Golang程序  |  295行  |  7.17 KB

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package pem implements the PEM data encoding, which originated in Privacy
// Enhanced Mail. The most common use of PEM encoding today is in TLS keys and
// certificates. See RFC 1421.
package pem

import (
	"bytes"
	"encoding/base64"
	"errors"
	"io"
	"sort"
	"strings"
)

// A Block represents a PEM encoded structure.
//
// The encoded form is:
//    -----BEGIN Type-----
//    Headers
//    base64-encoded Bytes
//    -----END Type-----
// where Headers is a possibly empty sequence of Key: Value lines.
type Block struct {
	Type    string            // The type, taken from the preamble (i.e. "RSA PRIVATE KEY").
	Headers map[string]string // Optional headers.
	Bytes   []byte            // The decoded bytes of the contents. Typically a DER encoded ASN.1 structure.
}

// getLine results the first \r\n or \n delineated line from the given byte
// array. The line does not include trailing whitespace or the trailing new
// line bytes. The remainder of the byte array (also not including the new line
// bytes) is also returned and this will always be smaller than the original
// argument.
func getLine(data []byte) (line, rest []byte) {
	i := bytes.Index(data, []byte{'\n'})
	var j int
	if i < 0 {
		i = len(data)
		j = i
	} else {
		j = i + 1
		if i > 0 && data[i-1] == '\r' {
			i--
		}
	}
	return bytes.TrimRight(data[0:i], " \t"), data[j:]
}

// removeWhitespace returns a copy of its input with all spaces, tab and
// newline characters removed.
func removeWhitespace(data []byte) []byte {
	result := make([]byte, len(data))
	n := 0

	for _, b := range data {
		if b == ' ' || b == '\t' || b == '\r' || b == '\n' {
			continue
		}
		result[n] = b
		n++
	}

	return result[0:n]
}

var pemStart = []byte("\n-----BEGIN ")
var pemEnd = []byte("\n-----END ")
var pemEndOfLine = []byte("-----")

// Decode will find the next PEM formatted block (certificate, private key
// etc) in the input. It returns that block and the remainder of the input. If
// no PEM data is found, p is nil and the whole of the input is returned in
// rest.
func Decode(data []byte) (p *Block, rest []byte) {
	// pemStart begins with a newline. However, at the very beginning of
	// the byte array, we'll accept the start string without it.
	rest = data
	if bytes.HasPrefix(data, pemStart[1:]) {
		rest = rest[len(pemStart)-1 : len(data)]
	} else if i := bytes.Index(data, pemStart); i >= 0 {
		rest = rest[i+len(pemStart) : len(data)]
	} else {
		return nil, data
	}

	typeLine, rest := getLine(rest)
	if !bytes.HasSuffix(typeLine, pemEndOfLine) {
		return decodeError(data, rest)
	}
	typeLine = typeLine[0 : len(typeLine)-len(pemEndOfLine)]

	p = &Block{
		Headers: make(map[string]string),
		Type:    string(typeLine),
	}

	for {
		// This loop terminates because getLine's second result is
		// always smaller than its argument.
		if len(rest) == 0 {
			return nil, data
		}
		line, next := getLine(rest)

		i := bytes.Index(line, []byte{':'})
		if i == -1 {
			break
		}

		// TODO(agl): need to cope with values that spread across lines.
		key, val := line[:i], line[i+1:]
		key = bytes.TrimSpace(key)
		val = bytes.TrimSpace(val)
		p.Headers[string(key)] = string(val)
		rest = next
	}

	var endIndex int
	// If there were no headers, the END line might occur
	// immediately, without a leading newline.
	if len(p.Headers) == 0 && bytes.HasPrefix(rest, pemEnd[1:]) {
		endIndex = 0
	} else {
		endIndex = bytes.Index(rest, pemEnd)
	}

	if endIndex < 0 {
		return decodeError(data, rest)
	}

	base64Data := removeWhitespace(rest[:endIndex])
	p.Bytes = make([]byte, base64.StdEncoding.DecodedLen(len(base64Data)))
	n, err := base64.StdEncoding.Decode(p.Bytes, base64Data)
	if err != nil {
		return decodeError(data, rest)
	}
	p.Bytes = p.Bytes[:n]

	// the -1 is because we might have only matched pemEnd without the
	// leading newline if the PEM block was empty.
	_, rest = getLine(rest[endIndex+len(pemEnd)-1:])

	return
}

func decodeError(data, rest []byte) (*Block, []byte) {
	// If we get here then we have rejected a likely looking, but
	// ultimately invalid PEM block. We need to start over from a new
	// position.  We have consumed the preamble line and will have consumed
	// any lines which could be header lines. However, a valid preamble
	// line is not a valid header line, therefore we cannot have consumed
	// the preamble line for the any subsequent block. Thus, we will always
	// find any valid block, no matter what bytes precede it.
	//
	// For example, if the input is
	//
	//    -----BEGIN MALFORMED BLOCK-----
	//    junk that may look like header lines
	//   or data lines, but no END line
	//
	//    -----BEGIN ACTUAL BLOCK-----
	//    realdata
	//    -----END ACTUAL BLOCK-----
	//
	// we've failed to parse using the first BEGIN line
	// and now will try again, using the second BEGIN line.
	p, rest := Decode(rest)
	if p == nil {
		rest = data
	}
	return p, rest
}

const pemLineLength = 64

type lineBreaker struct {
	line [pemLineLength]byte
	used int
	out  io.Writer
}

var nl = []byte{'\n'}

func (l *lineBreaker) Write(b []byte) (n int, err error) {
	if l.used+len(b) < pemLineLength {
		copy(l.line[l.used:], b)
		l.used += len(b)
		return len(b), nil
	}

	n, err = l.out.Write(l.line[0:l.used])
	if err != nil {
		return
	}
	excess := pemLineLength - l.used
	l.used = 0

	n, err = l.out.Write(b[0:excess])
	if err != nil {
		return
	}

	n, err = l.out.Write(nl)
	if err != nil {
		return
	}

	return l.Write(b[excess:])
}

func (l *lineBreaker) Close() (err error) {
	if l.used > 0 {
		_, err = l.out.Write(l.line[0:l.used])
		if err != nil {
			return
		}
		_, err = l.out.Write(nl)
	}

	return
}

func writeHeader(out io.Writer, k, v string) error {
	_, err := out.Write([]byte(k + ": " + v + "\n"))
	return err
}

func Encode(out io.Writer, b *Block) error {
	if _, err := out.Write(pemStart[1:]); err != nil {
		return err
	}
	if _, err := out.Write([]byte(b.Type + "-----\n")); err != nil {
		return err
	}

	if len(b.Headers) > 0 {
		const procType = "Proc-Type"
		h := make([]string, 0, len(b.Headers))
		hasProcType := false
		for k := range b.Headers {
			if k == procType {
				hasProcType = true
				continue
			}
			h = append(h, k)
		}
		// The Proc-Type header must be written first.
		// See RFC 1421, section 4.6.1.1
		if hasProcType {
			if err := writeHeader(out, procType, b.Headers[procType]); err != nil {
				return err
			}
		}
		// For consistency of output, write other headers sorted by key.
		sort.Strings(h)
		for _, k := range h {
			if strings.Contains(k, ":") {
				return errors.New("pem: cannot encode a header key that contains a colon")
			}
			if err := writeHeader(out, k, b.Headers[k]); err != nil {
				return err
			}
		}
		if _, err := out.Write(nl); err != nil {
			return err
		}
	}

	var breaker lineBreaker
	breaker.out = out

	b64 := base64.NewEncoder(base64.StdEncoding, &breaker)
	if _, err := b64.Write(b.Bytes); err != nil {
		return err
	}
	b64.Close()
	breaker.Close()

	if _, err := out.Write(pemEnd[1:]); err != nil {
		return err
	}
	_, err := out.Write([]byte(b.Type + "-----\n"))
	return err
}

func EncodeToMemory(b *Block) []byte {
	var buf bytes.Buffer
	Encode(&buf, b)
	return buf.Bytes()
}