
}
functions[f.ID] = f
}
locations := make(map[uint64]*Location, len(p.Location))
for _, l := range p.Location {
if l.ID == 0 {
return fmt.Errorf("found location with reserved id=0")
}
if locations[l.ID] != nil {
return fmt.Errorf("multiple locations with same id: %d", l.ID)
}
locations[l.ID] = l
if m := l.Mapping; m != nil {
if m.ID == 0 || mappings[m.ID] != m {
return fmt.Errorf("inconsistent mapping %p: %d", m, m.ID)
}
}
for _, ln := range l.Line {
if f := ln.Function; f != nil {
if f.ID == 0 || functions[f.ID] != f {
return fmt.Errorf("inconsistent function %p: %d", f, f.ID)
}
}
}
}
return nil
}
// Aggregate merges the locations in the profile into equivalence
// classes preserving the request attributes. It also updates the
// samples to point to the merged locations.
func (p *Profile) Aggregate(inlineFrame, function, filename, linenumber, address bool) error {
for _, m := range p.Mapping {
m.HasInlineFrames = m.HasInlineFrames && inlineFrame
m.HasFunctions = m.HasFunctions && function
m.HasFilenames = m.HasFilenames && filename
m.HasLineNumbers = m.HasLineNumbers && linenumber
}
// Aggregate functions
if !function || !filename {
for _, f := range p.Function {
if !function {
f.Name = ""
f.SystemName = ""
}
if !filename {
f.Filename = ""
}
}
}
// Aggregate locations
if !inlineFrame || !address || !linenumber {
for _, l := range p.Location {
if !inlineFrame && len(l.Line) > 1 {
l.Line = l.Line[len(l.Line)-1:]
}
if !linenumber {
for i := range l.Line {
l.Line[i].Line = 0
}
}
if !address {
l.Address = 0
}
}
}
return p.CheckValid()
}
// Print dumps a text representation of a profile. Intended mainly
// for debugging purposes.
func (p *Profile) String() string {
ss := make([]string, 0, len(p.Sample)+len(p.Mapping)+len(p.Location))
if pt := p.PeriodType; pt != nil {
ss = append(ss, fmt.Sprintf("PeriodType: %s %s", pt.Type, pt.Unit))
}
ss = append(ss, fmt.Sprintf("Period: %d", p.Period))
if p.TimeNanos != 0 {
ss = append(ss, fmt.Sprintf("Time: %v", time.Unix(0, p.TimeNanos)))
}
if p.DurationNanos != 0 {
ss = append(ss, fmt.Sprintf("Duration: %v", time.Duration(p.DurationNanos)))
}
ss = append(ss, "Samples:")
var sh1 string
for _, s := range p.SampleType {
sh1 = sh1 + fmt.Sprintf("%s/%s ", s.Type, s.Unit)
}
ss = append(ss, strings.TrimSpace(sh1))
for _, s := range p.Sample {
var sv string
for _, v := range s.Value {
sv = fmt.Sprintf("%s %10d", sv, v)
}
sv = sv + ": "
for _, l := range s.Location {
sv = sv + fmt.Sprintf("%d ", l.ID)
}
ss = append(ss, sv)
const labelHeader = " "
if len(s.Label) > 0 {
ls := labelHeader
for k, v := range s.Label {
ls = ls + fmt.Sprintf("%s:%v ", k, v)
}
ss = append(ss, ls)
}
if len(s.NumLabel) > 0 {
ls := labelHeader
for k, v := range s.NumLabel {
ls = ls + fmt.Sprintf("%s:%v ", k, v)
}
ss = append(ss, ls)
}
}
ss = append(ss, "Locations")
for _, l := range p.Location {
locStr := fmt.Sprintf("%6d: %#x ", l.ID, l.Address)
if m := l.Mapping; m != nil {
locStr = locStr + fmt.Sprintf("M=%d ", m.ID)
}
if len(l.Line) == 0 {
ss = append(ss, locStr)
}
for li := range l.Line {
lnStr := "??"
if fn := l.Line[li].Function; fn != nil {
lnStr = fmt.Sprintf("%s %s:%d s=%d",
fn.Name,
fn.Filename,
l.Line[li].Line,
fn.StartLine)
if fn.Name != fn.SystemName {
lnStr = lnStr + "(" + fn.SystemName + ")"
}
}
ss = append(ss, locStr+lnStr)
// Do not print location details past the first line
locStr = " "
}
}
ss = append(ss, "Mappings")
for _, m := range p.Mapping {
bits := ""
if m.HasFunctions {
bits = bits + "[FN]"
}
if m.HasFilenames {
bits = bits + "[FL]"
}
if m.HasLineNumbers {
bits = bits + "[LN]"
}
if m.HasInlineFrames {
bits = bits + "[IN]"
}
ss = append(ss, fmt.Sprintf("%d: %#x/%#x/%#x %s %s %s",
m.ID,
m.Start, m.Limit, m.Offset,
m.File,
m.BuildID,
bits))
}
return strings.Join(ss, "\n") + "\n"
}
// Merge adds profile p adjusted by ratio r into profile p. Profiles
// must be compatible (same Type and SampleType).
// TODO(rsilvera): consider normalizing the profiles based on the
// total samples collected.
func (p *Profile) Merge(pb *Profile, r float64) error {
if err := p.Compatible(pb); err != nil {
return err
}
pb = pb.Copy()
// Keep the largest of the two periods.
if pb.Period > p.Period {
p.Period = pb.Period
}
p.DurationNanos += pb.DurationNanos
p.Mapping = append(p.Mapping, pb.Mapping...)
for i, m := range p.Mapping {
m.ID = uint64(i + 1)
}
p.Location = append(p.Location, pb.Location...)
for i, l := range p.Location {
l.ID = uint64(i + 1)
}
p.Function = append(p.Function, pb.Function...)
for i, f := range p.Function {
f.ID = uint64(i + 1)
}
if r != 1.0 {
for _, s := range pb.Sample {
for i, v := range s.Value {
s.Value[i] = int64((float64(v) * r))
}
}
}
p.Sample = append(p.Sample, pb.Sample...)
return p.CheckValid()
}
// Compatible determines if two profiles can be compared/merged.
// returns nil if the profiles are compatible; otherwise an error with
// details on the incompatibility.
func (p *Profile) Compatible(pb *Profile) error {
if !compatibleValueTypes(p.PeriodType, pb.PeriodType) {
return fmt.Errorf("incompatible period types %v and %v", p.PeriodType, pb.PeriodType)
}
if len(p.SampleType) != len(pb.SampleType) {
return fmt.Errorf("incompatible sample types %v and %v", p.SampleType, pb.SampleType)
}
for i := range p.SampleType {
if !compatibleValueTypes(p.SampleType[i], pb.SampleType[i]) {
return fmt.Errorf("incompatible sample types %v and %v", p.SampleType, pb.SampleType)
}
}
return nil
}
// HasFunctions determines if all locations in this profile have
// symbolized function information.
func (p *Profile) HasFunctions() bool {
for _, l := range p.Location {
if l.Mapping == nil || !l.Mapping.HasFunctions {
return false
}
}
return true
}
// HasFileLines determines if all locations in this profile have
// symbolized file and line number information.
func (p *Profile) HasFileLines() bool {
for _, l := range p.Location {
if l.Mapping == nil || (!l.Mapping.HasFilenames || !l.Mapping.HasLineNumbers) {
return false
}
}
return true
}
func compatibleValueTypes(v1, v2 *ValueType) bool {
if v1 == nil || v2 == nil {
return true // No grounds to disqualify.
}
return v1.Type == v2.Type && v1.Unit == v2.Unit
}
// Copy makes a fully independent copy of a profile.
func (p *Profile) Copy() *Profile {
p.preEncode()
b := marshal(p)
pp := &Profile{}
if err := unmarshal(b, pp); err != nil {
panic(err)
}
if err := pp.postDecode(); err != nil {
panic(err)
}
return pp
}
// Demangler maps symbol names to a human-readable form. This may
// include C++ demangling and additional simplification. Names that
// are not demangled may be missing from the resulting map.
type Demangler func(name []string) (map[string]string, error)
// Demangle attempts to demangle and optionally simplify any function
// names referenced in the profile. It works on a best-effort basis:
// it will silently preserve the original names in case of any errors.
func (p *Profile) Demangle(d Demangler) error {
// Collect names to demangle.
var names []string
for _, fn := range p.Function {
names = append(names, fn.SystemName)
}
// Update profile with demangled names.
demangled, err := d(names)
if err != nil {
return err
}
for _, fn := range p.Function {
if dd, ok := demangled[fn.SystemName]; ok {
fn.Name = dd
}
}
return nil
}
// Empty returns true if the profile contains no samples.
func (p *Profile) Empty() bool {
return len(p.Sample) == 0
}