/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_MIPS_H_ #define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_MIPS_H_ #include "code_generator.h" #include "dex_file_types.h" #include "driver/compiler_options.h" #include "nodes.h" #include "parallel_move_resolver.h" #include "string_reference.h" #include "utils/mips/assembler_mips.h" #include "utils/type_reference.h" namespace art { namespace mips { // InvokeDexCallingConvention registers static constexpr Register kParameterCoreRegisters[] = { A1, A2, A3, T0, T1 }; static constexpr size_t kParameterCoreRegistersLength = arraysize(kParameterCoreRegisters); static constexpr FRegister kParameterFpuRegisters[] = { F8, F10, F12, F14, F16, F18 }; static constexpr size_t kParameterFpuRegistersLength = arraysize(kParameterFpuRegisters); // InvokeRuntimeCallingConvention registers static constexpr Register kRuntimeParameterCoreRegisters[] = { A0, A1, A2, A3 }; static constexpr size_t kRuntimeParameterCoreRegistersLength = arraysize(kRuntimeParameterCoreRegisters); static constexpr FRegister kRuntimeParameterFpuRegisters[] = { F12, F14 }; static constexpr size_t kRuntimeParameterFpuRegistersLength = arraysize(kRuntimeParameterFpuRegisters); static constexpr Register kCoreCalleeSaves[] = { S0, S1, S2, S3, S4, S5, S6, S7, FP, RA }; static constexpr FRegister kFpuCalleeSaves[] = { F20, F22, F24, F26, F28, F30 }; class CodeGeneratorMIPS; class InvokeDexCallingConvention : public CallingConvention<Register, FRegister> { public: InvokeDexCallingConvention() : CallingConvention(kParameterCoreRegisters, kParameterCoreRegistersLength, kParameterFpuRegisters, kParameterFpuRegistersLength, kMipsPointerSize) {} private: DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConvention); }; class InvokeDexCallingConventionVisitorMIPS : public InvokeDexCallingConventionVisitor { public: InvokeDexCallingConventionVisitorMIPS() {} virtual ~InvokeDexCallingConventionVisitorMIPS() {} Location GetNextLocation(Primitive::Type type) OVERRIDE; Location GetReturnLocation(Primitive::Type type) const OVERRIDE; Location GetMethodLocation() const OVERRIDE; private: InvokeDexCallingConvention calling_convention; DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitorMIPS); }; class InvokeRuntimeCallingConvention : public CallingConvention<Register, FRegister> { public: InvokeRuntimeCallingConvention() : CallingConvention(kRuntimeParameterCoreRegisters, kRuntimeParameterCoreRegistersLength, kRuntimeParameterFpuRegisters, kRuntimeParameterFpuRegistersLength, kMipsPointerSize) {} Location GetReturnLocation(Primitive::Type return_type); private: DISALLOW_COPY_AND_ASSIGN(InvokeRuntimeCallingConvention); }; class FieldAccessCallingConventionMIPS : public FieldAccessCallingConvention { public: FieldAccessCallingConventionMIPS() {} Location GetObjectLocation() const OVERRIDE { return Location::RegisterLocation(A1); } Location GetFieldIndexLocation() const OVERRIDE { return Location::RegisterLocation(A0); } Location GetReturnLocation(Primitive::Type type) const OVERRIDE { return Primitive::Is64BitType(type) ? Location::RegisterPairLocation(V0, V1) : Location::RegisterLocation(V0); } Location GetSetValueLocation(Primitive::Type type, bool is_instance) const OVERRIDE { return Primitive::Is64BitType(type) ? Location::RegisterPairLocation(A2, A3) : (is_instance ? Location::RegisterLocation(A2) : Location::RegisterLocation(A1)); } Location GetFpuLocation(Primitive::Type type ATTRIBUTE_UNUSED) const OVERRIDE { return Location::FpuRegisterLocation(F0); } private: DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConventionMIPS); }; class ParallelMoveResolverMIPS : public ParallelMoveResolverWithSwap { public: ParallelMoveResolverMIPS(ArenaAllocator* allocator, CodeGeneratorMIPS* codegen) : ParallelMoveResolverWithSwap(allocator), codegen_(codegen) {} void EmitMove(size_t index) OVERRIDE; void EmitSwap(size_t index) OVERRIDE; void SpillScratch(int reg) OVERRIDE; void RestoreScratch(int reg) OVERRIDE; void Exchange(int index1, int index2, bool double_slot); MipsAssembler* GetAssembler() const; private: CodeGeneratorMIPS* const codegen_; DISALLOW_COPY_AND_ASSIGN(ParallelMoveResolverMIPS); }; class SlowPathCodeMIPS : public SlowPathCode { public: explicit SlowPathCodeMIPS(HInstruction* instruction) : SlowPathCode(instruction), entry_label_(), exit_label_() {} MipsLabel* GetEntryLabel() { return &entry_label_; } MipsLabel* GetExitLabel() { return &exit_label_; } private: MipsLabel entry_label_; MipsLabel exit_label_; DISALLOW_COPY_AND_ASSIGN(SlowPathCodeMIPS); }; class LocationsBuilderMIPS : public HGraphVisitor { public: LocationsBuilderMIPS(HGraph* graph, CodeGeneratorMIPS* codegen) : HGraphVisitor(graph), codegen_(codegen) {} #define DECLARE_VISIT_INSTRUCTION(name, super) \ void Visit##name(H##name* instr) OVERRIDE; FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION) FOR_EACH_CONCRETE_INSTRUCTION_MIPS(DECLARE_VISIT_INSTRUCTION) #undef DECLARE_VISIT_INSTRUCTION void VisitInstruction(HInstruction* instruction) OVERRIDE { LOG(FATAL) << "Unreachable instruction " << instruction->DebugName() << " (id " << instruction->GetId() << ")"; } private: void HandleInvoke(HInvoke* invoke); void HandleBinaryOp(HBinaryOperation* operation); void HandleCondition(HCondition* instruction); void HandleShift(HBinaryOperation* operation); void HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info); void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info); Location RegisterOrZeroConstant(HInstruction* instruction); Location FpuRegisterOrConstantForStore(HInstruction* instruction); InvokeDexCallingConventionVisitorMIPS parameter_visitor_; CodeGeneratorMIPS* const codegen_; DISALLOW_COPY_AND_ASSIGN(LocationsBuilderMIPS); }; class InstructionCodeGeneratorMIPS : public InstructionCodeGenerator { public: InstructionCodeGeneratorMIPS(HGraph* graph, CodeGeneratorMIPS* codegen); #define DECLARE_VISIT_INSTRUCTION(name, super) \ void Visit##name(H##name* instr) OVERRIDE; FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION) FOR_EACH_CONCRETE_INSTRUCTION_MIPS(DECLARE_VISIT_INSTRUCTION) #undef DECLARE_VISIT_INSTRUCTION void VisitInstruction(HInstruction* instruction) OVERRIDE { LOG(FATAL) << "Unreachable instruction " << instruction->DebugName() << " (id " << instruction->GetId() << ")"; } MipsAssembler* GetAssembler() const { return assembler_; } // Compare-and-jump packed switch generates approx. 3 + 2.5 * N 32-bit // instructions for N cases. // Table-based packed switch generates approx. 11 32-bit instructions // and N 32-bit data words for N cases. // At N = 6 they come out as 18 and 17 32-bit words respectively. // We switch to the table-based method starting with 7 cases. static constexpr uint32_t kPackedSwitchJumpTableThreshold = 6; private: void GenerateClassInitializationCheck(SlowPathCodeMIPS* slow_path, Register class_reg); void GenerateMemoryBarrier(MemBarrierKind kind); void GenerateSuspendCheck(HSuspendCheck* check, HBasicBlock* successor); void HandleBinaryOp(HBinaryOperation* operation); void HandleCondition(HCondition* instruction); void HandleShift(HBinaryOperation* operation); void HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info, uint32_t dex_pc, bool value_can_be_null); void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info, uint32_t dex_pc); // Generate a heap reference load using one register `out`: // // out <- *(out + offset) // // while honoring heap poisoning and/or read barriers (if any). // // Location `maybe_temp` is used when generating a read barrier and // shall be a register in that case; it may be an invalid location // otherwise. void GenerateReferenceLoadOneRegister(HInstruction* instruction, Location out, uint32_t offset, Location maybe_temp, ReadBarrierOption read_barrier_option); // Generate a heap reference load using two different registers // `out` and `obj`: // // out <- *(obj + offset) // // while honoring heap poisoning and/or read barriers (if any). // // Location `maybe_temp` is used when generating a Baker's (fast // path) read barrier and shall be a register in that case; it may // be an invalid location otherwise. void GenerateReferenceLoadTwoRegisters(HInstruction* instruction, Location out, Location obj, uint32_t offset, Location maybe_temp, ReadBarrierOption read_barrier_option); // Generate a GC root reference load: // // root <- *(obj + offset) // // while honoring read barriers (if any). void GenerateGcRootFieldLoad(HInstruction* instruction, Location root, Register obj, uint32_t offset, ReadBarrierOption read_barrier_option); void GenerateIntCompare(IfCondition cond, LocationSummary* locations); // When the function returns `false` it means that the condition holds if `dst` is non-zero // and doesn't hold if `dst` is zero. If it returns `true`, the roles of zero and non-zero // `dst` are exchanged. bool MaterializeIntCompare(IfCondition cond, LocationSummary* input_locations, Register dst); void GenerateIntCompareAndBranch(IfCondition cond, LocationSummary* locations, MipsLabel* label); void GenerateLongCompareAndBranch(IfCondition cond, LocationSummary* locations, MipsLabel* label); void GenerateFpCompare(IfCondition cond, bool gt_bias, Primitive::Type type, LocationSummary* locations); // When the function returns `false` it means that the condition holds if the condition // code flag `cc` is non-zero and doesn't hold if `cc` is zero. If it returns `true`, // the roles of zero and non-zero values of the `cc` flag are exchanged. bool MaterializeFpCompareR2(IfCondition cond, bool gt_bias, Primitive::Type type, LocationSummary* input_locations, int cc); // When the function returns `false` it means that the condition holds if `dst` is non-zero // and doesn't hold if `dst` is zero. If it returns `true`, the roles of zero and non-zero // `dst` are exchanged. bool MaterializeFpCompareR6(IfCondition cond, bool gt_bias, Primitive::Type type, LocationSummary* input_locations, FRegister dst); void GenerateFpCompareAndBranch(IfCondition cond, bool gt_bias, Primitive::Type type, LocationSummary* locations, MipsLabel* label); void GenerateTestAndBranch(HInstruction* instruction, size_t condition_input_index, MipsLabel* true_target, MipsLabel* false_target); void DivRemOneOrMinusOne(HBinaryOperation* instruction); void DivRemByPowerOfTwo(HBinaryOperation* instruction); void GenerateDivRemWithAnyConstant(HBinaryOperation* instruction); void GenerateDivRemIntegral(HBinaryOperation* instruction); void HandleGoto(HInstruction* got, HBasicBlock* successor); void GenPackedSwitchWithCompares(Register value_reg, int32_t lower_bound, uint32_t num_entries, HBasicBlock* switch_block, HBasicBlock* default_block); void GenTableBasedPackedSwitch(Register value_reg, Register constant_area, int32_t lower_bound, uint32_t num_entries, HBasicBlock* switch_block, HBasicBlock* default_block); void GenConditionalMoveR2(HSelect* select); void GenConditionalMoveR6(HSelect* select); MipsAssembler* const assembler_; CodeGeneratorMIPS* const codegen_; DISALLOW_COPY_AND_ASSIGN(InstructionCodeGeneratorMIPS); }; class CodeGeneratorMIPS : public CodeGenerator { public: CodeGeneratorMIPS(HGraph* graph, const MipsInstructionSetFeatures& isa_features, const CompilerOptions& compiler_options, OptimizingCompilerStats* stats = nullptr); virtual ~CodeGeneratorMIPS() {} void ComputeSpillMask() OVERRIDE; bool HasAllocatedCalleeSaveRegisters() const OVERRIDE; void GenerateFrameEntry() OVERRIDE; void GenerateFrameExit() OVERRIDE; void Bind(HBasicBlock* block) OVERRIDE; void Move32(Location destination, Location source); void Move64(Location destination, Location source); void MoveConstant(Location location, HConstant* c); size_t GetWordSize() const OVERRIDE { return kMipsWordSize; } size_t GetFloatingPointSpillSlotSize() const OVERRIDE { return kMipsDoublewordSize; } uintptr_t GetAddressOf(HBasicBlock* block) OVERRIDE { return assembler_.GetLabelLocation(GetLabelOf(block)); } HGraphVisitor* GetLocationBuilder() OVERRIDE { return &location_builder_; } HGraphVisitor* GetInstructionVisitor() OVERRIDE { return &instruction_visitor_; } MipsAssembler* GetAssembler() OVERRIDE { return &assembler_; } const MipsAssembler& GetAssembler() const OVERRIDE { return assembler_; } // Emit linker patches. void EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) OVERRIDE; void EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) OVERRIDE; // Fast path implementation of ReadBarrier::Barrier for a heap // reference field load when Baker's read barriers are used. void GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, Register obj, uint32_t offset, Location temp, bool needs_null_check); // Fast path implementation of ReadBarrier::Barrier for a heap // reference array load when Baker's read barriers are used. void GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, Register obj, uint32_t data_offset, Location index, Location temp, bool needs_null_check); // Factored implementation, used by GenerateFieldLoadWithBakerReadBarrier, // GenerateArrayLoadWithBakerReadBarrier and some intrinsics. // // Load the object reference located at the address // `obj + offset + (index << scale_factor)`, held by object `obj`, into // `ref`, and mark it if needed. // // If `always_update_field` is true, the value of the reference is // atomically updated in the holder (`obj`). void GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, Register obj, uint32_t offset, Location index, ScaleFactor scale_factor, Location temp, bool needs_null_check, bool always_update_field = false); // Generate a read barrier for a heap reference within `instruction` // using a slow path. // // A read barrier for an object reference read from the heap is // implemented as a call to the artReadBarrierSlow runtime entry // point, which is passed the values in locations `ref`, `obj`, and // `offset`: // // mirror::Object* artReadBarrierSlow(mirror::Object* ref, // mirror::Object* obj, // uint32_t offset); // // The `out` location contains the value returned by // artReadBarrierSlow. // // When `index` is provided (i.e. for array accesses), the offset // value passed to artReadBarrierSlow is adjusted to take `index` // into account. void GenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index = Location::NoLocation()); // If read barriers are enabled, generate a read barrier for a heap // reference using a slow path. If heap poisoning is enabled, also // unpoison the reference in `out`. void MaybeGenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index = Location::NoLocation()); // Generate a read barrier for a GC root within `instruction` using // a slow path. // // A read barrier for an object reference GC root is implemented as // a call to the artReadBarrierForRootSlow runtime entry point, // which is passed the value in location `root`: // // mirror::Object* artReadBarrierForRootSlow(GcRoot<mirror::Object>* root); // // The `out` location contains the value returned by // artReadBarrierForRootSlow. void GenerateReadBarrierForRootSlow(HInstruction* instruction, Location out, Location root); void MarkGCCard(Register object, Register value, bool value_can_be_null); // Register allocation. void SetupBlockedRegisters() const OVERRIDE; size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) OVERRIDE; size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) OVERRIDE; size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) OVERRIDE; size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) OVERRIDE; void ClobberRA() { clobbered_ra_ = true; } void DumpCoreRegister(std::ostream& stream, int reg) const OVERRIDE; void DumpFloatingPointRegister(std::ostream& stream, int reg) const OVERRIDE; InstructionSet GetInstructionSet() const OVERRIDE { return InstructionSet::kMips; } const MipsInstructionSetFeatures& GetInstructionSetFeatures() const { return isa_features_; } MipsLabel* GetLabelOf(HBasicBlock* block) const { return CommonGetLabelOf<MipsLabel>(block_labels_, block); } void Initialize() OVERRIDE { block_labels_ = CommonInitializeLabels<MipsLabel>(); } void Finalize(CodeAllocator* allocator) OVERRIDE; // Code generation helpers. void MoveLocation(Location dst, Location src, Primitive::Type dst_type) OVERRIDE; void MoveConstant(Location destination, int32_t value) OVERRIDE; void AddLocationAsTemp(Location location, LocationSummary* locations) OVERRIDE; // Generate code to invoke a runtime entry point. void InvokeRuntime(QuickEntrypointEnum entrypoint, HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path = nullptr) OVERRIDE; // Generate code to invoke a runtime entry point, but do not record // PC-related information in a stack map. void InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, HInstruction* instruction, SlowPathCode* slow_path, bool direct); void GenerateInvokeRuntime(int32_t entry_point_offset, bool direct); ParallelMoveResolver* GetMoveResolver() OVERRIDE { return &move_resolver_; } bool NeedsTwoRegisters(Primitive::Type type) const OVERRIDE { return type == Primitive::kPrimLong; } // Check if the desired_string_load_kind is supported. If it is, return it, // otherwise return a fall-back kind that should be used instead. HLoadString::LoadKind GetSupportedLoadStringKind( HLoadString::LoadKind desired_string_load_kind) OVERRIDE; // Check if the desired_class_load_kind is supported. If it is, return it, // otherwise return a fall-back kind that should be used instead. HLoadClass::LoadKind GetSupportedLoadClassKind( HLoadClass::LoadKind desired_class_load_kind) OVERRIDE; // Check if the desired_dispatch_info is supported. If it is, return it, // otherwise return a fall-back info that should be used instead. HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch( const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, HInvokeStaticOrDirect* invoke) OVERRIDE; void GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp); void GenerateVirtualCall(HInvokeVirtual* invoke, Location temp) OVERRIDE; void MoveFromReturnRegister(Location trg ATTRIBUTE_UNUSED, Primitive::Type type ATTRIBUTE_UNUSED) OVERRIDE { UNIMPLEMENTED(FATAL) << "Not implemented on MIPS"; } void GenerateNop() OVERRIDE; void GenerateImplicitNullCheck(HNullCheck* instruction) OVERRIDE; void GenerateExplicitNullCheck(HNullCheck* instruction) OVERRIDE; // The PcRelativePatchInfo is used for PC-relative addressing of dex cache arrays // and boot image strings. The only difference is the interpretation of the offset_or_index. struct PcRelativePatchInfo { PcRelativePatchInfo(const DexFile& dex_file, uint32_t off_or_idx) : target_dex_file(dex_file), offset_or_index(off_or_idx) { } PcRelativePatchInfo(PcRelativePatchInfo&& other) = default; const DexFile& target_dex_file; // Either the dex cache array element offset or the string/type index. uint32_t offset_or_index; // Label for the instruction loading the most significant half of the offset that's added to PC // to form the base address (the least significant half is loaded with the instruction that // follows). MipsLabel high_label; // Label for the instruction corresponding to PC+0. MipsLabel pc_rel_label; }; PcRelativePatchInfo* NewPcRelativeStringPatch(const DexFile& dex_file, dex::StringIndex string_index); PcRelativePatchInfo* NewPcRelativeTypePatch(const DexFile& dex_file, dex::TypeIndex type_index); PcRelativePatchInfo* NewTypeBssEntryPatch(const DexFile& dex_file, dex::TypeIndex type_index); PcRelativePatchInfo* NewPcRelativeDexCacheArrayPatch(const DexFile& dex_file, uint32_t element_offset); Literal* DeduplicateBootImageStringLiteral(const DexFile& dex_file, dex::StringIndex string_index); Literal* DeduplicateBootImageTypeLiteral(const DexFile& dex_file, dex::TypeIndex type_index); Literal* DeduplicateBootImageAddressLiteral(uint32_t address); void EmitPcRelativeAddressPlaceholderHigh(PcRelativePatchInfo* info, Register out, Register base); // The JitPatchInfo is used for JIT string and class loads. struct JitPatchInfo { JitPatchInfo(const DexFile& dex_file, uint64_t idx) : target_dex_file(dex_file), index(idx) { } JitPatchInfo(JitPatchInfo&& other) = default; const DexFile& target_dex_file; // String/type index. uint64_t index; // Label for the instruction loading the most significant half of the address. // The least significant half is loaded with the instruction that follows immediately. MipsLabel high_label; }; void PatchJitRootUse(uint8_t* code, const uint8_t* roots_data, const JitPatchInfo& info, uint64_t index_in_table) const; JitPatchInfo* NewJitRootStringPatch(const DexFile& dex_file, dex::StringIndex dex_index, Handle<mirror::String> handle); JitPatchInfo* NewJitRootClassPatch(const DexFile& dex_file, dex::TypeIndex dex_index, Handle<mirror::Class> handle); private: Register GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke, Register temp); using Uint32ToLiteralMap = ArenaSafeMap<uint32_t, Literal*>; using MethodToLiteralMap = ArenaSafeMap<MethodReference, Literal*, MethodReferenceComparator>; using BootStringToLiteralMap = ArenaSafeMap<StringReference, Literal*, StringReferenceValueComparator>; using BootTypeToLiteralMap = ArenaSafeMap<TypeReference, Literal*, TypeReferenceValueComparator>; Literal* DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map); Literal* DeduplicateMethodLiteral(MethodReference target_method, MethodToLiteralMap* map); PcRelativePatchInfo* NewPcRelativePatch(const DexFile& dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches); template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)> void EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo>& infos, ArenaVector<LinkerPatch>* linker_patches); // Labels for each block that will be compiled. MipsLabel* block_labels_; MipsLabel frame_entry_label_; LocationsBuilderMIPS location_builder_; InstructionCodeGeneratorMIPS instruction_visitor_; ParallelMoveResolverMIPS move_resolver_; MipsAssembler assembler_; const MipsInstructionSetFeatures& isa_features_; // Deduplication map for 32-bit literals, used for non-patchable boot image addresses. Uint32ToLiteralMap uint32_literals_; // PC-relative patch info for each HMipsDexCacheArraysBase. ArenaDeque<PcRelativePatchInfo> pc_relative_dex_cache_patches_; // Deduplication map for boot string literals for kBootImageLinkTimeAddress. BootStringToLiteralMap boot_image_string_patches_; // PC-relative String patch info; type depends on configuration (app .bss or boot image PIC). ArenaDeque<PcRelativePatchInfo> pc_relative_string_patches_; // Deduplication map for boot type literals for kBootImageLinkTimeAddress. BootTypeToLiteralMap boot_image_type_patches_; // PC-relative type patch info for kBootImageLinkTimePcRelative. ArenaDeque<PcRelativePatchInfo> pc_relative_type_patches_; // PC-relative type patch info for kBssEntry. ArenaDeque<PcRelativePatchInfo> type_bss_entry_patches_; // Patches for string root accesses in JIT compiled code. ArenaDeque<JitPatchInfo> jit_string_patches_; // Patches for class root accesses in JIT compiled code. ArenaDeque<JitPatchInfo> jit_class_patches_; // PC-relative loads on R2 clobber RA, which may need to be preserved explicitly in leaf methods. // This is a flag set by pc_relative_fixups_mips and dex_cache_array_fixups_mips optimizations. bool clobbered_ra_; DISALLOW_COPY_AND_ASSIGN(CodeGeneratorMIPS); }; } // namespace mips } // namespace art #endif // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_MIPS_H_