/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "base/logging.h" #include "calling_convention_arm.h" #include "handle_scope-inl.h" #include "utils/arm/managed_register_arm.h" namespace art { namespace arm { static_assert(kArmPointerSize == PointerSize::k32, "Unexpected ARM pointer size"); // // JNI calling convention constants. // // List of parameters passed via registers for JNI. // JNI uses soft-float, so there is only a GPR list. static const Register kJniArgumentRegisters[] = { R0, R1, R2, R3 }; static const size_t kJniArgumentRegisterCount = arraysize(kJniArgumentRegisters); // // Managed calling convention constants. // // Used by hard float. (General purpose registers.) static const Register kHFCoreArgumentRegisters[] = { R0, R1, R2, R3 }; // (VFP single-precision registers.) static const SRegister kHFSArgumentRegisters[] = { S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15 }; // (VFP double-precision registers.) static const DRegister kHFDArgumentRegisters[] = { D0, D1, D2, D3, D4, D5, D6, D7 }; static_assert(arraysize(kHFDArgumentRegisters) * 2 == arraysize(kHFSArgumentRegisters), "ks d argument registers mismatch"); // // Shared managed+JNI calling convention constants. // static constexpr ManagedRegister kCalleeSaveRegisters[] = { // Core registers. ArmManagedRegister::FromCoreRegister(R5), ArmManagedRegister::FromCoreRegister(R6), ArmManagedRegister::FromCoreRegister(R7), ArmManagedRegister::FromCoreRegister(R8), ArmManagedRegister::FromCoreRegister(R10), ArmManagedRegister::FromCoreRegister(R11), // Hard float registers. ArmManagedRegister::FromSRegister(S16), ArmManagedRegister::FromSRegister(S17), ArmManagedRegister::FromSRegister(S18), ArmManagedRegister::FromSRegister(S19), ArmManagedRegister::FromSRegister(S20), ArmManagedRegister::FromSRegister(S21), ArmManagedRegister::FromSRegister(S22), ArmManagedRegister::FromSRegister(S23), ArmManagedRegister::FromSRegister(S24), ArmManagedRegister::FromSRegister(S25), ArmManagedRegister::FromSRegister(S26), ArmManagedRegister::FromSRegister(S27), ArmManagedRegister::FromSRegister(S28), ArmManagedRegister::FromSRegister(S29), ArmManagedRegister::FromSRegister(S30), ArmManagedRegister::FromSRegister(S31) }; static constexpr uint32_t CalculateCoreCalleeSpillMask() { // LR is a special callee save which is not reported by CalleeSaveRegisters(). uint32_t result = 1 << LR; for (auto&& r : kCalleeSaveRegisters) { if (r.AsArm().IsCoreRegister()) { result |= (1 << r.AsArm().AsCoreRegister()); } } return result; } static constexpr uint32_t CalculateFpCalleeSpillMask() { uint32_t result = 0; for (auto&& r : kCalleeSaveRegisters) { if (r.AsArm().IsSRegister()) { result |= (1 << r.AsArm().AsSRegister()); } } return result; } static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask(); static constexpr uint32_t kFpCalleeSpillMask = CalculateFpCalleeSpillMask(); // Calling convention ManagedRegister ArmManagedRuntimeCallingConvention::InterproceduralScratchRegister() { return ArmManagedRegister::FromCoreRegister(IP); // R12 } ManagedRegister ArmJniCallingConvention::InterproceduralScratchRegister() { return ArmManagedRegister::FromCoreRegister(IP); // R12 } ManagedRegister ArmManagedRuntimeCallingConvention::ReturnRegister() { if (kArm32QuickCodeUseSoftFloat) { switch (GetShorty()[0]) { case 'V': return ArmManagedRegister::NoRegister(); case 'D': case 'J': return ArmManagedRegister::FromRegisterPair(R0_R1); default: return ArmManagedRegister::FromCoreRegister(R0); } } else { switch (GetShorty()[0]) { case 'V': return ArmManagedRegister::NoRegister(); case 'D': return ArmManagedRegister::FromDRegister(D0); case 'F': return ArmManagedRegister::FromSRegister(S0); case 'J': return ArmManagedRegister::FromRegisterPair(R0_R1); default: return ArmManagedRegister::FromCoreRegister(R0); } } } ManagedRegister ArmJniCallingConvention::ReturnRegister() { switch (GetShorty()[0]) { case 'V': return ArmManagedRegister::NoRegister(); case 'D': case 'J': return ArmManagedRegister::FromRegisterPair(R0_R1); default: return ArmManagedRegister::FromCoreRegister(R0); } } ManagedRegister ArmJniCallingConvention::IntReturnRegister() { return ArmManagedRegister::FromCoreRegister(R0); } // Managed runtime calling convention ManagedRegister ArmManagedRuntimeCallingConvention::MethodRegister() { return ArmManagedRegister::FromCoreRegister(R0); } bool ArmManagedRuntimeCallingConvention::IsCurrentParamInRegister() { return false; // Everything moved to stack on entry. } bool ArmManagedRuntimeCallingConvention::IsCurrentParamOnStack() { return true; } ManagedRegister ArmManagedRuntimeCallingConvention::CurrentParamRegister() { LOG(FATAL) << "Should not reach here"; return ManagedRegister::NoRegister(); } FrameOffset ArmManagedRuntimeCallingConvention::CurrentParamStackOffset() { CHECK(IsCurrentParamOnStack()); FrameOffset result = FrameOffset(displacement_.Int32Value() + // displacement kFramePointerSize + // Method* (itr_slots_ * kFramePointerSize)); // offset into in args return result; } const ManagedRegisterEntrySpills& ArmManagedRuntimeCallingConvention::EntrySpills() { // We spill the argument registers on ARM to free them up for scratch use, we then assume // all arguments are on the stack. if (kArm32QuickCodeUseSoftFloat) { if (entry_spills_.size() == 0) { size_t num_spills = NumArgs() + NumLongOrDoubleArgs(); if (num_spills > 0) { entry_spills_.push_back(ArmManagedRegister::FromCoreRegister(R1)); if (num_spills > 1) { entry_spills_.push_back(ArmManagedRegister::FromCoreRegister(R2)); if (num_spills > 2) { entry_spills_.push_back(ArmManagedRegister::FromCoreRegister(R3)); } } } } } else { if ((entry_spills_.size() == 0) && (NumArgs() > 0)) { uint32_t gpr_index = 1; // R0 ~ R3. Reserve r0 for ArtMethod*. uint32_t fpr_index = 0; // S0 ~ S15. uint32_t fpr_double_index = 0; // D0 ~ D7. ResetIterator(FrameOffset(0)); while (HasNext()) { if (IsCurrentParamAFloatOrDouble()) { if (IsCurrentParamADouble()) { // Double. // Double should not overlap with float. fpr_double_index = (std::max(fpr_double_index * 2, RoundUp(fpr_index, 2))) / 2; if (fpr_double_index < arraysize(kHFDArgumentRegisters)) { entry_spills_.push_back( ArmManagedRegister::FromDRegister(kHFDArgumentRegisters[fpr_double_index++])); } else { entry_spills_.push_back(ManagedRegister::NoRegister(), 8); } } else { // Float. // Float should not overlap with double. if (fpr_index % 2 == 0) { fpr_index = std::max(fpr_double_index * 2, fpr_index); } if (fpr_index < arraysize(kHFSArgumentRegisters)) { entry_spills_.push_back( ArmManagedRegister::FromSRegister(kHFSArgumentRegisters[fpr_index++])); } else { entry_spills_.push_back(ManagedRegister::NoRegister(), 4); } } } else { // FIXME: Pointer this returns as both reference and long. if (IsCurrentParamALong() && !IsCurrentParamAReference()) { // Long. if (gpr_index < arraysize(kHFCoreArgumentRegisters) - 1) { // Skip R1, and use R2_R3 if the long is the first parameter. if (gpr_index == 1) { gpr_index++; } } // If it spans register and memory, we must use the value in memory. if (gpr_index < arraysize(kHFCoreArgumentRegisters) - 1) { entry_spills_.push_back( ArmManagedRegister::FromCoreRegister(kHFCoreArgumentRegisters[gpr_index++])); } else if (gpr_index == arraysize(kHFCoreArgumentRegisters) - 1) { gpr_index++; entry_spills_.push_back(ManagedRegister::NoRegister(), 4); } else { entry_spills_.push_back(ManagedRegister::NoRegister(), 4); } } // High part of long or 32-bit argument. if (gpr_index < arraysize(kHFCoreArgumentRegisters)) { entry_spills_.push_back( ArmManagedRegister::FromCoreRegister(kHFCoreArgumentRegisters[gpr_index++])); } else { entry_spills_.push_back(ManagedRegister::NoRegister(), 4); } } Next(); } } } return entry_spills_; } // JNI calling convention ArmJniCallingConvention::ArmJniCallingConvention(bool is_static, bool is_synchronized, bool is_critical_native, const char* shorty) : JniCallingConvention(is_static, is_synchronized, is_critical_native, shorty, kArmPointerSize) { // AAPCS 4.1 specifies fundamental alignments for each type. All of our stack arguments are // usually 4-byte aligned, however longs and doubles must be 8 bytes aligned. Add padding to // maintain 8-byte alignment invariant. // // Compute padding to ensure longs and doubles are not split in AAPCS. size_t shift = 0; size_t cur_arg, cur_reg; if (LIKELY(HasExtraArgumentsForJni())) { // Ignore the 'this' jobject or jclass for static methods and the JNIEnv. // We start at the aligned register r2. // // Ignore the first 2 parameters because they are guaranteed to be aligned. cur_arg = NumImplicitArgs(); // skip the "this" arg. cur_reg = 2; // skip {r0=JNIEnv, r1=jobject} / {r0=JNIEnv, r1=jclass} parameters (start at r2). } else { // Check every parameter. cur_arg = 0; cur_reg = 0; } // TODO: Maybe should just use IsCurrentParamALongOrDouble instead to be cleaner? // (this just seems like an unnecessary micro-optimization). // Shift across a logical register mapping that looks like: // // | r0 | r1 | r2 | r3 | SP | SP+4| SP+8 | SP+12 | ... | SP+n | SP+n+4 | // // (where SP is some arbitrary stack pointer that our 0th stack arg would go into). // // Any time there would normally be a long/double in an odd logical register, // we have to push out the rest of the mappings by 4 bytes to maintain an 8-byte alignment. // // This works for both physical register pairs {r0, r1}, {r2, r3} and for when // the value is on the stack. // // For example: // (a) long would normally go into r1, but we shift it into r2 // | INT | (PAD) | LONG | // | r0 | r1 | r2 | r3 | // // (b) long would normally go into r3, but we shift it into SP // | INT | INT | INT | (PAD) | LONG | // | r0 | r1 | r2 | r3 | SP+4 SP+8| // // where INT is any <=4 byte arg, and LONG is any 8-byte arg. for (; cur_arg < NumArgs(); cur_arg++) { if (IsParamALongOrDouble(cur_arg)) { if ((cur_reg & 1) != 0) { // check that it's in a logical contiguous register pair shift += 4; cur_reg++; // additional bump to ensure alignment } cur_reg += 2; // bump the iterator twice for every long argument } else { cur_reg++; // bump the iterator for every non-long argument } } if (cur_reg < kJniArgumentRegisterCount) { // As a special case when, as a result of shifting (or not) there are no arguments on the stack, // we actually have 0 stack padding. // // For example with @CriticalNative and: // (int, long) -> shifts the long but doesn't need to pad the stack // // shift // \/ // | INT | (PAD) | LONG | (EMPTY) ... // | r0 | r1 | r2 | r3 | SP ... // /\ // no stack padding padding_ = 0; } else { padding_ = shift; } // TODO: add some new JNI tests for @CriticalNative that introduced new edge cases // (a) Using r0,r1 pair = f(long,...) // (b) Shifting r1 long into r2,r3 pair = f(int, long, int, ...); // (c) Shifting but not introducing a stack padding = f(int, long); } uint32_t ArmJniCallingConvention::CoreSpillMask() const { // Compute spill mask to agree with callee saves initialized in the constructor return kCoreCalleeSpillMask; } uint32_t ArmJniCallingConvention::FpSpillMask() const { return kFpCalleeSpillMask; } ManagedRegister ArmJniCallingConvention::ReturnScratchRegister() const { return ArmManagedRegister::FromCoreRegister(R2); } size_t ArmJniCallingConvention::FrameSize() { // Method*, LR and callee save area size, local reference segment state const size_t method_ptr_size = static_cast<size_t>(kArmPointerSize); const size_t lr_return_addr_size = kFramePointerSize; const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize; size_t frame_data_size = method_ptr_size + lr_return_addr_size + callee_save_area_size; if (LIKELY(HasLocalReferenceSegmentState())) { // local reference segment state frame_data_size += kFramePointerSize; // TODO: Probably better to use sizeof(IRTSegmentState) here... } // References plus link_ (pointer) and number_of_references_ (uint32_t) for HandleScope header const size_t handle_scope_size = HandleScope::SizeOf(kArmPointerSize, ReferenceCount()); size_t total_size = frame_data_size; if (LIKELY(HasHandleScope())) { // HandleScope is sometimes excluded. total_size += handle_scope_size; // handle scope size } // Plus return value spill area size total_size += SizeOfReturnValue(); return RoundUp(total_size, kStackAlignment); } size_t ArmJniCallingConvention::OutArgSize() { // TODO: Identical to x86_64 except for also adding additional padding. return RoundUp(NumberOfOutgoingStackArgs() * kFramePointerSize + padding_, kStackAlignment); } ArrayRef<const ManagedRegister> ArmJniCallingConvention::CalleeSaveRegisters() const { return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters); } // JniCallingConvention ABI follows AAPCS where longs and doubles must occur // in even register numbers and stack slots void ArmJniCallingConvention::Next() { // Update the iterator by usual JNI rules. JniCallingConvention::Next(); if (LIKELY(HasNext())) { // Avoid CHECK failure for IsCurrentParam // Ensure slot is 8-byte aligned for longs/doubles (AAPCS). if (IsCurrentParamALongOrDouble() && ((itr_slots_ & 0x1u) != 0)) { // itr_slots_ needs to be an even number, according to AAPCS. itr_slots_++; } } } bool ArmJniCallingConvention::IsCurrentParamInRegister() { return itr_slots_ < kJniArgumentRegisterCount; } bool ArmJniCallingConvention::IsCurrentParamOnStack() { return !IsCurrentParamInRegister(); } ManagedRegister ArmJniCallingConvention::CurrentParamRegister() { CHECK_LT(itr_slots_, kJniArgumentRegisterCount); if (IsCurrentParamALongOrDouble()) { // AAPCS 5.1.1 requires 64-bit values to be in a consecutive register pair: // "A double-word sized type is passed in two consecutive registers (e.g., r0 and r1, or r2 and // r3). The content of the registers is as if the value had been loaded from memory // representation with a single LDM instruction." if (itr_slots_ == 0u) { return ArmManagedRegister::FromRegisterPair(R0_R1); } else if (itr_slots_ == 2u) { return ArmManagedRegister::FromRegisterPair(R2_R3); } else { // The register can either be R0 (+R1) or R2 (+R3). Cannot be other values. LOG(FATAL) << "Invalid iterator register position for a long/double " << itr_args_; UNREACHABLE(); } } else { // All other types can fit into one register. return ArmManagedRegister::FromCoreRegister(kJniArgumentRegisters[itr_slots_]); } } FrameOffset ArmJniCallingConvention::CurrentParamStackOffset() { CHECK_GE(itr_slots_, kJniArgumentRegisterCount); size_t offset = displacement_.Int32Value() - OutArgSize() + ((itr_slots_ - kJniArgumentRegisterCount) * kFramePointerSize); CHECK_LT(offset, OutArgSize()); return FrameOffset(offset); } size_t ArmJniCallingConvention::NumberOfOutgoingStackArgs() { size_t static_args = HasSelfClass() ? 1 : 0; // count jclass // regular argument parameters and this size_t param_args = NumArgs() + NumLongOrDoubleArgs(); // twice count 8-byte args // XX: Why is the long/ordouble counted twice but not JNIEnv* ??? // count JNIEnv* less arguments in registers size_t internal_args = (HasJniEnv() ? 1 : 0 /* jni env */); size_t total_args = static_args + param_args + internal_args; return total_args - std::min(kJniArgumentRegisterCount, static_cast<size_t>(total_args)); // TODO: Very similar to x86_64 except for the return pc. } } // namespace arm } // namespace art