/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "calling_convention_mips.h" #include "base/logging.h" #include "handle_scope-inl.h" #include "utils/mips/managed_register_mips.h" namespace art { namespace mips { // // JNI calling convention constants. // // Up to how many float-like (float, double) args can be enregistered in floating-point registers. // The rest of the args must go in integer registers or on the stack. constexpr size_t kMaxFloatOrDoubleRegisterArguments = 2u; // Up to how many integer-like (pointers, objects, longs, int, short, bool, etc) args can be // enregistered. The rest of the args must go on the stack. constexpr size_t kMaxIntLikeRegisterArguments = 4u; static const Register kJniCoreArgumentRegisters[] = { A0, A1, A2, A3 }; static const FRegister kJniFArgumentRegisters[] = { F12, F14 }; static const DRegister kJniDArgumentRegisters[] = { D6, D7 }; // // Managed calling convention constants. // static const Register kManagedCoreArgumentRegisters[] = { A0, A1, A2, A3, T0, T1 }; static const FRegister kManagedFArgumentRegisters[] = { F8, F10, F12, F14, F16, F18 }; static const DRegister kManagedDArgumentRegisters[] = { D4, D5, D6, D7, D8, D9 }; static constexpr ManagedRegister kCalleeSaveRegisters[] = { // Core registers. MipsManagedRegister::FromCoreRegister(S2), MipsManagedRegister::FromCoreRegister(S3), MipsManagedRegister::FromCoreRegister(S4), MipsManagedRegister::FromCoreRegister(S5), MipsManagedRegister::FromCoreRegister(S6), MipsManagedRegister::FromCoreRegister(S7), MipsManagedRegister::FromCoreRegister(FP), // No hard float callee saves. }; static constexpr uint32_t CalculateCoreCalleeSpillMask() { // RA is a special callee save which is not reported by CalleeSaveRegisters(). uint32_t result = 1 << RA; for (auto&& r : kCalleeSaveRegisters) { if (r.AsMips().IsCoreRegister()) { result |= (1 << r.AsMips().AsCoreRegister()); } } return result; } static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask(); static constexpr uint32_t kFpCalleeSpillMask = 0u; // Calling convention ManagedRegister MipsManagedRuntimeCallingConvention::InterproceduralScratchRegister() { return MipsManagedRegister::FromCoreRegister(T9); } ManagedRegister MipsJniCallingConvention::InterproceduralScratchRegister() { return MipsManagedRegister::FromCoreRegister(T9); } static ManagedRegister ReturnRegisterForShorty(const char* shorty) { if (shorty[0] == 'F') { return MipsManagedRegister::FromFRegister(F0); } else if (shorty[0] == 'D') { return MipsManagedRegister::FromDRegister(D0); } else if (shorty[0] == 'J') { return MipsManagedRegister::FromRegisterPair(V0_V1); } else if (shorty[0] == 'V') { return MipsManagedRegister::NoRegister(); } else { return MipsManagedRegister::FromCoreRegister(V0); } } ManagedRegister MipsManagedRuntimeCallingConvention::ReturnRegister() { return ReturnRegisterForShorty(GetShorty()); } ManagedRegister MipsJniCallingConvention::ReturnRegister() { return ReturnRegisterForShorty(GetShorty()); } ManagedRegister MipsJniCallingConvention::IntReturnRegister() { return MipsManagedRegister::FromCoreRegister(V0); } // Managed runtime calling convention ManagedRegister MipsManagedRuntimeCallingConvention::MethodRegister() { return MipsManagedRegister::FromCoreRegister(A0); } bool MipsManagedRuntimeCallingConvention::IsCurrentParamInRegister() { return false; // Everything moved to stack on entry. } bool MipsManagedRuntimeCallingConvention::IsCurrentParamOnStack() { return true; } ManagedRegister MipsManagedRuntimeCallingConvention::CurrentParamRegister() { LOG(FATAL) << "Should not reach here"; return ManagedRegister::NoRegister(); } FrameOffset MipsManagedRuntimeCallingConvention::CurrentParamStackOffset() { CHECK(IsCurrentParamOnStack()); FrameOffset result = FrameOffset(displacement_.Int32Value() + // displacement kFramePointerSize + // Method* (itr_slots_ * kFramePointerSize)); // offset into in args return result; } const ManagedRegisterEntrySpills& MipsManagedRuntimeCallingConvention::EntrySpills() { // We spill the argument registers on MIPS to free them up for scratch use, we then assume // all arguments are on the stack. if ((entry_spills_.size() == 0) && (NumArgs() > 0)) { uint32_t gpr_index = 1; // Skip A0, it is used for ArtMethod*. uint32_t fpr_index = 0; for (ResetIterator(FrameOffset(0)); HasNext(); Next()) { if (IsCurrentParamAFloatOrDouble()) { if (IsCurrentParamADouble()) { if (fpr_index < arraysize(kManagedDArgumentRegisters)) { entry_spills_.push_back( MipsManagedRegister::FromDRegister(kManagedDArgumentRegisters[fpr_index++])); } else { entry_spills_.push_back(ManagedRegister::NoRegister(), 8); } } else { if (fpr_index < arraysize(kManagedFArgumentRegisters)) { entry_spills_.push_back( MipsManagedRegister::FromFRegister(kManagedFArgumentRegisters[fpr_index++])); } else { entry_spills_.push_back(ManagedRegister::NoRegister(), 4); } } } else { if (IsCurrentParamALong() && !IsCurrentParamAReference()) { if (gpr_index == 1 || gpr_index == 3) { // Don't use A1-A2(A3-T0) as a register pair, move to A2-A3(T0-T1) instead. gpr_index++; } if (gpr_index < arraysize(kManagedCoreArgumentRegisters) - 1) { entry_spills_.push_back( MipsManagedRegister::FromCoreRegister(kManagedCoreArgumentRegisters[gpr_index++])); } else if (gpr_index == arraysize(kManagedCoreArgumentRegisters) - 1) { gpr_index++; entry_spills_.push_back(ManagedRegister::NoRegister(), 4); } else { entry_spills_.push_back(ManagedRegister::NoRegister(), 4); } } if (gpr_index < arraysize(kManagedCoreArgumentRegisters)) { entry_spills_.push_back( MipsManagedRegister::FromCoreRegister(kManagedCoreArgumentRegisters[gpr_index++])); } else { entry_spills_.push_back(ManagedRegister::NoRegister(), 4); } } } } return entry_spills_; } // JNI calling convention MipsJniCallingConvention::MipsJniCallingConvention(bool is_static, bool is_synchronized, bool is_critical_native, const char* shorty) : JniCallingConvention(is_static, is_synchronized, is_critical_native, shorty, kMipsPointerSize) { // SYSTEM V - Application Binary Interface (MIPS RISC Processor): // Data Representation - Fundamental Types (3-4) specifies fundamental alignments for each type. // "Each member is assigned to the lowest available offset with the appropriate alignment. This // may require internal padding, depending on the previous member." // // All of our stack arguments are usually 4-byte aligned, however longs and doubles must be 8 // bytes aligned. Add padding to maintain 8-byte alignment invariant. // // Compute padding to ensure longs and doubles are not split in o32. size_t padding = 0; size_t cur_arg, cur_reg; if (LIKELY(HasExtraArgumentsForJni())) { // Ignore the 'this' jobject or jclass for static methods and the JNIEnv. // We start at the aligned register A2. // // Ignore the first 2 parameters because they are guaranteed to be aligned. cur_arg = NumImplicitArgs(); // Skip the "this" argument. cur_reg = 2; // Skip {A0=JNIEnv, A1=jobject} / {A0=JNIEnv, A1=jclass} parameters (start at A2). } else { // Check every parameter. cur_arg = 0; cur_reg = 0; } // Shift across a logical register mapping that looks like: // // | A0 | A1 | A2 | A3 | SP+16 | SP+20 | SP+24 | ... | SP+n | SP+n+4 | // // or some of variants with floating-point registers (F12 and F14), for example // // | F12 | F14 | A3 | SP+16 | SP+20 | SP+24 | ... | SP+n | SP+n+4 | // // (where SP is the stack pointer at the start of called function). // // Any time there would normally be a long/double in an odd logical register, // we have to push out the rest of the mappings by 4 bytes to maintain an 8-byte alignment. // // This works for both physical register pairs {A0, A1}, {A2, A3}, // floating-point registers F12, F14 and for when the value is on the stack. // // For example: // (a) long would normally go into A1, but we shift it into A2 // | INT | (PAD) | LONG | // | A0 | A1 | A2 | A3 | // // (b) long would normally go into A3, but we shift it into SP // | INT | INT | INT | (PAD) | LONG | // | A0 | A1 | A2 | A3 | SP+16 SP+20 | // // where INT is any <=4 byte arg, and LONG is any 8-byte arg. for (; cur_arg < NumArgs(); cur_arg++) { if (IsParamALongOrDouble(cur_arg)) { if ((cur_reg & 1) != 0) { padding += 4; cur_reg++; // Additional bump to ensure alignment. } cur_reg += 2; // Bump the iterator twice for every long argument. } else { cur_reg++; // Bump the iterator for every argument. } } if (cur_reg < kMaxIntLikeRegisterArguments) { // As a special case when, as a result of shifting (or not) there are no arguments on the stack, // we actually have 0 stack padding. // // For example with @CriticalNative and: // (int, long) -> shifts the long but doesn't need to pad the stack // // shift // \/ // | INT | (PAD) | LONG | (EMPTY) ... // | r0 | r1 | r2 | r3 | SP ... // /\ // no stack padding padding_ = 0; } else { padding_ = padding; } // Argument Passing (3-17): // "When the first argument is integral, the remaining arguments are passed in the integer // registers." // // "The rules that determine which arguments go into registers and which ones must be passed on // the stack are most easily explained by considering the list of arguments as a structure, // aligned according to normal structure rules. Mapping of this structure into the combination of // stack and registers is as follows: up to two leading floating-point arguments can be passed in // $f12 and $f14; everything else with a structure offset greater than or equal to 16 is passed on // the stack. The remainder of the arguments are passed in $4..$7 based on their structure offset. // Holes left in the structure for alignment are unused, whether in registers or in the stack." // // For example with @CriticalNative and: // (a) first argument is not floating-point, so all go into integer registers // | INT | FLOAT | DOUBLE | // | A0 | A1 | A2 | A3 | // (b) first argument is floating-point, but 2nd is integer // | FLOAT | INT | DOUBLE | // | F12 | A1 | A2 | A3 | // (c) first two arguments are floating-point (float, double) // | FLOAT | (PAD) | DOUBLE | INT | // | F12 | | F14 | SP+16 | // (d) first two arguments are floating-point (double, float) // | DOUBLE | FLOAT | INT | // | F12 | F14 | A3 | // (e) first three arguments are floating-point, but just first two will go into fp registers // | DOUBLE | FLOAT | FLOAT | // | F12 | F14 | A3 | // // Find out if the first argument is a floating-point. In that case, floating-point registers will // be used for up to two leading floating-point arguments. Otherwise, all arguments will be passed // using integer registers. use_fp_arg_registers_ = false; if (is_critical_native) { if (NumArgs() > 0) { if (IsParamAFloatOrDouble(0)) { use_fp_arg_registers_ = true; } } } } uint32_t MipsJniCallingConvention::CoreSpillMask() const { return kCoreCalleeSpillMask; } uint32_t MipsJniCallingConvention::FpSpillMask() const { return kFpCalleeSpillMask; } ManagedRegister MipsJniCallingConvention::ReturnScratchRegister() const { return MipsManagedRegister::FromCoreRegister(AT); } size_t MipsJniCallingConvention::FrameSize() { // ArtMethod*, RA and callee save area size, local reference segment state. const size_t method_ptr_size = static_cast<size_t>(kMipsPointerSize); const size_t ra_return_addr_size = kFramePointerSize; const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize; size_t frame_data_size = method_ptr_size + ra_return_addr_size + callee_save_area_size; if (LIKELY(HasLocalReferenceSegmentState())) { // Local reference segment state. frame_data_size += kFramePointerSize; } // References plus 2 words for HandleScope header. const size_t handle_scope_size = HandleScope::SizeOf(kMipsPointerSize, ReferenceCount()); size_t total_size = frame_data_size; if (LIKELY(HasHandleScope())) { // HandleScope is sometimes excluded. total_size += handle_scope_size; // Handle scope size. } // Plus return value spill area size. total_size += SizeOfReturnValue(); return RoundUp(total_size, kStackAlignment); } size_t MipsJniCallingConvention::OutArgSize() { // Argument Passing (3-17): // "Despite the fact that some or all of the arguments to a function are passed in registers, // always allocate space on the stack for all arguments. This stack space should be a structure // large enough to contain all the arguments, aligned according to normal structure rules (after // promotion and structure return pointer insertion). The locations within the stack frame used // for arguments are called the home locations." // // Allocate 16 bytes for home locations + space needed for stack arguments. return RoundUp( (kMaxIntLikeRegisterArguments + NumberOfOutgoingStackArgs()) * kFramePointerSize + padding_, kStackAlignment); } ArrayRef<const ManagedRegister> MipsJniCallingConvention::CalleeSaveRegisters() const { return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters); } // JniCallingConvention ABI follows o32 where longs and doubles must occur // in even register numbers and stack slots. void MipsJniCallingConvention::Next() { JniCallingConvention::Next(); if (LIKELY(HasNext())) { // Avoid CHECK failure for IsCurrentParam // Ensure slot is 8-byte aligned for longs/doubles (o32). if (IsCurrentParamALongOrDouble() && ((itr_slots_ & 0x1u) != 0)) { // itr_slots_ needs to be an even number, according to o32. itr_slots_++; } } } bool MipsJniCallingConvention::IsCurrentParamInRegister() { // Argument Passing (3-17): // "The rules that determine which arguments go into registers and which ones must be passed on // the stack are most easily explained by considering the list of arguments as a structure, // aligned according to normal structure rules. Mapping of this structure into the combination of // stack and registers is as follows: up to two leading floating-point arguments can be passed in // $f12 and $f14; everything else with a structure offset greater than or equal to 16 is passed on // the stack. The remainder of the arguments are passed in $4..$7 based on their structure offset. // Holes left in the structure for alignment are unused, whether in registers or in the stack." // // Even when floating-point registers are used, there can be up to 4 arguments passed in // registers. return itr_slots_ < kMaxIntLikeRegisterArguments; } bool MipsJniCallingConvention::IsCurrentParamOnStack() { return !IsCurrentParamInRegister(); } ManagedRegister MipsJniCallingConvention::CurrentParamRegister() { CHECK_LT(itr_slots_, kMaxIntLikeRegisterArguments); // Up to two leading floating-point arguments can be passed in floating-point registers. if (use_fp_arg_registers_ && (itr_args_ < kMaxFloatOrDoubleRegisterArguments)) { if (IsCurrentParamAFloatOrDouble()) { if (IsCurrentParamADouble()) { return MipsManagedRegister::FromDRegister(kJniDArgumentRegisters[itr_args_]); } else { return MipsManagedRegister::FromFRegister(kJniFArgumentRegisters[itr_args_]); } } } // All other arguments (including other floating-point arguments) will be passed in integer // registers. if (IsCurrentParamALongOrDouble()) { if (itr_slots_ == 0u) { return MipsManagedRegister::FromRegisterPair(A0_A1); } else { CHECK_EQ(itr_slots_, 2u); return MipsManagedRegister::FromRegisterPair(A2_A3); } } else { return MipsManagedRegister::FromCoreRegister(kJniCoreArgumentRegisters[itr_slots_]); } } FrameOffset MipsJniCallingConvention::CurrentParamStackOffset() { CHECK_GE(itr_slots_, kMaxIntLikeRegisterArguments); size_t offset = displacement_.Int32Value() - OutArgSize() + (itr_slots_ * kFramePointerSize); CHECK_LT(offset, OutArgSize()); return FrameOffset(offset); } size_t MipsJniCallingConvention::NumberOfOutgoingStackArgs() { size_t static_args = HasSelfClass() ? 1 : 0; // Count jclass. // Regular argument parameters and this. size_t param_args = NumArgs() + NumLongOrDoubleArgs(); // Twice count 8-byte args. // Count JNIEnv* less arguments in registers. size_t internal_args = (HasJniEnv() ? 1 : 0); size_t total_args = static_args + param_args + internal_args; return total_args - std::min(kMaxIntLikeRegisterArguments, static_cast<size_t>(total_args)); } } // namespace mips } // namespace art