// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
. "runtime"
"strings"
"sync"
"testing"
"time"
)
// TestStackMem measures per-thread stack segment cache behavior.
// The test consumed up to 500MB in the past.
func TestStackMem(t *testing.T) {
const (
BatchSize = 32
BatchCount = 256
ArraySize = 1024
RecursionDepth = 128
)
if testing.Short() {
return
}
defer GOMAXPROCS(GOMAXPROCS(BatchSize))
s0 := new(MemStats)
ReadMemStats(s0)
for b := 0; b < BatchCount; b++ {
c := make(chan bool, BatchSize)
for i := 0; i < BatchSize; i++ {
go func() {
var f func(k int, a [ArraySize]byte)
f = func(k int, a [ArraySize]byte) {
if k == 0 {
time.Sleep(time.Millisecond)
return
}
f(k-1, a)
}
f(RecursionDepth, [ArraySize]byte{})
c <- true
}()
}
for i := 0; i < BatchSize; i++ {
<-c
}
// The goroutines have signaled via c that they are ready to exit.
// Give them a chance to exit by sleeping. If we don't wait, we
// might not reuse them on the next batch.
time.Sleep(10 * time.Millisecond)
}
s1 := new(MemStats)
ReadMemStats(s1)
consumed := int64(s1.StackSys - s0.StackSys)
t.Logf("Consumed %vMB for stack mem", consumed>>20)
estimate := int64(8 * BatchSize * ArraySize * RecursionDepth) // 8 is to reduce flakiness.
if consumed > estimate {
t.Fatalf("Stack mem: want %v, got %v", estimate, consumed)
}
// Due to broken stack memory accounting (https://golang.org/issue/7468),
// StackInuse can decrease during function execution, so we cast the values to int64.
inuse := int64(s1.StackInuse) - int64(s0.StackInuse)
t.Logf("Inuse %vMB for stack mem", inuse>>20)
if inuse > 4<<20 {
t.Fatalf("Stack inuse: want %v, got %v", 4<<20, inuse)
}
}
// Test stack growing in different contexts.
func TestStackGrowth(t *testing.T) {
t.Parallel()
var wg sync.WaitGroup
// in a normal goroutine
wg.Add(1)
go func() {
defer wg.Done()
growStack()
}()
wg.Wait()
// in locked goroutine
wg.Add(1)
go func() {
defer wg.Done()
LockOSThread()
growStack()
UnlockOSThread()
}()
wg.Wait()
// in finalizer
wg.Add(1)
go func() {
defer wg.Done()
done := make(chan bool)
go func() {
s := new(string)
SetFinalizer(s, func(ss *string) {
growStack()
done <- true
})
s = nil
done <- true
}()
<-done
GC()
select {
case <-done:
case <-time.After(20 * time.Second):
t.Fatal("finalizer did not run")
}
}()
wg.Wait()
}
// ... and in init
//func init() {
// growStack()
//}
func growStack() {
n := 1 << 10
if testing.Short() {
n = 1 << 8
}
for i := 0; i < n; i++ {
x := 0
growStackIter(&x, i)
if x != i+1 {
panic("stack is corrupted")
}
}
GC()
}
// This function is not an anonymous func, so that the compiler can do escape
// analysis and place x on stack (and subsequently stack growth update the pointer).
func growStackIter(p *int, n int) {
if n == 0 {
*p = n + 1
GC()
return
}
*p = n + 1
x := 0
growStackIter(&x, n-1)
if x != n {
panic("stack is corrupted")
}
}
func TestStackGrowthCallback(t *testing.T) {
t.Parallel()
var wg sync.WaitGroup
// test stack growth at chan op
wg.Add(1)
go func() {
defer wg.Done()
c := make(chan int, 1)
growStackWithCallback(func() {
c <- 1
<-c
})
}()
// test stack growth at map op
wg.Add(1)
go func() {
defer wg.Done()
m := make(map[int]int)
growStackWithCallback(func() {
_, _ = m[1]
m[1] = 1
})
}()
// test stack growth at goroutine creation
wg.Add(1)
go func() {
defer wg.Done()
growStackWithCallback(func() {
done := make(chan bool)
go func() {
done <- true
}()
<-done
})
}()
wg.Wait()
}
func growStackWithCallback(cb func()) {
var f func(n int)
f = func(n int) {
if n == 0 {
cb()
return
}
f(n - 1)
}
for i := 0; i < 1<<10; i++ {
f(i)
}
}
// TestDeferPtrs tests the adjustment of Defer's argument pointers (p aka &y)
// during a stack copy.
func set(p *int, x int) {
*p = x
}
func TestDeferPtrs(t *testing.T) {
var y int
defer func() {
if y != 42 {
t.Errorf("defer's stack references were not adjusted appropriately")
}
}()
defer set(&y, 42)
growStack()
}
type bigBuf [4 * 1024]byte
// TestDeferPtrsGoexit is like TestDeferPtrs but exercises the possibility that the
// stack grows as part of starting the deferred function. It calls Goexit at various
// stack depths, forcing the deferred function (with >4kB of args) to be run at
// the bottom of the stack. The goal is to find a stack depth less than 4kB from
// the end of the stack. Each trial runs in a different goroutine so that an earlier
// stack growth does not invalidate a later attempt.
func TestDeferPtrsGoexit(t *testing.T) {
for i := 0; i < 100; i++ {
c := make(chan int, 1)
go testDeferPtrsGoexit(c, i)
if n := <-c; n != 42 {
t.Fatalf("defer's stack references were not adjusted appropriately (i=%d n=%d)", i, n)
}
}
}
func testDeferPtrsGoexit(c chan int, i int) {
var y int
defer func() {
c <- y
}()
defer setBig(&y, 42, bigBuf{})
useStackAndCall(i, Goexit)
}
func setBig(p *int, x int, b bigBuf) {
*p = x
}
// TestDeferPtrsPanic is like TestDeferPtrsGoexit, but it's using panic instead
// of Goexit to run the Defers. Those two are different execution paths
// in the runtime.
func TestDeferPtrsPanic(t *testing.T) {
for i := 0; i < 100; i++ {
c := make(chan int, 1)
go testDeferPtrsGoexit(c, i)
if n := <-c; n != 42 {
t.Fatalf("defer's stack references were not adjusted appropriately (i=%d n=%d)", i, n)
}
}
}
func testDeferPtrsPanic(c chan int, i int) {
var y int
defer func() {
if recover() == nil {
c <- -1
return
}
c <- y
}()
defer setBig(&y, 42, bigBuf{})
useStackAndCall(i, func() { panic(1) })
}
// TestPanicUseStack checks that a chain of Panic structs on the stack are
// updated correctly if the stack grows during the deferred execution that
// happens as a result of the panic.
func TestPanicUseStack(t *testing.T) {
pc := make([]uintptr, 10000)
defer func() {
recover()
Callers(0, pc) // force stack walk
useStackAndCall(100, func() {
defer func() {
recover()
Callers(0, pc) // force stack walk
useStackAndCall(200, func() {
defer func() {
recover()
Callers(0, pc) // force stack walk
}()
panic(3)
})
}()
panic(2)
})
}()
panic(1)
}
func TestPanicFar(t *testing.T) {
var xtree *xtreeNode
pc := make([]uintptr, 10000)
defer func() {
// At this point we created a large stack and unwound
// it via recovery. Force a stack walk, which will
// check the consistency of stack barriers.
Callers(0, pc)
}()
defer func() {
recover()
}()
useStackAndCall(100, func() {
// Kick off the GC and make it do something nontrivial
// to keep stack barriers installed for a while.
xtree = makeTree(18)
// Give the GC time to install stack barriers.
time.Sleep(time.Millisecond)
panic(1)
})
_ = xtree
}
type xtreeNode struct {
l, r *xtreeNode
}
func makeTree(d int) *xtreeNode {
if d == 0 {
return new(xtreeNode)
}
return &xtreeNode{makeTree(d - 1), makeTree(d - 1)}
}
// use about n KB of stack and call f
func useStackAndCall(n int, f func()) {
if n == 0 {
f()
return
}
var b [1024]byte // makes frame about 1KB
useStackAndCall(n-1+int(b[99]), f)
}
func useStack(n int) {
useStackAndCall(n, func() {})
}
func growing(c chan int, done chan struct{}) {
for n := range c {
useStack(n)
done <- struct{}{}
}
done <- struct{}{}
}
func TestStackCache(t *testing.T) {
// Allocate a bunch of goroutines and grow their stacks.
// Repeat a few times to test the stack cache.
const (
R = 4
G = 200
S = 5
)
for i := 0; i < R; i++ {
var reqchans [G]chan int
done := make(chan struct{})
for j := 0; j < G; j++ {
reqchans[j] = make(chan int)
go growing(reqchans[j], done)
}
for s := 0; s < S; s++ {
for j := 0; j < G; j++ {
reqchans[j] <- 1 << uint(s)
}
for j := 0; j < G; j++ {
<-done
}
}
for j := 0; j < G; j++ {
close(reqchans[j])
}
for j := 0; j < G; j++ {
<-done
}
}
}
func TestStackOutput(t *testing.T) {
b := make([]byte, 1024)
stk := string(b[:Stack(b, false)])
if !strings.HasPrefix(stk, "goroutine ") {
t.Errorf("Stack (len %d):\n%s", len(stk), stk)
t.Errorf("Stack output should begin with \"goroutine \"")
}
}
func TestStackAllOutput(t *testing.T) {
b := make([]byte, 1024)
stk := string(b[:Stack(b, true)])
if !strings.HasPrefix(stk, "goroutine ") {
t.Errorf("Stack (len %d):\n%s", len(stk), stk)
t.Errorf("Stack output should begin with \"goroutine \"")
}
}
func TestStackPanic(t *testing.T) {
// Test that stack copying copies panics correctly. This is difficult
// to test because it is very unlikely that the stack will be copied
// in the middle of gopanic. But it can happen.
// To make this test effective, edit panic.go:gopanic and uncomment
// the GC() call just before freedefer(d).
defer func() {
if x := recover(); x == nil {
t.Errorf("recover failed")
}
}()
useStack(32)
panic("test panic")
}
func BenchmarkStackCopy(b *testing.B) {
c := make(chan bool)
for i := 0; i < b.N; i++ {
go func() {
count(1000000)
c <- true
}()
<-c
}
}
func count(n int) int {
if n == 0 {
return 0
}
return 1 + count(n-1)
}