/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "image.h" #include <memory> #include <string> #include <vector> #include "android-base/stringprintf.h" #include "art_method-inl.h" #include "base/unix_file/fd_file.h" #include "class_linker-inl.h" #include "compiler_callbacks.h" #include "common_compiler_test.h" #include "debug/method_debug_info.h" #include "dex/quick_compiler_callbacks.h" #include "driver/compiler_options.h" #include "elf_writer.h" #include "elf_writer_quick.h" #include "gc/space/image_space.h" #include "image_writer.h" #include "linker/buffered_output_stream.h" #include "linker/file_output_stream.h" #include "linker/multi_oat_relative_patcher.h" #include "lock_word.h" #include "mirror/object-inl.h" #include "oat_writer.h" #include "scoped_thread_state_change-inl.h" #include "signal_catcher.h" #include "utils.h" namespace art { static const uintptr_t kRequestedImageBase = ART_BASE_ADDRESS; struct CompilationHelper { std::vector<std::string> dex_file_locations; std::vector<ScratchFile> image_locations; std::vector<std::unique_ptr<const DexFile>> extra_dex_files; std::vector<ScratchFile> image_files; std::vector<ScratchFile> oat_files; std::vector<ScratchFile> vdex_files; std::string image_dir; void Compile(CompilerDriver* driver, ImageHeader::StorageMode storage_mode); std::vector<size_t> GetImageObjectSectionSizes(); ~CompilationHelper(); }; class ImageTest : public CommonCompilerTest { protected: virtual void SetUp() { ReserveImageSpace(); CommonCompilerTest::SetUp(); } void TestWriteRead(ImageHeader::StorageMode storage_mode); void Compile(ImageHeader::StorageMode storage_mode, CompilationHelper& out_helper, const std::string& extra_dex = "", const std::initializer_list<std::string>& image_classes = {}); void SetUpRuntimeOptions(RuntimeOptions* options) OVERRIDE { CommonCompilerTest::SetUpRuntimeOptions(options); callbacks_.reset(new QuickCompilerCallbacks( verification_results_.get(), CompilerCallbacks::CallbackMode::kCompileBootImage)); options->push_back(std::make_pair("compilercallbacks", callbacks_.get())); } std::unordered_set<std::string>* GetImageClasses() OVERRIDE { return new std::unordered_set<std::string>(image_classes_); } ArtMethod* FindCopiedMethod(ArtMethod* origin, mirror::Class* klass) REQUIRES_SHARED(Locks::mutator_lock_) { PointerSize pointer_size = class_linker_->GetImagePointerSize(); for (ArtMethod& m : klass->GetCopiedMethods(pointer_size)) { if (strcmp(origin->GetName(), m.GetName()) == 0 && origin->GetSignature() == m.GetSignature()) { return &m; } } return nullptr; } private: std::unordered_set<std::string> image_classes_; }; CompilationHelper::~CompilationHelper() { for (ScratchFile& image_file : image_files) { image_file.Unlink(); } for (ScratchFile& oat_file : oat_files) { oat_file.Unlink(); } for (ScratchFile& vdex_file : vdex_files) { vdex_file.Unlink(); } const int rmdir_result = rmdir(image_dir.c_str()); CHECK_EQ(0, rmdir_result); } std::vector<size_t> CompilationHelper::GetImageObjectSectionSizes() { std::vector<size_t> ret; for (ScratchFile& image_file : image_files) { std::unique_ptr<File> file(OS::OpenFileForReading(image_file.GetFilename().c_str())); CHECK(file.get() != nullptr); ImageHeader image_header; CHECK_EQ(file->ReadFully(&image_header, sizeof(image_header)), true); CHECK(image_header.IsValid()); ret.push_back(image_header.GetImageSize()); } return ret; } void CompilationHelper::Compile(CompilerDriver* driver, ImageHeader::StorageMode storage_mode) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); std::vector<const DexFile*> class_path = class_linker->GetBootClassPath(); for (const std::unique_ptr<const DexFile>& dex_file : extra_dex_files) { { ScopedObjectAccess soa(Thread::Current()); // Inject in boot class path so that the compiler driver can see it. class_linker->AppendToBootClassPath(soa.Self(), *dex_file.get()); } class_path.push_back(dex_file.get()); } // Enable write for dex2dex. for (const DexFile* dex_file : class_path) { dex_file_locations.push_back(dex_file->GetLocation()); if (dex_file->IsReadOnly()) { dex_file->EnableWrite(); } } { // Create a generic tmp file, to be the base of the .art and .oat temporary files. ScratchFile location; for (int i = 0; i < static_cast<int>(class_path.size()); ++i) { std::string cur_location = android::base::StringPrintf("%s-%d.art", location.GetFilename().c_str(), i); image_locations.push_back(ScratchFile(cur_location)); } } std::vector<std::string> image_filenames; for (ScratchFile& file : image_locations) { std::string image_filename(GetSystemImageFilename(file.GetFilename().c_str(), kRuntimeISA)); image_filenames.push_back(image_filename); size_t pos = image_filename.rfind('/'); CHECK_NE(pos, std::string::npos) << image_filename; if (image_dir.empty()) { image_dir = image_filename.substr(0, pos); int mkdir_result = mkdir(image_dir.c_str(), 0700); CHECK_EQ(0, mkdir_result) << image_dir; } image_files.push_back(ScratchFile(OS::CreateEmptyFile(image_filename.c_str()))); } std::vector<std::string> oat_filenames; std::vector<std::string> vdex_filenames; for (const std::string& image_filename : image_filenames) { std::string oat_filename = ReplaceFileExtension(image_filename, "oat"); oat_files.push_back(ScratchFile(OS::CreateEmptyFile(oat_filename.c_str()))); oat_filenames.push_back(oat_filename); std::string vdex_filename = ReplaceFileExtension(image_filename, "vdex"); vdex_files.push_back(ScratchFile(OS::CreateEmptyFile(vdex_filename.c_str()))); vdex_filenames.push_back(vdex_filename); } std::unordered_map<const DexFile*, size_t> dex_file_to_oat_index_map; std::vector<const char*> oat_filename_vector; for (const std::string& file : oat_filenames) { oat_filename_vector.push_back(file.c_str()); } std::vector<const char*> image_filename_vector; for (const std::string& file : image_filenames) { image_filename_vector.push_back(file.c_str()); } size_t image_idx = 0; for (const DexFile* dex_file : class_path) { dex_file_to_oat_index_map.emplace(dex_file, image_idx); ++image_idx; } // TODO: compile_pic should be a test argument. std::unique_ptr<ImageWriter> writer(new ImageWriter(*driver, kRequestedImageBase, /*compile_pic*/false, /*compile_app_image*/false, storage_mode, oat_filename_vector, dex_file_to_oat_index_map)); { { jobject class_loader = nullptr; TimingLogger timings("ImageTest::WriteRead", false, false); TimingLogger::ScopedTiming t("CompileAll", &timings); driver->SetDexFilesForOatFile(class_path); driver->CompileAll(class_loader, class_path, /* verifier_deps */ nullptr, &timings); t.NewTiming("WriteElf"); SafeMap<std::string, std::string> key_value_store; std::vector<const char*> dex_filename_vector; for (size_t i = 0; i < class_path.size(); ++i) { dex_filename_vector.push_back(""); } key_value_store.Put(OatHeader::kBootClassPathKey, gc::space::ImageSpace::GetMultiImageBootClassPath( dex_filename_vector, oat_filename_vector, image_filename_vector)); std::vector<std::unique_ptr<ElfWriter>> elf_writers; std::vector<std::unique_ptr<OatWriter>> oat_writers; for (ScratchFile& oat_file : oat_files) { elf_writers.emplace_back(CreateElfWriterQuick(driver->GetInstructionSet(), driver->GetInstructionSetFeatures(), &driver->GetCompilerOptions(), oat_file.GetFile())); elf_writers.back()->Start(); oat_writers.emplace_back(new OatWriter(/*compiling_boot_image*/true, &timings, /*profile_compilation_info*/nullptr)); } std::vector<OutputStream*> rodata; std::vector<std::unique_ptr<MemMap>> opened_dex_files_map; std::vector<std::unique_ptr<const DexFile>> opened_dex_files; // Now that we have finalized key_value_store_, start writing the oat file. for (size_t i = 0, size = oat_writers.size(); i != size; ++i) { const DexFile* dex_file = class_path[i]; rodata.push_back(elf_writers[i]->StartRoData()); ArrayRef<const uint8_t> raw_dex_file( reinterpret_cast<const uint8_t*>(&dex_file->GetHeader()), dex_file->GetHeader().file_size_); oat_writers[i]->AddRawDexFileSource(raw_dex_file, dex_file->GetLocation().c_str(), dex_file->GetLocationChecksum()); std::unique_ptr<MemMap> cur_opened_dex_files_map; std::vector<std::unique_ptr<const DexFile>> cur_opened_dex_files; bool dex_files_ok = oat_writers[i]->WriteAndOpenDexFiles( kIsVdexEnabled ? vdex_files[i].GetFile() : oat_files[i].GetFile(), rodata.back(), driver->GetInstructionSet(), driver->GetInstructionSetFeatures(), &key_value_store, /* verify */ false, // Dex files may be dex-to-dex-ed, don't verify. /* update_input_vdex */ false, &cur_opened_dex_files_map, &cur_opened_dex_files); ASSERT_TRUE(dex_files_ok); if (cur_opened_dex_files_map != nullptr) { opened_dex_files_map.push_back(std::move(cur_opened_dex_files_map)); for (std::unique_ptr<const DexFile>& cur_dex_file : cur_opened_dex_files) { // dex_file_oat_index_map_.emplace(dex_file.get(), i); opened_dex_files.push_back(std::move(cur_dex_file)); } } else { ASSERT_TRUE(cur_opened_dex_files.empty()); } } bool image_space_ok = writer->PrepareImageAddressSpace(); ASSERT_TRUE(image_space_ok); if (kIsVdexEnabled) { for (size_t i = 0, size = vdex_files.size(); i != size; ++i) { std::unique_ptr<BufferedOutputStream> vdex_out( MakeUnique<BufferedOutputStream>( MakeUnique<FileOutputStream>(vdex_files[i].GetFile()))); oat_writers[i]->WriteVerifierDeps(vdex_out.get(), nullptr); oat_writers[i]->WriteChecksumsAndVdexHeader(vdex_out.get()); } } for (size_t i = 0, size = oat_files.size(); i != size; ++i) { linker::MultiOatRelativePatcher patcher(driver->GetInstructionSet(), driver->GetInstructionSetFeatures()); OatWriter* const oat_writer = oat_writers[i].get(); ElfWriter* const elf_writer = elf_writers[i].get(); std::vector<const DexFile*> cur_dex_files(1u, class_path[i]); oat_writer->Initialize(driver, writer.get(), cur_dex_files); oat_writer->PrepareLayout(&patcher); size_t rodata_size = oat_writer->GetOatHeader().GetExecutableOffset(); size_t text_size = oat_writer->GetOatSize() - rodata_size; elf_writer->PrepareDynamicSection(rodata_size, text_size, oat_writer->GetBssSize(), oat_writer->GetBssRootsOffset()); writer->UpdateOatFileLayout(i, elf_writer->GetLoadedSize(), oat_writer->GetOatDataOffset(), oat_writer->GetOatSize()); bool rodata_ok = oat_writer->WriteRodata(rodata[i]); ASSERT_TRUE(rodata_ok); elf_writer->EndRoData(rodata[i]); OutputStream* text = elf_writer->StartText(); bool text_ok = oat_writer->WriteCode(text); ASSERT_TRUE(text_ok); elf_writer->EndText(text); bool header_ok = oat_writer->WriteHeader(elf_writer->GetStream(), 0u, 0u, 0u); ASSERT_TRUE(header_ok); writer->UpdateOatFileHeader(i, oat_writer->GetOatHeader()); elf_writer->WriteDynamicSection(); elf_writer->WriteDebugInfo(oat_writer->GetMethodDebugInfo()); bool success = elf_writer->End(); ASSERT_TRUE(success); } } bool success_image = writer->Write(kInvalidFd, image_filename_vector, oat_filename_vector); ASSERT_TRUE(success_image); for (size_t i = 0, size = oat_filenames.size(); i != size; ++i) { const char* oat_filename = oat_filenames[i].c_str(); std::unique_ptr<File> oat_file(OS::OpenFileReadWrite(oat_filename)); ASSERT_TRUE(oat_file != nullptr); bool success_fixup = ElfWriter::Fixup(oat_file.get(), writer->GetOatDataBegin(i)); ASSERT_TRUE(success_fixup); ASSERT_EQ(oat_file->FlushCloseOrErase(), 0) << "Could not flush and close oat file " << oat_filename; } } } void ImageTest::Compile(ImageHeader::StorageMode storage_mode, CompilationHelper& helper, const std::string& extra_dex, const std::initializer_list<std::string>& image_classes) { for (const std::string& image_class : image_classes) { image_classes_.insert(image_class); } CreateCompilerDriver(Compiler::kOptimizing, kRuntimeISA, kIsTargetBuild ? 2U : 16U); // Set inline filter values. compiler_options_->SetInlineMaxCodeUnits(CompilerOptions::kDefaultInlineMaxCodeUnits); image_classes_.clear(); if (!extra_dex.empty()) { helper.extra_dex_files = OpenTestDexFiles(extra_dex.c_str()); } helper.Compile(compiler_driver_.get(), storage_mode); if (image_classes.begin() != image_classes.end()) { // Make sure the class got initialized. ScopedObjectAccess soa(Thread::Current()); ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); for (const std::string& image_class : image_classes) { mirror::Class* klass = class_linker->FindSystemClass(Thread::Current(), image_class.c_str()); EXPECT_TRUE(klass != nullptr); EXPECT_TRUE(klass->IsInitialized()); } } } void ImageTest::TestWriteRead(ImageHeader::StorageMode storage_mode) { CompilationHelper helper; Compile(storage_mode, /*out*/ helper); std::vector<uint64_t> image_file_sizes; for (ScratchFile& image_file : helper.image_files) { std::unique_ptr<File> file(OS::OpenFileForReading(image_file.GetFilename().c_str())); ASSERT_TRUE(file.get() != nullptr); ImageHeader image_header; ASSERT_EQ(file->ReadFully(&image_header, sizeof(image_header)), true); ASSERT_TRUE(image_header.IsValid()); const auto& bitmap_section = image_header.GetImageSection(ImageHeader::kSectionImageBitmap); ASSERT_GE(bitmap_section.Offset(), sizeof(image_header)); ASSERT_NE(0U, bitmap_section.Size()); gc::Heap* heap = Runtime::Current()->GetHeap(); ASSERT_TRUE(heap->HaveContinuousSpaces()); gc::space::ContinuousSpace* space = heap->GetNonMovingSpace(); ASSERT_FALSE(space->IsImageSpace()); ASSERT_TRUE(space != nullptr); ASSERT_TRUE(space->IsMallocSpace()); image_file_sizes.push_back(file->GetLength()); } ASSERT_TRUE(compiler_driver_->GetImageClasses() != nullptr); std::unordered_set<std::string> image_classes(*compiler_driver_->GetImageClasses()); // Need to delete the compiler since it has worker threads which are attached to runtime. compiler_driver_.reset(); // Tear down old runtime before making a new one, clearing out misc state. // Remove the reservation of the memory for use to load the image. // Need to do this before we reset the runtime. UnreserveImageSpace(); helper.extra_dex_files.clear(); runtime_.reset(); java_lang_dex_file_ = nullptr; MemMap::Init(); RuntimeOptions options; std::string image("-Ximage:"); image.append(helper.image_locations[0].GetFilename()); options.push_back(std::make_pair(image.c_str(), static_cast<void*>(nullptr))); // By default the compiler this creates will not include patch information. options.push_back(std::make_pair("-Xnorelocate", nullptr)); if (!Runtime::Create(options, false)) { LOG(FATAL) << "Failed to create runtime"; return; } runtime_.reset(Runtime::Current()); // Runtime::Create acquired the mutator_lock_ that is normally given away when we Runtime::Start, // give it away now and then switch to a more managable ScopedObjectAccess. Thread::Current()->TransitionFromRunnableToSuspended(kNative); ScopedObjectAccess soa(Thread::Current()); ASSERT_TRUE(runtime_.get() != nullptr); class_linker_ = runtime_->GetClassLinker(); gc::Heap* heap = Runtime::Current()->GetHeap(); ASSERT_TRUE(heap->HasBootImageSpace()); ASSERT_TRUE(heap->GetNonMovingSpace()->IsMallocSpace()); // We loaded the runtime with an explicit image, so it must exist. ASSERT_EQ(heap->GetBootImageSpaces().size(), image_file_sizes.size()); for (size_t i = 0; i < helper.dex_file_locations.size(); ++i) { std::unique_ptr<const DexFile> dex( LoadExpectSingleDexFile(helper.dex_file_locations[i].c_str())); ASSERT_TRUE(dex != nullptr); uint64_t image_file_size = image_file_sizes[i]; gc::space::ImageSpace* image_space = heap->GetBootImageSpaces()[i]; ASSERT_TRUE(image_space != nullptr); if (storage_mode == ImageHeader::kStorageModeUncompressed) { // Uncompressed, image should be smaller than file. ASSERT_LE(image_space->GetImageHeader().GetImageSize(), image_file_size); } else if (image_file_size > 16 * KB) { // Compressed, file should be smaller than image. Not really valid for small images. ASSERT_LE(image_file_size, image_space->GetImageHeader().GetImageSize()); } image_space->VerifyImageAllocations(); uint8_t* image_begin = image_space->Begin(); uint8_t* image_end = image_space->End(); if (i == 0) { // This check is only valid for image 0. CHECK_EQ(kRequestedImageBase, reinterpret_cast<uintptr_t>(image_begin)); } for (size_t j = 0; j < dex->NumClassDefs(); ++j) { const DexFile::ClassDef& class_def = dex->GetClassDef(j); const char* descriptor = dex->GetClassDescriptor(class_def); mirror::Class* klass = class_linker_->FindSystemClass(soa.Self(), descriptor); EXPECT_TRUE(klass != nullptr) << descriptor; if (image_classes.find(descriptor) == image_classes.end()) { EXPECT_TRUE(reinterpret_cast<uint8_t*>(klass) >= image_end || reinterpret_cast<uint8_t*>(klass) < image_begin) << descriptor; } else { // Image classes should be located inside the image. EXPECT_LT(image_begin, reinterpret_cast<uint8_t*>(klass)) << descriptor; EXPECT_LT(reinterpret_cast<uint8_t*>(klass), image_end) << descriptor; } EXPECT_TRUE(Monitor::IsValidLockWord(klass->GetLockWord(false))); } } } TEST_F(ImageTest, WriteReadUncompressed) { TestWriteRead(ImageHeader::kStorageModeUncompressed); } TEST_F(ImageTest, WriteReadLZ4) { TestWriteRead(ImageHeader::kStorageModeLZ4); } TEST_F(ImageTest, WriteReadLZ4HC) { TestWriteRead(ImageHeader::kStorageModeLZ4HC); } TEST_F(ImageTest, TestImageLayout) { std::vector<size_t> image_sizes; std::vector<size_t> image_sizes_extra; // Compile multi-image with ImageLayoutA being the last image. { CompilationHelper helper; Compile(ImageHeader::kStorageModeUncompressed, helper, "ImageLayoutA", {"LMyClass;"}); image_sizes = helper.GetImageObjectSectionSizes(); } TearDown(); runtime_.reset(); SetUp(); // Compile multi-image with ImageLayoutB being the last image. { CompilationHelper helper; Compile(ImageHeader::kStorageModeUncompressed, helper, "ImageLayoutB", {"LMyClass;"}); image_sizes_extra = helper.GetImageObjectSectionSizes(); } // Make sure that the new stuff in the clinit in ImageLayoutB is in the last image and not in the // first two images. ASSERT_EQ(image_sizes.size(), image_sizes.size()); // Sizes of the images should be the same. These sizes are for the whole image unrounded. for (size_t i = 0; i < image_sizes.size() - 1; ++i) { EXPECT_EQ(image_sizes[i], image_sizes_extra[i]); } // Last image should be larger since it has a hash map and a string. EXPECT_LT(image_sizes.back(), image_sizes_extra.back()); } TEST_F(ImageTest, ImageHeaderIsValid) { uint32_t image_begin = ART_BASE_ADDRESS; uint32_t image_size_ = 16 * KB; uint32_t image_roots = ART_BASE_ADDRESS + (1 * KB); uint32_t oat_checksum = 0; uint32_t oat_file_begin = ART_BASE_ADDRESS + (4 * KB); // page aligned uint32_t oat_data_begin = ART_BASE_ADDRESS + (8 * KB); // page aligned uint32_t oat_data_end = ART_BASE_ADDRESS + (9 * KB); uint32_t oat_file_end = ART_BASE_ADDRESS + (10 * KB); ImageSection sections[ImageHeader::kSectionCount]; ImageHeader image_header(image_begin, image_size_, sections, image_roots, oat_checksum, oat_file_begin, oat_data_begin, oat_data_end, oat_file_end, /*boot_image_begin*/0U, /*boot_image_size*/0U, /*boot_oat_begin*/0U, /*boot_oat_size_*/0U, sizeof(void*), /*compile_pic*/false, /*is_pic*/false, ImageHeader::kDefaultStorageMode, /*data_size*/0u); ASSERT_TRUE(image_header.IsValid()); ASSERT_TRUE(!image_header.IsAppImage()); char* magic = const_cast<char*>(image_header.GetMagic()); strcpy(magic, ""); // bad magic ASSERT_FALSE(image_header.IsValid()); strcpy(magic, "art\n000"); // bad version ASSERT_FALSE(image_header.IsValid()); } // Test that pointer to quick code is the same in // a default method of an interface and in a copied method // of a class which implements the interface. This should be true // only if the copied method and the origin method are located in the // same oat file. TEST_F(ImageTest, TestDefaultMethods) { CompilationHelper helper; Compile(ImageHeader::kStorageModeUncompressed, helper, "DefaultMethods", {"LIface;", "LImpl;", "LIterableBase;"}); PointerSize pointer_size = class_linker_->GetImagePointerSize(); Thread* self = Thread::Current(); ScopedObjectAccess soa(self); // Test the pointer to quick code is the same in origin method // and in the copied method form the same oat file. mirror::Class* iface_klass = class_linker_->LookupClass( self, "LIface;", ObjPtr<mirror::ClassLoader>()); ASSERT_NE(nullptr, iface_klass); ArtMethod* origin = iface_klass->FindDeclaredVirtualMethod( "defaultMethod", "()V", pointer_size); ASSERT_NE(nullptr, origin); const void* code = origin->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size); // The origin method should have a pointer to quick code ASSERT_NE(nullptr, code); ASSERT_FALSE(class_linker_->IsQuickToInterpreterBridge(code)); mirror::Class* impl_klass = class_linker_->LookupClass( self, "LImpl;", ObjPtr<mirror::ClassLoader>()); ASSERT_NE(nullptr, impl_klass); ArtMethod* copied = FindCopiedMethod(origin, impl_klass); ASSERT_NE(nullptr, copied); // the copied method should have pointer to the same quick code as the origin method ASSERT_EQ(code, copied->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size)); // Test the origin method has pointer to quick code // but the copied method has pointer to interpreter // because these methods are in different oat files. mirror::Class* iterable_klass = class_linker_->LookupClass( self, "Ljava/lang/Iterable;", ObjPtr<mirror::ClassLoader>()); ASSERT_NE(nullptr, iterable_klass); origin = iterable_klass->FindDeclaredVirtualMethod( "forEach", "(Ljava/util/function/Consumer;)V", pointer_size); ASSERT_NE(nullptr, origin); code = origin->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size); // the origin method should have a pointer to quick code ASSERT_NE(nullptr, code); ASSERT_FALSE(class_linker_->IsQuickToInterpreterBridge(code)); mirror::Class* iterablebase_klass = class_linker_->LookupClass( self, "LIterableBase;", ObjPtr<mirror::ClassLoader>()); ASSERT_NE(nullptr, iterablebase_klass); copied = FindCopiedMethod(origin, iterablebase_klass); ASSERT_NE(nullptr, copied); code = copied->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size); // the copied method should have a pointer to interpreter ASSERT_TRUE(class_linker_->IsQuickToInterpreterBridge(code)); } } // namespace art