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1. Document scope 
 
This document details how camera+motion sensor fusion is defined for Android cameras, and 
walks through the ITS validation test for this capability: test_sensor_fusion.py. 

2. Running the test 

2.1. Physical setup 
 
When physically moving the camera (which is required when running this test), the only 
degree of freedom should be rotational movement that is in the same plane as the image 
sensor, about the camera’s optical axis. When looking at the images generated by this test, 
the center of the image should be stationary between frames, with the overall scene only 
rotating; no translation, and no skewing or other perspective transformations. 
 
This can be easily achieved by physically constraining the camera’s movements with a simple 
test rig, as follows: 
 



● Take two sheets of cardboard, one on top of the other, and poke a hole through them 
both with a pin or nail. 

● Use something like a split pin or an eyelet to connect the two sheets together through 
that pin-hole, so that one sheet is able to rotate on top of the other sheet; example 
connectors: 
http://www.amazon.com/dp/B00B84NRMU 
http://www.amazon.com/dp/B004LWSFAK 

● Tape the bottom cardboard sheet to the top of a table; the top sheet should now be 
able to rotate on top of the table in a constrained manner. 

● Tape the phone to the top sheet so that the camera is directly above the center of 
rotation; now, when the top sheet is rotated, the camera is rotated, with the center of 
rotation being about the camera’s optical axis. 

● Mount or suspend a checkerboard target above the camera, for example by taping to 
the underside of a cardboard box which is placed on the table above the camera. If 
you have a light box for the ITS setup, then this is convenient to use; simply tape the a 
printout of the checkerboard chart to the roof of the light box. 

 
Using this simple rig, the only degree of freedom is rotation about the optical axis, which will 
correspond to the Z axis of the gyro. 

2.2. Invoking the test script 
 
The test is run within the ITS infrastructure, which is now a part of the CTS Verifier test suite. 
Once this is set up properly, the sensor fusion test can be invoked as follows: 
 

python test_sensor_fusion.py 
 
This generates a large amount of data, and in particular saves all data needed for the analysis 
portion of the test as files in the current directory. The test can be re-run on the saved data at 
a later time as follows: 
 

python test_sensor_fusion.py replay 

2.3. Collecting data 
 
When the test is run (without the replay argument), it collects both motion sensor data and 
image data from the device, and requires that the device be physically moved at the right time 
during this data collection. The test prints the following console output during its operation; 
note the bolded line: 
 

Starting sensor event collection 
Running vendor 3A on device 
Capturing 320x240 with sens. 190, exp. time 16.7ms 

http://www.google.com/url?q=http%3A%2F%2Fwww.amazon.com%2Fdp%2FB00B84NRMU&sa=D&sntz=1&usg=AFQjCNFzVKtmp7AXNiuak3ycUi_FrGCl2A
http://www.google.com/url?q=http%3A%2F%2Fwww.amazon.com%2Fdp%2FB004LWSFAK&sa=D&sntz=1&usg=AFQjCNEu81VEqP9h4slRSpqKhKNLaGBmnw


Capturing 210 frames with 1 format [yuv] 
Reading out sensor events 
Dumping event data 
Dumping frames 
Best correlation of 0.001884 at shift of 3.45ms 
 

When the bolded line is printed, the user needs to physically move the device in a specific 
way for a few seconds, characterized as: 
 

● The movement should be at most moderately fast; no rapid or jerky movements. 
Rotating at a rate of around 10-20 degrees/second is about the limit of what should be 
done. 

● The set of movements should span around 10-15s after the bolded message is 
printed, to ensure that the actual time of image capture (which lasts for 7s) overlaps 
with the movements. 

● The movements should have a pattern such as “rotate for 1s, then stationary for 1s, 
then rotate again for 2s, then stationary for 0.5s, ...”. There shouldn’t be a repeating 
pattern, and the goal is to generate a simple motion trace that will make correlating 
motion and image sensors easy and robust. 

 
The test takes a little while to run, as it transfers 210 YUV frames from the device to the host 
PC and dumps them to disk. 

2.4. Output data 
 
The script generates lots of output images in the current directory: 
 
The actual collected data is dumped to test_sensor_fusion_events.txt (for the motion 
events and camera timestamps) and test_sensor_fusion_frame000.jpg through 
test_sensor_fusion_frame209.jpg (the 210 image frames captured). When the test is 
run with the replay argument, these are the files that are opened. 
 
An image is also saved that shows the features that were tracked across frames, for the 
camera’s motion estimation: test_sensor_fusion_features.jpg. An example from a 
test run: 
 



 
 
Note that the greenish hue to the image is due to the fact that simple manual controls are 
used to perform the capture, without worrying about white balance. 
 
The key plot that is generated is test_sensor_fusion_plot.png, which shows the 
angular displacement measured between pairs of adjacent camera frames, as computed by 
analyzing the camera images vs. integrating the gyro samples: 

 



The motions of the user during the test run are evident from this trace; there were alternating 
periods of 10-20 deg/sec rotation and periods of no motion. 
 
When this particular test ran, the last printed console line stated that the “best correlation” was 
at a “shift of 3.45ms”; this describes the process where a range of candidate time shifts are 
applied to the camera timestamps, and for each time shift the gyro samples between camera 
frames are integrated to produce a motion trace as is shown in the above figure, with the time 
shift resulting in the best alignment (i.e. lowest correlation distance as computed by 
scipy.spatial.distance.correlation) being 3.45ms. The test saves one more plot, 
test_sensor_fusion_plot_shifts.png, which graphs the candidate time shifts 
between the traces on the X axis vs. the computed correlation distance on the Y axis. In this 
case, it’s visually clear from the plot that the minima is around 3-4ms. 

 
The red curve is the actual data, and the blue curve is a polynomial fit to the red curve, with 
the actual minima determined from the fit curve to increase precision.  

2.5. Test pass/fail 
 



At the end of the test, assertions check that the time shift resulting in the best correlation is 
within +/- 2 ms, and that the correlation distance in this case is small. If these assertions are 
not tripped, then the test passes. 

2.6. Using different exposure times 
 
The sensor fusion math includes a term for the exposure times of the captured images. A 
single run of the test will use the same exposure time for all shots. For a device to properly 
support sensor fusion, this test should pass with any reasonable exposure time value used to 
capture the images. To verify this, this test should be run 2-3 times, with a different level of 
scene illumination for each run resulting in a different exposure time being used. Note that the 
exposure time used for the test is printed to the console when the test is run; it’s the bolded 
line below: 
 
Starting sensor event collection 
Running vendor 3A on device 
Capturing 320x240 with sens. 190, exp. time 16.7ms 
Capturing 210 frames with 1 format [yuv] 
Reading out sensor events 
Dumping event data 
Dumping frames 
Best correlation of 0.001884 at shift of 3.45ms 

3. Code walkthrough 
 
This section walks through all of the steps of the test_sensor_fusion.py script, including 
providing details on assumptions and definitions used. A developer who is writing an app that 
makes use of the sensor fusion feature should be able to understand the basic model that is 
assumed here, and map it to their own model as needed. 

3.1. Data collection 
 
The collect_data and load_data functions simply capture the camera frames and 
motion data and store them to files, and load them from files, respectively. The collection is 
done using the ITS device control methods, with the same manual gain and exposure 
duration used throughout the 210-frame YUV burst. Frames are captured at QVGA resolution. 

3.2. Computing camera rotation samples 

3.2.1. Camera sample times 
 
For each camera frame, there are three time values reported by the HAL: 
 



● t_start: the timestamp of the start of the frame’s exposure 
● t_exp: the amount of time that each pixel is exposed 
● t_rss: the “rolling shutter skew”, which is the time difference between the start of the 

first row’s exposure and the start of the last row’s exposure 
 
In the stored test_sensor_fusion_events.txt file, the triples of camera times are the 
(t_start, t_exp, t_rss) values for each frame. 
 
The following figure shows how these three values are associated with each frame, where 
each parallelogram shows the integration window of the first pixel in each sensor row in a 
particular frame. The sloping sides are due to the rolling shutter; if this were from a global 
shutter camera, the parallelograms would be rectangles, and t_rss would be zero for all 
frames. 

 
The first step in computing the camera rotation samples is to assign a single time to each 
frame. This is computed as the “middle” time for that frame, which in the above figure 
corresponds to a point in the exact center of each parallelogram. The equation for this is: 
 

t_frame = t_start + ½ t_rss + ½ t_exp 
 
The get_cam_times function performs this computation: given N input camera frames, it 
returns an array of N t_frame values. 

3.2.2. Camera sample rotations 
 



The get_cam_rotations function computes an angular displacement (in radians) between 
each pair of camera frames; that is, it takes as input the N frames, and returns an array of N-1 
rotational displacement measurements r_cam. 
 
This function uses OpenCV’s feature tracking and optical flow calculations to compute a 
rotational distance between each pair of frames i and i+1. The procrustes_rotation 
function contains the math to compute the rotational component of a transformation that maps 
the set of tracked features from one frame to the next. 

3.3.3. Assumptions 
 
This whole process of computing the camera rotation samples makes some simplifying 
assumptions, in particular: 
 

● The time corresponding to a frame is the “middle time”, and aside from this the rolling 
shutter effect is simply ignored. 

● The exposure duration is a part of this formulation, but only in a very simplistic way. To 
reduce the impact of this factor, the test is assumed to be run in a well-lit environment 
so that exposure times are relatively short. 

● The camera movement is only a rotation about the optical axis, in a plane parallel to 
the camera sensor. 

● The camera movement is assumed to be at most moderate, at most 20 deg/sec 
rotation, which reduces the impact of not modeling rolling shutter more 
comprehensively. 

3.4. Computing gyro rotation samples 
 
The raw data from the gyro is a sequence of (t_gyro, r_gyro) samples, where each sample 
corresponds to an instantaneous rad/sec rotational velocity measurement at a particular 
moment in time. The gyro data will likely be at a higher rate than the camera data (e.g. 200Hz 
vs. 30Hz) and will also likely be noisier. In this test, only the Z component is used, as this 
corresponds to rotations about the optical axis. 
 
The get_gyro_rotations function takes the full set of gyro events and the N t_frame 
values as input, and returns N-1 r_gyro’ samples as output, by integrating the gyro stream 
between each adjacent pair of camera timestamps to compute an angular displacement. This 
is a simple Euler integration, and it includes handling the fractional intervals between adjacent 
gyro samples which fall within different camera frame time windows. 
 
The get_best_alignment_offset function iterates over candidate time shifts between 
the motion sensor and camera data, and for each candidate it applies the shift to the t_frame 
values, calls get_gyro_rotations to get the gyro motion trace r_gyro’, and then correlates 



this to the camera motion trace r_cam. The time shift (offset) which results in the best 
correlation is returned (after performing a polynomial fit to the data to find the true minima). 
 
Once get_best_alignment_offset is complete, there are two arrays of length N-1 
corresponding to the camera and motion sensor traces using the time-shift that results in the 
best correlation: 
 

● r_cam: angular displacement (rad) between each pair of camera frames 
● r_gyro’: angular displacement (rad) between each pair of camera frames 

 
These two arrays should correlate very highly if the device is correctly implementing sensor 
fusion. 

3.5. Plotting the results 
 
The plot_rotations function draws a graph showing the r_cam and r_gyro’ values for 
each pair of adjacent camera frames. If the device is working well with respect to fusion of 
motion and image sensors, then the two curves will be perfectly overlaid. 
 


