/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "code_generator_x86.h" #include "art_method.h" #include "code_generator_utils.h" #include "compiled_method.h" #include "entrypoints/quick/quick_entrypoints.h" #include "entrypoints/quick/quick_entrypoints_enum.h" #include "gc/accounting/card_table.h" #include "intrinsics.h" #include "intrinsics_x86.h" #include "mirror/array-inl.h" #include "mirror/class-inl.h" #include "thread.h" #include "utils/assembler.h" #include "utils/stack_checks.h" #include "utils/x86/assembler_x86.h" #include "utils/x86/managed_register_x86.h" namespace art { template<class MirrorType> class GcRoot; namespace x86 { static constexpr int kCurrentMethodStackOffset = 0; static constexpr Register kMethodRegisterArgument = EAX; static constexpr Register kCoreCalleeSaves[] = { EBP, ESI, EDI }; static constexpr int kC2ConditionMask = 0x400; static constexpr int kFakeReturnRegister = Register(8); // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. #define __ down_cast<X86Assembler*>(codegen->GetAssembler())-> // NOLINT #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kX86PointerSize, x).Int32Value() class NullCheckSlowPathX86 : public SlowPathCode { public: explicit NullCheckSlowPathX86(HNullCheck* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); __ Bind(GetEntryLabel()); if (instruction_->CanThrowIntoCatchBlock()) { // Live registers will be restored in the catch block if caught. SaveLiveRegisters(codegen, instruction_->GetLocations()); } x86_codegen->InvokeRuntime(kQuickThrowNullPointer, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); } bool IsFatal() const OVERRIDE { return true; } const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathX86"; } private: DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86); }; class DivZeroCheckSlowPathX86 : public SlowPathCode { public: explicit DivZeroCheckSlowPathX86(HDivZeroCheck* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); __ Bind(GetEntryLabel()); x86_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); } bool IsFatal() const OVERRIDE { return true; } const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathX86"; } private: DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86); }; class DivRemMinusOneSlowPathX86 : public SlowPathCode { public: DivRemMinusOneSlowPathX86(HInstruction* instruction, Register reg, bool is_div) : SlowPathCode(instruction), reg_(reg), is_div_(is_div) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { __ Bind(GetEntryLabel()); if (is_div_) { __ negl(reg_); } else { __ movl(reg_, Immediate(0)); } __ jmp(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "DivRemMinusOneSlowPathX86"; } private: Register reg_; bool is_div_; DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86); }; class BoundsCheckSlowPathX86 : public SlowPathCode { public: explicit BoundsCheckSlowPathX86(HBoundsCheck* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); __ Bind(GetEntryLabel()); // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. if (instruction_->CanThrowIntoCatchBlock()) { // Live registers will be restored in the catch block if caught. SaveLiveRegisters(codegen, instruction_->GetLocations()); } // Are we using an array length from memory? HInstruction* array_length = instruction_->InputAt(1); Location length_loc = locations->InAt(1); InvokeRuntimeCallingConvention calling_convention; if (array_length->IsArrayLength() && array_length->IsEmittedAtUseSite()) { // Load the array length into our temporary. uint32_t len_offset = CodeGenerator::GetArrayLengthOffset(array_length->AsArrayLength()); Location array_loc = array_length->GetLocations()->InAt(0); Address array_len(array_loc.AsRegister<Register>(), len_offset); length_loc = Location::RegisterLocation(calling_convention.GetRegisterAt(1)); // Check for conflicts with index. if (length_loc.Equals(locations->InAt(0))) { // We know we aren't using parameter 2. length_loc = Location::RegisterLocation(calling_convention.GetRegisterAt(2)); } __ movl(length_loc.AsRegister<Register>(), array_len); if (mirror::kUseStringCompression) { __ shrl(length_loc.AsRegister<Register>(), Immediate(1)); } } x86_codegen->EmitParallelMoves( locations->InAt(0), Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimInt, length_loc, Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt); QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() ? kQuickThrowStringBounds : kQuickThrowArrayBounds; x86_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>(); CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); } bool IsFatal() const OVERRIDE { return true; } const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathX86"; } private: DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86); }; class SuspendCheckSlowPathX86 : public SlowPathCode { public: SuspendCheckSlowPathX86(HSuspendCheck* instruction, HBasicBlock* successor) : SlowPathCode(instruction), successor_(successor) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); // Only saves full width XMM for SIMD. x86_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickTestSuspend, void, void>(); RestoreLiveRegisters(codegen, locations); // Only restores full width XMM for SIMD. if (successor_ == nullptr) { __ jmp(GetReturnLabel()); } else { __ jmp(x86_codegen->GetLabelOf(successor_)); } } Label* GetReturnLabel() { DCHECK(successor_ == nullptr); return &return_label_; } HBasicBlock* GetSuccessor() const { return successor_; } const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathX86"; } private: HBasicBlock* const successor_; Label return_label_; DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86); }; class LoadStringSlowPathX86 : public SlowPathCode { public: explicit LoadStringSlowPathX86(HLoadString* instruction): SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex(); __ movl(calling_convention.GetRegisterAt(0), Immediate(string_index.index_)); x86_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX)); RestoreLiveRegisters(codegen, locations); // Store the resolved String to the BSS entry. Register method_address = locations->InAt(0).AsRegister<Register>(); __ movl(Address(method_address, CodeGeneratorX86::kDummy32BitOffset), locations->Out().AsRegister<Register>()); Label* fixup_label = x86_codegen->NewStringBssEntryPatch(instruction_->AsLoadString()); __ Bind(fixup_label); __ jmp(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathX86"; } private: DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86); }; class LoadClassSlowPathX86 : public SlowPathCode { public: LoadClassSlowPathX86(HLoadClass* cls, HInstruction* at, uint32_t dex_pc, bool do_clinit) : SlowPathCode(at), cls_(cls), dex_pc_(dex_pc), do_clinit_(do_clinit) { DCHECK(at->IsLoadClass() || at->IsClinitCheck()); } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; dex::TypeIndex type_index = cls_->GetTypeIndex(); __ movl(calling_convention.GetRegisterAt(0), Immediate(type_index.index_)); x86_codegen->InvokeRuntime(do_clinit_ ? kQuickInitializeStaticStorage : kQuickInitializeType, instruction_, dex_pc_, this); if (do_clinit_) { CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>(); } else { CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>(); } // Move the class to the desired location. Location out = locations->Out(); if (out.IsValid()) { DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); x86_codegen->Move32(out, Location::RegisterLocation(EAX)); } RestoreLiveRegisters(codegen, locations); // For HLoadClass/kBssEntry, store the resolved Class to the BSS entry. DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); if (cls_ == instruction_ && cls_->GetLoadKind() == HLoadClass::LoadKind::kBssEntry) { DCHECK(out.IsValid()); Register method_address = locations->InAt(0).AsRegister<Register>(); __ movl(Address(method_address, CodeGeneratorX86::kDummy32BitOffset), locations->Out().AsRegister<Register>()); Label* fixup_label = x86_codegen->NewTypeBssEntryPatch(cls_); __ Bind(fixup_label); } __ jmp(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathX86"; } private: // The class this slow path will load. HLoadClass* const cls_; // The dex PC of `at_`. const uint32_t dex_pc_; // Whether to initialize the class. const bool do_clinit_; DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86); }; class TypeCheckSlowPathX86 : public SlowPathCode { public: TypeCheckSlowPathX86(HInstruction* instruction, bool is_fatal) : SlowPathCode(instruction), is_fatal_(is_fatal) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); DCHECK(instruction_->IsCheckCast() || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); __ Bind(GetEntryLabel()); if (!is_fatal_) { SaveLiveRegisters(codegen, locations); } // We're moving two locations to locations that could overlap, so we need a parallel // move resolver. InvokeRuntimeCallingConvention calling_convention; x86_codegen->EmitParallelMoves(locations->InAt(0), Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot, locations->InAt(1), Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimNot); if (instruction_->IsInstanceOf()) { x86_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>(); } else { DCHECK(instruction_->IsCheckCast()); x86_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>(); } if (!is_fatal_) { if (instruction_->IsInstanceOf()) { x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX)); } RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } } const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathX86"; } bool IsFatal() const OVERRIDE { return is_fatal_; } private: const bool is_fatal_; DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86); }; class DeoptimizationSlowPathX86 : public SlowPathCode { public: explicit DeoptimizationSlowPathX86(HDeoptimize* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); __ Bind(GetEntryLabel()); LocationSummary* locations = instruction_->GetLocations(); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; x86_codegen->Load32BitValue( calling_convention.GetRegisterAt(0), static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind())); x86_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>(); } const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathX86"; } private: DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathX86); }; class ArraySetSlowPathX86 : public SlowPathCode { public: explicit ArraySetSlowPathX86(HInstruction* instruction) : SlowPathCode(instruction) {} void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; HParallelMove parallel_move(codegen->GetGraph()->GetArena()); parallel_move.AddMove( locations->InAt(0), Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot, nullptr); parallel_move.AddMove( locations->InAt(1), Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt, nullptr); parallel_move.AddMove( locations->InAt(2), Location::RegisterLocation(calling_convention.GetRegisterAt(2)), Primitive::kPrimNot, nullptr); codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); x86_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathX86"; } private: DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathX86); }; // Slow path marking an object reference `ref` during a read // barrier. The field `obj.field` in the object `obj` holding this // reference does not get updated by this slow path after marking (see // ReadBarrierMarkAndUpdateFieldSlowPathX86 below for that). // // This means that after the execution of this slow path, `ref` will // always be up-to-date, but `obj.field` may not; i.e., after the // flip, `ref` will be a to-space reference, but `obj.field` will // probably still be a from-space reference (unless it gets updated by // another thread, or if another thread installed another object // reference (different from `ref`) in `obj.field`). class ReadBarrierMarkSlowPathX86 : public SlowPathCode { public: ReadBarrierMarkSlowPathX86(HInstruction* instruction, Location ref, bool unpoison_ref_before_marking) : SlowPathCode(instruction), ref_(ref), unpoison_ref_before_marking_(unpoison_ref_before_marking) { DCHECK(kEmitCompilerReadBarrier); } const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathX86"; } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); Register ref_reg = ref_.AsRegister<Register>(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; DCHECK(instruction_->IsInstanceFieldGet() || instruction_->IsStaticFieldGet() || instruction_->IsArrayGet() || instruction_->IsArraySet() || instruction_->IsLoadClass() || instruction_->IsLoadString() || instruction_->IsInstanceOf() || instruction_->IsCheckCast() || (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) || (instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified())) << "Unexpected instruction in read barrier marking slow path: " << instruction_->DebugName(); __ Bind(GetEntryLabel()); if (unpoison_ref_before_marking_) { // Object* ref = ref_addr->AsMirrorPtr() __ MaybeUnpoisonHeapReference(ref_reg); } // No need to save live registers; it's taken care of by the // entrypoint. Also, there is no need to update the stack mask, // as this runtime call will not trigger a garbage collection. CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); DCHECK_NE(ref_reg, ESP); DCHECK(0 <= ref_reg && ref_reg < kNumberOfCpuRegisters) << ref_reg; // "Compact" slow path, saving two moves. // // Instead of using the standard runtime calling convention (input // and output in EAX): // // EAX <- ref // EAX <- ReadBarrierMark(EAX) // ref <- EAX // // we just use rX (the register containing `ref`) as input and output // of a dedicated entrypoint: // // rX <- ReadBarrierMarkRegX(rX) // int32_t entry_point_offset = CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kX86PointerSize>(ref_reg); // This runtime call does not require a stack map. x86_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); __ jmp(GetExitLabel()); } private: // The location (register) of the marked object reference. const Location ref_; // Should the reference in `ref_` be unpoisoned prior to marking it? const bool unpoison_ref_before_marking_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathX86); }; // Slow path marking an object reference `ref` during a read barrier, // and if needed, atomically updating the field `obj.field` in the // object `obj` holding this reference after marking (contrary to // ReadBarrierMarkSlowPathX86 above, which never tries to update // `obj.field`). // // This means that after the execution of this slow path, both `ref` // and `obj.field` will be up-to-date; i.e., after the flip, both will // hold the same to-space reference (unless another thread installed // another object reference (different from `ref`) in `obj.field`). class ReadBarrierMarkAndUpdateFieldSlowPathX86 : public SlowPathCode { public: ReadBarrierMarkAndUpdateFieldSlowPathX86(HInstruction* instruction, Location ref, Register obj, const Address& field_addr, bool unpoison_ref_before_marking, Register temp) : SlowPathCode(instruction), ref_(ref), obj_(obj), field_addr_(field_addr), unpoison_ref_before_marking_(unpoison_ref_before_marking), temp_(temp) { DCHECK(kEmitCompilerReadBarrier); } const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkAndUpdateFieldSlowPathX86"; } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); Register ref_reg = ref_.AsRegister<Register>(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg; // This slow path is only used by the UnsafeCASObject intrinsic. DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) << "Unexpected instruction in read barrier marking and field updating slow path: " << instruction_->DebugName(); DCHECK(instruction_->GetLocations()->Intrinsified()); DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject); __ Bind(GetEntryLabel()); if (unpoison_ref_before_marking_) { // Object* ref = ref_addr->AsMirrorPtr() __ MaybeUnpoisonHeapReference(ref_reg); } // Save the old (unpoisoned) reference. __ movl(temp_, ref_reg); // No need to save live registers; it's taken care of by the // entrypoint. Also, there is no need to update the stack mask, // as this runtime call will not trigger a garbage collection. CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); DCHECK_NE(ref_reg, ESP); DCHECK(0 <= ref_reg && ref_reg < kNumberOfCpuRegisters) << ref_reg; // "Compact" slow path, saving two moves. // // Instead of using the standard runtime calling convention (input // and output in EAX): // // EAX <- ref // EAX <- ReadBarrierMark(EAX) // ref <- EAX // // we just use rX (the register containing `ref`) as input and output // of a dedicated entrypoint: // // rX <- ReadBarrierMarkRegX(rX) // int32_t entry_point_offset = CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kX86PointerSize>(ref_reg); // This runtime call does not require a stack map. x86_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); // If the new reference is different from the old reference, // update the field in the holder (`*field_addr`). // // Note that this field could also hold a different object, if // another thread had concurrently changed it. In that case, the // LOCK CMPXCHGL instruction in the compare-and-set (CAS) // operation below would abort the CAS, leaving the field as-is. NearLabel done; __ cmpl(temp_, ref_reg); __ j(kEqual, &done); // Update the the holder's field atomically. This may fail if // mutator updates before us, but it's OK. This is achieved // using a strong compare-and-set (CAS) operation with relaxed // memory synchronization ordering, where the expected value is // the old reference and the desired value is the new reference. // This operation is implemented with a 32-bit LOCK CMPXLCHG // instruction, which requires the expected value (the old // reference) to be in EAX. Save EAX beforehand, and move the // expected value (stored in `temp_`) into EAX. __ pushl(EAX); __ movl(EAX, temp_); // Convenience aliases. Register base = obj_; Register expected = EAX; Register value = ref_reg; bool base_equals_value = (base == value); if (kPoisonHeapReferences) { if (base_equals_value) { // If `base` and `value` are the same register location, move // `value` to a temporary register. This way, poisoning // `value` won't invalidate `base`. value = temp_; __ movl(value, base); } // Check that the register allocator did not assign the location // of `expected` (EAX) to `value` nor to `base`, so that heap // poisoning (when enabled) works as intended below. // - If `value` were equal to `expected`, both references would // be poisoned twice, meaning they would not be poisoned at // all, as heap poisoning uses address negation. // - If `base` were equal to `expected`, poisoning `expected` // would invalidate `base`. DCHECK_NE(value, expected); DCHECK_NE(base, expected); __ PoisonHeapReference(expected); __ PoisonHeapReference(value); } __ LockCmpxchgl(field_addr_, value); // If heap poisoning is enabled, we need to unpoison the values // that were poisoned earlier. if (kPoisonHeapReferences) { if (base_equals_value) { // `value` has been moved to a temporary register, no need // to unpoison it. } else { __ UnpoisonHeapReference(value); } // No need to unpoison `expected` (EAX), as it is be overwritten below. } // Restore EAX. __ popl(EAX); __ Bind(&done); __ jmp(GetExitLabel()); } private: // The location (register) of the marked object reference. const Location ref_; // The register containing the object holding the marked object reference field. const Register obj_; // The address of the marked reference field. The base of this address must be `obj_`. const Address field_addr_; // Should the reference in `ref_` be unpoisoned prior to marking it? const bool unpoison_ref_before_marking_; const Register temp_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathX86); }; // Slow path generating a read barrier for a heap reference. class ReadBarrierForHeapReferenceSlowPathX86 : public SlowPathCode { public: ReadBarrierForHeapReferenceSlowPathX86(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) : SlowPathCode(instruction), out_(out), ref_(ref), obj_(obj), offset_(offset), index_(index) { DCHECK(kEmitCompilerReadBarrier); // If `obj` is equal to `out` or `ref`, it means the initial object // has been overwritten by (or after) the heap object reference load // to be instrumented, e.g.: // // __ movl(out, Address(out, offset)); // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); // // In that case, we have lost the information about the original // object, and the emitted read barrier cannot work properly. DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); LocationSummary* locations = instruction_->GetLocations(); Register reg_out = out_.AsRegister<Register>(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); DCHECK(instruction_->IsInstanceFieldGet() || instruction_->IsStaticFieldGet() || instruction_->IsArrayGet() || instruction_->IsInstanceOf() || instruction_->IsCheckCast() || (instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified())) << "Unexpected instruction in read barrier for heap reference slow path: " << instruction_->DebugName(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); // We may have to change the index's value, but as `index_` is a // constant member (like other "inputs" of this slow path), // introduce a copy of it, `index`. Location index = index_; if (index_.IsValid()) { // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. if (instruction_->IsArrayGet()) { // Compute the actual memory offset and store it in `index`. Register index_reg = index_.AsRegister<Register>(); DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg)); if (codegen->IsCoreCalleeSaveRegister(index_reg)) { // We are about to change the value of `index_reg` (see the // calls to art::x86::X86Assembler::shll and // art::x86::X86Assembler::AddImmediate below), but it has // not been saved by the previous call to // art::SlowPathCode::SaveLiveRegisters, as it is a // callee-save register -- // art::SlowPathCode::SaveLiveRegisters does not consider // callee-save registers, as it has been designed with the // assumption that callee-save registers are supposed to be // handled by the called function. So, as a callee-save // register, `index_reg` _would_ eventually be saved onto // the stack, but it would be too late: we would have // changed its value earlier. Therefore, we manually save // it here into another freely available register, // `free_reg`, chosen of course among the caller-save // registers (as a callee-save `free_reg` register would // exhibit the same problem). // // Note we could have requested a temporary register from // the register allocator instead; but we prefer not to, as // this is a slow path, and we know we can find a // caller-save register that is available. Register free_reg = FindAvailableCallerSaveRegister(codegen); __ movl(free_reg, index_reg); index_reg = free_reg; index = Location::RegisterLocation(index_reg); } else { // The initial register stored in `index_` has already been // saved in the call to art::SlowPathCode::SaveLiveRegisters // (as it is not a callee-save register), so we can freely // use it. } // Shifting the index value contained in `index_reg` by the scale // factor (2) cannot overflow in practice, as the runtime is // unable to allocate object arrays with a size larger than // 2^26 - 1 (that is, 2^28 - 4 bytes). __ shll(index_reg, Immediate(TIMES_4)); static_assert( sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); __ AddImmediate(index_reg, Immediate(offset_)); } else { // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile // intrinsics, `index_` is not shifted by a scale factor of 2 // (as in the case of ArrayGet), as it is actually an offset // to an object field within an object. DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); DCHECK(instruction_->GetLocations()->Intrinsified()); DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) || (instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile)) << instruction_->AsInvoke()->GetIntrinsic(); DCHECK_EQ(offset_, 0U); DCHECK(index_.IsRegisterPair()); // UnsafeGet's offset location is a register pair, the low // part contains the correct offset. index = index_.ToLow(); } } // We're moving two or three locations to locations that could // overlap, so we need a parallel move resolver. InvokeRuntimeCallingConvention calling_convention; HParallelMove parallel_move(codegen->GetGraph()->GetArena()); parallel_move.AddMove(ref_, Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot, nullptr); parallel_move.AddMove(obj_, Location::RegisterLocation(calling_convention.GetRegisterAt(1)), Primitive::kPrimNot, nullptr); if (index.IsValid()) { parallel_move.AddMove(index, Location::RegisterLocation(calling_convention.GetRegisterAt(2)), Primitive::kPrimInt, nullptr); codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); } else { codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); __ movl(calling_convention.GetRegisterAt(2), Immediate(offset_)); } x86_codegen->InvokeRuntime(kQuickReadBarrierSlow, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes< kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); x86_codegen->Move32(out_, Location::RegisterLocation(EAX)); RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathX86"; } private: Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { size_t ref = static_cast<int>(ref_.AsRegister<Register>()); size_t obj = static_cast<int>(obj_.AsRegister<Register>()); for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { return static_cast<Register>(i); } } // We shall never fail to find a free caller-save register, as // there are more than two core caller-save registers on x86 // (meaning it is possible to find one which is different from // `ref` and `obj`). DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); LOG(FATAL) << "Could not find a free caller-save register"; UNREACHABLE(); } const Location out_; const Location ref_; const Location obj_; const uint32_t offset_; // An additional location containing an index to an array. // Only used for HArrayGet and the UnsafeGetObject & // UnsafeGetObjectVolatile intrinsics. const Location index_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathX86); }; // Slow path generating a read barrier for a GC root. class ReadBarrierForRootSlowPathX86 : public SlowPathCode { public: ReadBarrierForRootSlowPathX86(HInstruction* instruction, Location out, Location root) : SlowPathCode(instruction), out_(out), root_(root) { DCHECK(kEmitCompilerReadBarrier); } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { LocationSummary* locations = instruction_->GetLocations(); Register reg_out = out_.AsRegister<Register>(); DCHECK(locations->CanCall()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out)); DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString()) << "Unexpected instruction in read barrier for GC root slow path: " << instruction_->DebugName(); __ Bind(GetEntryLabel()); SaveLiveRegisters(codegen, locations); InvokeRuntimeCallingConvention calling_convention; CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen); x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_); x86_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, instruction_, instruction_->GetDexPc(), this); CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); x86_codegen->Move32(out_, Location::RegisterLocation(EAX)); RestoreLiveRegisters(codegen, locations); __ jmp(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathX86"; } private: const Location out_; const Location root_; DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathX86); }; #undef __ // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. #define __ down_cast<X86Assembler*>(GetAssembler())-> // NOLINT inline Condition X86Condition(IfCondition cond) { switch (cond) { case kCondEQ: return kEqual; case kCondNE: return kNotEqual; case kCondLT: return kLess; case kCondLE: return kLessEqual; case kCondGT: return kGreater; case kCondGE: return kGreaterEqual; case kCondB: return kBelow; case kCondBE: return kBelowEqual; case kCondA: return kAbove; case kCondAE: return kAboveEqual; } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } // Maps signed condition to unsigned condition and FP condition to x86 name. inline Condition X86UnsignedOrFPCondition(IfCondition cond) { switch (cond) { case kCondEQ: return kEqual; case kCondNE: return kNotEqual; // Signed to unsigned, and FP to x86 name. case kCondLT: return kBelow; case kCondLE: return kBelowEqual; case kCondGT: return kAbove; case kCondGE: return kAboveEqual; // Unsigned remain unchanged. case kCondB: return kBelow; case kCondBE: return kBelowEqual; case kCondA: return kAbove; case kCondAE: return kAboveEqual; } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } void CodeGeneratorX86::DumpCoreRegister(std::ostream& stream, int reg) const { stream << Register(reg); } void CodeGeneratorX86::DumpFloatingPointRegister(std::ostream& stream, int reg) const { stream << XmmRegister(reg); } size_t CodeGeneratorX86::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { __ movl(Address(ESP, stack_index), static_cast<Register>(reg_id)); return kX86WordSize; } size_t CodeGeneratorX86::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { __ movl(static_cast<Register>(reg_id), Address(ESP, stack_index)); return kX86WordSize; } size_t CodeGeneratorX86::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) { if (GetGraph()->HasSIMD()) { __ movups(Address(ESP, stack_index), XmmRegister(reg_id)); } else { __ movsd(Address(ESP, stack_index), XmmRegister(reg_id)); } return GetFloatingPointSpillSlotSize(); } size_t CodeGeneratorX86::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) { if (GetGraph()->HasSIMD()) { __ movups(XmmRegister(reg_id), Address(ESP, stack_index)); } else { __ movsd(XmmRegister(reg_id), Address(ESP, stack_index)); } return GetFloatingPointSpillSlotSize(); } void CodeGeneratorX86::InvokeRuntime(QuickEntrypointEnum entrypoint, HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path) { ValidateInvokeRuntime(entrypoint, instruction, slow_path); GenerateInvokeRuntime(GetThreadOffset<kX86PointerSize>(entrypoint).Int32Value()); if (EntrypointRequiresStackMap(entrypoint)) { RecordPcInfo(instruction, dex_pc, slow_path); } } void CodeGeneratorX86::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, HInstruction* instruction, SlowPathCode* slow_path) { ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); GenerateInvokeRuntime(entry_point_offset); } void CodeGeneratorX86::GenerateInvokeRuntime(int32_t entry_point_offset) { __ fs()->call(Address::Absolute(entry_point_offset)); } CodeGeneratorX86::CodeGeneratorX86(HGraph* graph, const X86InstructionSetFeatures& isa_features, const CompilerOptions& compiler_options, OptimizingCompilerStats* stats) : CodeGenerator(graph, kNumberOfCpuRegisters, kNumberOfXmmRegisters, kNumberOfRegisterPairs, ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves), arraysize(kCoreCalleeSaves)) | (1 << kFakeReturnRegister), 0, compiler_options, stats), block_labels_(nullptr), location_builder_(graph, this), instruction_visitor_(graph, this), move_resolver_(graph->GetArena(), this), assembler_(graph->GetArena()), isa_features_(isa_features), pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), boot_image_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), type_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), jit_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), jit_class_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), constant_area_start_(-1), fixups_to_jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)), method_address_offset_(std::less<uint32_t>(), graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) { // Use a fake return address register to mimic Quick. AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister)); } void CodeGeneratorX86::SetupBlockedRegisters() const { // Stack register is always reserved. blocked_core_registers_[ESP] = true; } InstructionCodeGeneratorX86::InstructionCodeGeneratorX86(HGraph* graph, CodeGeneratorX86* codegen) : InstructionCodeGenerator(graph, codegen), assembler_(codegen->GetAssembler()), codegen_(codegen) {} static dwarf::Reg DWARFReg(Register reg) { return dwarf::Reg::X86Core(static_cast<int>(reg)); } void CodeGeneratorX86::GenerateFrameEntry() { __ cfi().SetCurrentCFAOffset(kX86WordSize); // return address __ Bind(&frame_entry_label_); bool skip_overflow_check = IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86); DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); if (!skip_overflow_check) { __ testl(EAX, Address(ESP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kX86)))); RecordPcInfo(nullptr, 0); } if (HasEmptyFrame()) { return; } for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) { Register reg = kCoreCalleeSaves[i]; if (allocated_registers_.ContainsCoreRegister(reg)) { __ pushl(reg); __ cfi().AdjustCFAOffset(kX86WordSize); __ cfi().RelOffset(DWARFReg(reg), 0); } } if (GetGraph()->HasShouldDeoptimizeFlag()) { // Initialize should_deoptimize flag to 0. __ movl(Address(ESP, -kShouldDeoptimizeFlagSize), Immediate(0)); } int adjust = GetFrameSize() - FrameEntrySpillSize(); __ subl(ESP, Immediate(adjust)); __ cfi().AdjustCFAOffset(adjust); // Save the current method if we need it. Note that we do not // do this in HCurrentMethod, as the instruction might have been removed // in the SSA graph. if (RequiresCurrentMethod()) { __ movl(Address(ESP, kCurrentMethodStackOffset), kMethodRegisterArgument); } } void CodeGeneratorX86::GenerateFrameExit() { __ cfi().RememberState(); if (!HasEmptyFrame()) { int adjust = GetFrameSize() - FrameEntrySpillSize(); __ addl(ESP, Immediate(adjust)); __ cfi().AdjustCFAOffset(-adjust); for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) { Register reg = kCoreCalleeSaves[i]; if (allocated_registers_.ContainsCoreRegister(reg)) { __ popl(reg); __ cfi().AdjustCFAOffset(-static_cast<int>(kX86WordSize)); __ cfi().Restore(DWARFReg(reg)); } } } __ ret(); __ cfi().RestoreState(); __ cfi().DefCFAOffset(GetFrameSize()); } void CodeGeneratorX86::Bind(HBasicBlock* block) { __ Bind(GetLabelOf(block)); } Location InvokeDexCallingConventionVisitorX86::GetReturnLocation(Primitive::Type type) const { switch (type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: return Location::RegisterLocation(EAX); case Primitive::kPrimLong: return Location::RegisterPairLocation(EAX, EDX); case Primitive::kPrimVoid: return Location::NoLocation(); case Primitive::kPrimDouble: case Primitive::kPrimFloat: return Location::FpuRegisterLocation(XMM0); } UNREACHABLE(); } Location InvokeDexCallingConventionVisitorX86::GetMethodLocation() const { return Location::RegisterLocation(kMethodRegisterArgument); } Location InvokeDexCallingConventionVisitorX86::GetNextLocation(Primitive::Type type) { switch (type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: { uint32_t index = gp_index_++; stack_index_++; if (index < calling_convention.GetNumberOfRegisters()) { return Location::RegisterLocation(calling_convention.GetRegisterAt(index)); } else { return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1)); } } case Primitive::kPrimLong: { uint32_t index = gp_index_; gp_index_ += 2; stack_index_ += 2; if (index + 1 < calling_convention.GetNumberOfRegisters()) { X86ManagedRegister pair = X86ManagedRegister::FromRegisterPair( calling_convention.GetRegisterPairAt(index)); return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh()); } else { return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2)); } } case Primitive::kPrimFloat: { uint32_t index = float_index_++; stack_index_++; if (index < calling_convention.GetNumberOfFpuRegisters()) { return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index)); } else { return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1)); } } case Primitive::kPrimDouble: { uint32_t index = float_index_++; stack_index_ += 2; if (index < calling_convention.GetNumberOfFpuRegisters()) { return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index)); } else { return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2)); } } case Primitive::kPrimVoid: LOG(FATAL) << "Unexpected parameter type " << type; break; } return Location::NoLocation(); } void CodeGeneratorX86::Move32(Location destination, Location source) { if (source.Equals(destination)) { return; } if (destination.IsRegister()) { if (source.IsRegister()) { __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>()); } else if (source.IsFpuRegister()) { __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>()); } else { DCHECK(source.IsStackSlot()); __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex())); } } else if (destination.IsFpuRegister()) { if (source.IsRegister()) { __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>()); } else if (source.IsFpuRegister()) { __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); } else { DCHECK(source.IsStackSlot()); __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); } } else { DCHECK(destination.IsStackSlot()) << destination; if (source.IsRegister()) { __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>()); } else if (source.IsFpuRegister()) { __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); } else if (source.IsConstant()) { HConstant* constant = source.GetConstant(); int32_t value = GetInt32ValueOf(constant); __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value)); } else { DCHECK(source.IsStackSlot()); __ pushl(Address(ESP, source.GetStackIndex())); __ popl(Address(ESP, destination.GetStackIndex())); } } } void CodeGeneratorX86::Move64(Location destination, Location source) { if (source.Equals(destination)) { return; } if (destination.IsRegisterPair()) { if (source.IsRegisterPair()) { EmitParallelMoves( Location::RegisterLocation(source.AsRegisterPairHigh<Register>()), Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()), Primitive::kPrimInt, Location::RegisterLocation(source.AsRegisterPairLow<Register>()), Location::RegisterLocation(destination.AsRegisterPairLow<Register>()), Primitive::kPrimInt); } else if (source.IsFpuRegister()) { XmmRegister src_reg = source.AsFpuRegister<XmmRegister>(); __ movd(destination.AsRegisterPairLow<Register>(), src_reg); __ psrlq(src_reg, Immediate(32)); __ movd(destination.AsRegisterPairHigh<Register>(), src_reg); } else { // No conflict possible, so just do the moves. DCHECK(source.IsDoubleStackSlot()); __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex())); __ movl(destination.AsRegisterPairHigh<Register>(), Address(ESP, source.GetHighStackIndex(kX86WordSize))); } } else if (destination.IsFpuRegister()) { if (source.IsFpuRegister()) { __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); } else if (source.IsDoubleStackSlot()) { __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); } else if (source.IsRegisterPair()) { size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt); // Create stack space for 2 elements. __ subl(ESP, Immediate(2 * elem_size)); __ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>()); __ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>()); __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); // And remove the temporary stack space we allocated. __ addl(ESP, Immediate(2 * elem_size)); } else { LOG(FATAL) << "Unimplemented"; } } else { DCHECK(destination.IsDoubleStackSlot()) << destination; if (source.IsRegisterPair()) { // No conflict possible, so just do the moves. __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegisterPairLow<Register>()); __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), source.AsRegisterPairHigh<Register>()); } else if (source.IsFpuRegister()) { __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); } else if (source.IsConstant()) { HConstant* constant = source.GetConstant(); DCHECK(constant->IsLongConstant() || constant->IsDoubleConstant()); int64_t value = GetInt64ValueOf(constant); __ movl(Address(ESP, destination.GetStackIndex()), Immediate(Low32Bits(value))); __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), Immediate(High32Bits(value))); } else { DCHECK(source.IsDoubleStackSlot()) << source; EmitParallelMoves( Location::StackSlot(source.GetStackIndex()), Location::StackSlot(destination.GetStackIndex()), Primitive::kPrimInt, Location::StackSlot(source.GetHighStackIndex(kX86WordSize)), Location::StackSlot(destination.GetHighStackIndex(kX86WordSize)), Primitive::kPrimInt); } } } void CodeGeneratorX86::MoveConstant(Location location, int32_t value) { DCHECK(location.IsRegister()); __ movl(location.AsRegister<Register>(), Immediate(value)); } void CodeGeneratorX86::MoveLocation(Location dst, Location src, Primitive::Type dst_type) { HParallelMove move(GetGraph()->GetArena()); if (dst_type == Primitive::kPrimLong && !src.IsConstant() && !src.IsFpuRegister()) { move.AddMove(src.ToLow(), dst.ToLow(), Primitive::kPrimInt, nullptr); move.AddMove(src.ToHigh(), dst.ToHigh(), Primitive::kPrimInt, nullptr); } else { move.AddMove(src, dst, dst_type, nullptr); } GetMoveResolver()->EmitNativeCode(&move); } void CodeGeneratorX86::AddLocationAsTemp(Location location, LocationSummary* locations) { if (location.IsRegister()) { locations->AddTemp(location); } else if (location.IsRegisterPair()) { locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>())); locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>())); } else { UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; } } void InstructionCodeGeneratorX86::HandleGoto(HInstruction* got, HBasicBlock* successor) { DCHECK(!successor->IsExitBlock()); HBasicBlock* block = got->GetBlock(); HInstruction* previous = got->GetPrevious(); HLoopInformation* info = block->GetLoopInformation(); if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { GenerateSuspendCheck(info->GetSuspendCheck(), successor); return; } if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); } if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) { __ jmp(codegen_->GetLabelOf(successor)); } } void LocationsBuilderX86::VisitGoto(HGoto* got) { got->SetLocations(nullptr); } void InstructionCodeGeneratorX86::VisitGoto(HGoto* got) { HandleGoto(got, got->GetSuccessor()); } void LocationsBuilderX86::VisitTryBoundary(HTryBoundary* try_boundary) { try_boundary->SetLocations(nullptr); } void InstructionCodeGeneratorX86::VisitTryBoundary(HTryBoundary* try_boundary) { HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); if (!successor->IsExitBlock()) { HandleGoto(try_boundary, successor); } } void LocationsBuilderX86::VisitExit(HExit* exit) { exit->SetLocations(nullptr); } void InstructionCodeGeneratorX86::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { } template<class LabelType> void InstructionCodeGeneratorX86::GenerateFPJumps(HCondition* cond, LabelType* true_label, LabelType* false_label) { if (cond->IsFPConditionTrueIfNaN()) { __ j(kUnordered, true_label); } else if (cond->IsFPConditionFalseIfNaN()) { __ j(kUnordered, false_label); } __ j(X86UnsignedOrFPCondition(cond->GetCondition()), true_label); } template<class LabelType> void InstructionCodeGeneratorX86::GenerateLongComparesAndJumps(HCondition* cond, LabelType* true_label, LabelType* false_label) { LocationSummary* locations = cond->GetLocations(); Location left = locations->InAt(0); Location right = locations->InAt(1); IfCondition if_cond = cond->GetCondition(); Register left_high = left.AsRegisterPairHigh<Register>(); Register left_low = left.AsRegisterPairLow<Register>(); IfCondition true_high_cond = if_cond; IfCondition false_high_cond = cond->GetOppositeCondition(); Condition final_condition = X86UnsignedOrFPCondition(if_cond); // unsigned on lower part // Set the conditions for the test, remembering that == needs to be // decided using the low words. switch (if_cond) { case kCondEQ: case kCondNE: // Nothing to do. break; case kCondLT: false_high_cond = kCondGT; break; case kCondLE: true_high_cond = kCondLT; break; case kCondGT: false_high_cond = kCondLT; break; case kCondGE: true_high_cond = kCondGT; break; case kCondB: false_high_cond = kCondA; break; case kCondBE: true_high_cond = kCondB; break; case kCondA: false_high_cond = kCondB; break; case kCondAE: true_high_cond = kCondA; break; } if (right.IsConstant()) { int64_t value = right.GetConstant()->AsLongConstant()->GetValue(); int32_t val_high = High32Bits(value); int32_t val_low = Low32Bits(value); codegen_->Compare32BitValue(left_high, val_high); if (if_cond == kCondNE) { __ j(X86Condition(true_high_cond), true_label); } else if (if_cond == kCondEQ) { __ j(X86Condition(false_high_cond), false_label); } else { __ j(X86Condition(true_high_cond), true_label); __ j(X86Condition(false_high_cond), false_label); } // Must be equal high, so compare the lows. codegen_->Compare32BitValue(left_low, val_low); } else if (right.IsRegisterPair()) { Register right_high = right.AsRegisterPairHigh<Register>(); Register right_low = right.AsRegisterPairLow<Register>(); __ cmpl(left_high, right_high); if (if_cond == kCondNE) { __ j(X86Condition(true_high_cond), true_label); } else if (if_cond == kCondEQ) { __ j(X86Condition(false_high_cond), false_label); } else { __ j(X86Condition(true_high_cond), true_label); __ j(X86Condition(false_high_cond), false_label); } // Must be equal high, so compare the lows. __ cmpl(left_low, right_low); } else { DCHECK(right.IsDoubleStackSlot()); __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize))); if (if_cond == kCondNE) { __ j(X86Condition(true_high_cond), true_label); } else if (if_cond == kCondEQ) { __ j(X86Condition(false_high_cond), false_label); } else { __ j(X86Condition(true_high_cond), true_label); __ j(X86Condition(false_high_cond), false_label); } // Must be equal high, so compare the lows. __ cmpl(left_low, Address(ESP, right.GetStackIndex())); } // The last comparison might be unsigned. __ j(final_condition, true_label); } void InstructionCodeGeneratorX86::GenerateFPCompare(Location lhs, Location rhs, HInstruction* insn, bool is_double) { HX86LoadFromConstantTable* const_area = insn->InputAt(1)->AsX86LoadFromConstantTable(); if (is_double) { if (rhs.IsFpuRegister()) { __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>()); } else if (const_area != nullptr) { DCHECK(const_area->IsEmittedAtUseSite()); __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), codegen_->LiteralDoubleAddress( const_area->GetConstant()->AsDoubleConstant()->GetValue(), const_area->GetBaseMethodAddress(), const_area->GetLocations()->InAt(0).AsRegister<Register>())); } else { DCHECK(rhs.IsDoubleStackSlot()); __ ucomisd(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex())); } } else { if (rhs.IsFpuRegister()) { __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>()); } else if (const_area != nullptr) { DCHECK(const_area->IsEmittedAtUseSite()); __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), codegen_->LiteralFloatAddress( const_area->GetConstant()->AsFloatConstant()->GetValue(), const_area->GetBaseMethodAddress(), const_area->GetLocations()->InAt(0).AsRegister<Register>())); } else { DCHECK(rhs.IsStackSlot()); __ ucomiss(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex())); } } } template<class LabelType> void InstructionCodeGeneratorX86::GenerateCompareTestAndBranch(HCondition* condition, LabelType* true_target_in, LabelType* false_target_in) { // Generated branching requires both targets to be explicit. If either of the // targets is nullptr (fallthrough) use and bind `fallthrough_target` instead. LabelType fallthrough_target; LabelType* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in; LabelType* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in; LocationSummary* locations = condition->GetLocations(); Location left = locations->InAt(0); Location right = locations->InAt(1); Primitive::Type type = condition->InputAt(0)->GetType(); switch (type) { case Primitive::kPrimLong: GenerateLongComparesAndJumps(condition, true_target, false_target); break; case Primitive::kPrimFloat: GenerateFPCompare(left, right, condition, false); GenerateFPJumps(condition, true_target, false_target); break; case Primitive::kPrimDouble: GenerateFPCompare(left, right, condition, true); GenerateFPJumps(condition, true_target, false_target); break; default: LOG(FATAL) << "Unexpected compare type " << type; } if (false_target != &fallthrough_target) { __ jmp(false_target); } if (fallthrough_target.IsLinked()) { __ Bind(&fallthrough_target); } } static bool AreEflagsSetFrom(HInstruction* cond, HInstruction* branch) { // Moves may affect the eflags register (move zero uses xorl), so the EFLAGS // are set only strictly before `branch`. We can't use the eflags on long/FP // conditions if they are materialized due to the complex branching. return cond->IsCondition() && cond->GetNext() == branch && cond->InputAt(0)->GetType() != Primitive::kPrimLong && !Primitive::IsFloatingPointType(cond->InputAt(0)->GetType()); } template<class LabelType> void InstructionCodeGeneratorX86::GenerateTestAndBranch(HInstruction* instruction, size_t condition_input_index, LabelType* true_target, LabelType* false_target) { HInstruction* cond = instruction->InputAt(condition_input_index); if (true_target == nullptr && false_target == nullptr) { // Nothing to do. The code always falls through. return; } else if (cond->IsIntConstant()) { // Constant condition, statically compared against "true" (integer value 1). if (cond->AsIntConstant()->IsTrue()) { if (true_target != nullptr) { __ jmp(true_target); } } else { DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); if (false_target != nullptr) { __ jmp(false_target); } } return; } // The following code generates these patterns: // (1) true_target == nullptr && false_target != nullptr // - opposite condition true => branch to false_target // (2) true_target != nullptr && false_target == nullptr // - condition true => branch to true_target // (3) true_target != nullptr && false_target != nullptr // - condition true => branch to true_target // - branch to false_target if (IsBooleanValueOrMaterializedCondition(cond)) { if (AreEflagsSetFrom(cond, instruction)) { if (true_target == nullptr) { __ j(X86Condition(cond->AsCondition()->GetOppositeCondition()), false_target); } else { __ j(X86Condition(cond->AsCondition()->GetCondition()), true_target); } } else { // Materialized condition, compare against 0. Location lhs = instruction->GetLocations()->InAt(condition_input_index); if (lhs.IsRegister()) { __ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>()); } else { __ cmpl(Address(ESP, lhs.GetStackIndex()), Immediate(0)); } if (true_target == nullptr) { __ j(kEqual, false_target); } else { __ j(kNotEqual, true_target); } } } else { // Condition has not been materialized, use its inputs as the comparison and // its condition as the branch condition. HCondition* condition = cond->AsCondition(); // If this is a long or FP comparison that has been folded into // the HCondition, generate the comparison directly. Primitive::Type type = condition->InputAt(0)->GetType(); if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) { GenerateCompareTestAndBranch(condition, true_target, false_target); return; } Location lhs = condition->GetLocations()->InAt(0); Location rhs = condition->GetLocations()->InAt(1); // LHS is guaranteed to be in a register (see LocationsBuilderX86::HandleCondition). codegen_->GenerateIntCompare(lhs, rhs); if (true_target == nullptr) { __ j(X86Condition(condition->GetOppositeCondition()), false_target); } else { __ j(X86Condition(condition->GetCondition()), true_target); } } // If neither branch falls through (case 3), the conditional branch to `true_target` // was already emitted (case 2) and we need to emit a jump to `false_target`. if (true_target != nullptr && false_target != nullptr) { __ jmp(false_target); } } void LocationsBuilderX86::VisitIf(HIf* if_instr) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr); if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { locations->SetInAt(0, Location::Any()); } } void InstructionCodeGeneratorX86::VisitIf(HIf* if_instr) { HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ? nullptr : codegen_->GetLabelOf(true_successor); Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ? nullptr : codegen_->GetLabelOf(false_successor); GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target); } void LocationsBuilderX86::VisitDeoptimize(HDeoptimize* deoptimize) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); InvokeRuntimeCallingConvention calling_convention; RegisterSet caller_saves = RegisterSet::Empty(); caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetCustomSlowPathCallerSaves(caller_saves); if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { locations->SetInAt(0, Location::Any()); } } void InstructionCodeGeneratorX86::VisitDeoptimize(HDeoptimize* deoptimize) { SlowPathCode* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathX86>(deoptimize); GenerateTestAndBranch<Label>(deoptimize, /* condition_input_index */ 0, slow_path->GetEntryLabel(), /* false_target */ nullptr); } void LocationsBuilderX86::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(flag, LocationSummary::kNoCall); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorX86::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { __ movl(flag->GetLocations()->Out().AsRegister<Register>(), Address(ESP, codegen_->GetStackOffsetOfShouldDeoptimizeFlag())); } static bool SelectCanUseCMOV(HSelect* select) { // There are no conditional move instructions for XMMs. if (Primitive::IsFloatingPointType(select->GetType())) { return false; } // A FP condition doesn't generate the single CC that we need. // In 32 bit mode, a long condition doesn't generate a single CC either. HInstruction* condition = select->GetCondition(); if (condition->IsCondition()) { Primitive::Type compare_type = condition->InputAt(0)->GetType(); if (compare_type == Primitive::kPrimLong || Primitive::IsFloatingPointType(compare_type)) { return false; } } // We can generate a CMOV for this Select. return true; } void LocationsBuilderX86::VisitSelect(HSelect* select) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select); if (Primitive::IsFloatingPointType(select->GetType())) { locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::Any()); } else { locations->SetInAt(0, Location::RequiresRegister()); if (SelectCanUseCMOV(select)) { if (select->InputAt(1)->IsConstant()) { // Cmov can't handle a constant value. locations->SetInAt(1, Location::RequiresRegister()); } else { locations->SetInAt(1, Location::Any()); } } else { locations->SetInAt(1, Location::Any()); } } if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { locations->SetInAt(2, Location::RequiresRegister()); } locations->SetOut(Location::SameAsFirstInput()); } void InstructionCodeGeneratorX86::VisitSelect(HSelect* select) { LocationSummary* locations = select->GetLocations(); DCHECK(locations->InAt(0).Equals(locations->Out())); if (SelectCanUseCMOV(select)) { // If both the condition and the source types are integer, we can generate // a CMOV to implement Select. HInstruction* select_condition = select->GetCondition(); Condition cond = kNotEqual; // Figure out how to test the 'condition'. if (select_condition->IsCondition()) { HCondition* condition = select_condition->AsCondition(); if (!condition->IsEmittedAtUseSite()) { // This was a previously materialized condition. // Can we use the existing condition code? if (AreEflagsSetFrom(condition, select)) { // Materialization was the previous instruction. Condition codes are right. cond = X86Condition(condition->GetCondition()); } else { // No, we have to recreate the condition code. Register cond_reg = locations->InAt(2).AsRegister<Register>(); __ testl(cond_reg, cond_reg); } } else { // We can't handle FP or long here. DCHECK_NE(condition->InputAt(0)->GetType(), Primitive::kPrimLong); DCHECK(!Primitive::IsFloatingPointType(condition->InputAt(0)->GetType())); LocationSummary* cond_locations = condition->GetLocations(); codegen_->GenerateIntCompare(cond_locations->InAt(0), cond_locations->InAt(1)); cond = X86Condition(condition->GetCondition()); } } else { // Must be a Boolean condition, which needs to be compared to 0. Register cond_reg = locations->InAt(2).AsRegister<Register>(); __ testl(cond_reg, cond_reg); } // If the condition is true, overwrite the output, which already contains false. Location false_loc = locations->InAt(0); Location true_loc = locations->InAt(1); if (select->GetType() == Primitive::kPrimLong) { // 64 bit conditional move. Register false_high = false_loc.AsRegisterPairHigh<Register>(); Register false_low = false_loc.AsRegisterPairLow<Register>(); if (true_loc.IsRegisterPair()) { __ cmovl(cond, false_high, true_loc.AsRegisterPairHigh<Register>()); __ cmovl(cond, false_low, true_loc.AsRegisterPairLow<Register>()); } else { __ cmovl(cond, false_high, Address(ESP, true_loc.GetHighStackIndex(kX86WordSize))); __ cmovl(cond, false_low, Address(ESP, true_loc.GetStackIndex())); } } else { // 32 bit conditional move. Register false_reg = false_loc.AsRegister<Register>(); if (true_loc.IsRegister()) { __ cmovl(cond, false_reg, true_loc.AsRegister<Register>()); } else { __ cmovl(cond, false_reg, Address(ESP, true_loc.GetStackIndex())); } } } else { NearLabel false_target; GenerateTestAndBranch<NearLabel>( select, /* condition_input_index */ 2, /* true_target */ nullptr, &false_target); codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType()); __ Bind(&false_target); } } void LocationsBuilderX86::VisitNativeDebugInfo(HNativeDebugInfo* info) { new (GetGraph()->GetArena()) LocationSummary(info); } void InstructionCodeGeneratorX86::VisitNativeDebugInfo(HNativeDebugInfo*) { // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. } void CodeGeneratorX86::GenerateNop() { __ nop(); } void LocationsBuilderX86::HandleCondition(HCondition* cond) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall); // Handle the long/FP comparisons made in instruction simplification. switch (cond->InputAt(0)->GetType()) { case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); if (!cond->IsEmittedAtUseSite()) { locations->SetOut(Location::RequiresRegister()); } break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); if (cond->InputAt(1)->IsX86LoadFromConstantTable()) { DCHECK(cond->InputAt(1)->IsEmittedAtUseSite()); } else if (cond->InputAt(1)->IsConstant()) { locations->SetInAt(1, Location::RequiresFpuRegister()); } else { locations->SetInAt(1, Location::Any()); } if (!cond->IsEmittedAtUseSite()) { locations->SetOut(Location::RequiresRegister()); } break; } default: locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); if (!cond->IsEmittedAtUseSite()) { // We need a byte register. locations->SetOut(Location::RegisterLocation(ECX)); } break; } } void InstructionCodeGeneratorX86::HandleCondition(HCondition* cond) { if (cond->IsEmittedAtUseSite()) { return; } LocationSummary* locations = cond->GetLocations(); Location lhs = locations->InAt(0); Location rhs = locations->InAt(1); Register reg = locations->Out().AsRegister<Register>(); NearLabel true_label, false_label; switch (cond->InputAt(0)->GetType()) { default: { // Integer case. // Clear output register: setb only sets the low byte. __ xorl(reg, reg); codegen_->GenerateIntCompare(lhs, rhs); __ setb(X86Condition(cond->GetCondition()), reg); return; } case Primitive::kPrimLong: GenerateLongComparesAndJumps(cond, &true_label, &false_label); break; case Primitive::kPrimFloat: GenerateFPCompare(lhs, rhs, cond, false); GenerateFPJumps(cond, &true_label, &false_label); break; case Primitive::kPrimDouble: GenerateFPCompare(lhs, rhs, cond, true); GenerateFPJumps(cond, &true_label, &false_label); break; } // Convert the jumps into the result. NearLabel done_label; // False case: result = 0. __ Bind(&false_label); __ xorl(reg, reg); __ jmp(&done_label); // True case: result = 1. __ Bind(&true_label); __ movl(reg, Immediate(1)); __ Bind(&done_label); } void LocationsBuilderX86::VisitEqual(HEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86::VisitEqual(HEqual* comp) { HandleCondition(comp); } void LocationsBuilderX86::VisitNotEqual(HNotEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86::VisitNotEqual(HNotEqual* comp) { HandleCondition(comp); } void LocationsBuilderX86::VisitLessThan(HLessThan* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86::VisitLessThan(HLessThan* comp) { HandleCondition(comp); } void LocationsBuilderX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderX86::VisitGreaterThan(HGreaterThan* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86::VisitGreaterThan(HGreaterThan* comp) { HandleCondition(comp); } void LocationsBuilderX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderX86::VisitBelow(HBelow* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86::VisitBelow(HBelow* comp) { HandleCondition(comp); } void LocationsBuilderX86::VisitBelowOrEqual(HBelowOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86::VisitBelowOrEqual(HBelowOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderX86::VisitAbove(HAbove* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86::VisitAbove(HAbove* comp) { HandleCondition(comp); } void LocationsBuilderX86::VisitAboveOrEqual(HAboveOrEqual* comp) { HandleCondition(comp); } void InstructionCodeGeneratorX86::VisitAboveOrEqual(HAboveOrEqual* comp) { HandleCondition(comp); } void LocationsBuilderX86::VisitIntConstant(HIntConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorX86::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderX86::VisitNullConstant(HNullConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorX86::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderX86::VisitLongConstant(HLongConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorX86::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderX86::VisitFloatConstant(HFloatConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorX86::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderX86::VisitDoubleConstant(HDoubleConstant* constant) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall); locations->SetOut(Location::ConstantLocation(constant)); } void InstructionCodeGeneratorX86::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) { // Will be generated at use site. } void LocationsBuilderX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { memory_barrier->SetLocations(nullptr); } void InstructionCodeGeneratorX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); } void LocationsBuilderX86::VisitReturnVoid(HReturnVoid* ret) { ret->SetLocations(nullptr); } void InstructionCodeGeneratorX86::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) { codegen_->GenerateFrameExit(); } void LocationsBuilderX86::VisitReturn(HReturn* ret) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall); switch (ret->InputAt(0)->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: locations->SetInAt(0, Location::RegisterLocation(EAX)); break; case Primitive::kPrimLong: locations->SetInAt( 0, Location::RegisterPairLocation(EAX, EDX)); break; case Primitive::kPrimFloat: case Primitive::kPrimDouble: locations->SetInAt( 0, Location::FpuRegisterLocation(XMM0)); break; default: LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType(); } } void InstructionCodeGeneratorX86::VisitReturn(HReturn* ret) { if (kIsDebugBuild) { switch (ret->InputAt(0)->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimNot: DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<Register>(), EAX); break; case Primitive::kPrimLong: DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairLow<Register>(), EAX); DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairHigh<Register>(), EDX); break; case Primitive::kPrimFloat: case Primitive::kPrimDouble: DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>(), XMM0); break; default: LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType(); } } codegen_->GenerateFrameExit(); } void LocationsBuilderX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { // The trampoline uses the same calling convention as dex calling conventions, // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain // the method_idx. HandleInvoke(invoke); } void InstructionCodeGeneratorX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); } void LocationsBuilderX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { // Explicit clinit checks triggered by static invokes must have been pruned by // art::PrepareForRegisterAllocation. DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); IntrinsicLocationsBuilderX86 intrinsic(codegen_); if (intrinsic.TryDispatch(invoke)) { if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) { invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any()); } return; } HandleInvoke(invoke); // For PC-relative dex cache the invoke has an extra input, the PC-relative address base. if (invoke->HasPcRelativeDexCache()) { invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister()); } } static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorX86* codegen) { if (invoke->GetLocations()->Intrinsified()) { IntrinsicCodeGeneratorX86 intrinsic(codegen); intrinsic.Dispatch(invoke); return true; } return false; } void InstructionCodeGeneratorX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { // Explicit clinit checks triggered by static invokes must have been pruned by // art::PrepareForRegisterAllocation. DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); if (TryGenerateIntrinsicCode(invoke, codegen_)) { return; } LocationSummary* locations = invoke->GetLocations(); codegen_->GenerateStaticOrDirectCall( invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderX86::VisitInvokeVirtual(HInvokeVirtual* invoke) { IntrinsicLocationsBuilderX86 intrinsic(codegen_); if (intrinsic.TryDispatch(invoke)) { return; } HandleInvoke(invoke); } void LocationsBuilderX86::HandleInvoke(HInvoke* invoke) { InvokeDexCallingConventionVisitorX86 calling_convention_visitor; CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); } void InstructionCodeGeneratorX86::VisitInvokeVirtual(HInvokeVirtual* invoke) { if (TryGenerateIntrinsicCode(invoke, codegen_)) { return; } codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); DCHECK(!codegen_->IsLeafMethod()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderX86::VisitInvokeInterface(HInvokeInterface* invoke) { // This call to HandleInvoke allocates a temporary (core) register // which is also used to transfer the hidden argument from FP to // core register. HandleInvoke(invoke); // Add the hidden argument. invoke->GetLocations()->AddTemp(Location::FpuRegisterLocation(XMM7)); } void InstructionCodeGeneratorX86::VisitInvokeInterface(HInvokeInterface* invoke) { // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. LocationSummary* locations = invoke->GetLocations(); Register temp = locations->GetTemp(0).AsRegister<Register>(); XmmRegister hidden_reg = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); Location receiver = locations->InAt(0); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); // Set the hidden argument. This is safe to do this here, as XMM7 // won't be modified thereafter, before the `call` instruction. DCHECK_EQ(XMM7, hidden_reg); __ movl(temp, Immediate(invoke->GetDexMethodIndex())); __ movd(hidden_reg, temp); if (receiver.IsStackSlot()) { __ movl(temp, Address(ESP, receiver.GetStackIndex())); // /* HeapReference<Class> */ temp = temp->klass_ __ movl(temp, Address(temp, class_offset)); } else { // /* HeapReference<Class> */ temp = receiver->klass_ __ movl(temp, Address(receiver.AsRegister<Register>(), class_offset)); } codegen_->MaybeRecordImplicitNullCheck(invoke); // Instead of simply (possibly) unpoisoning `temp` here, we should // emit a read barrier for the previous class reference load. // However this is not required in practice, as this is an // intermediate/temporary reference and because the current // concurrent copying collector keeps the from-space memory // intact/accessible until the end of the marking phase (the // concurrent copying collector may not in the future). __ MaybeUnpoisonHeapReference(temp); // temp = temp->GetAddressOfIMT() __ movl(temp, Address(temp, mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value())); // temp = temp->GetImtEntryAt(method_offset); uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( invoke->GetImtIndex(), kX86PointerSize)); __ movl(temp, Address(temp, method_offset)); // call temp->GetEntryPoint(); __ call(Address(temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86PointerSize).Int32Value())); DCHECK(!codegen_->IsLeafMethod()); codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); } void LocationsBuilderX86::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { HandleInvoke(invoke); } void InstructionCodeGeneratorX86::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { codegen_->GenerateInvokePolymorphicCall(invoke); } void LocationsBuilderX86::VisitNeg(HNeg* neg) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); switch (neg->GetResultType()) { case Primitive::kPrimInt: case Primitive::kPrimLong: locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); break; case Primitive::kPrimFloat: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; case Primitive::kPrimDouble: locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresFpuRegister()); break; default: LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); } } void InstructionCodeGeneratorX86::VisitNeg(HNeg* neg) { LocationSummary* locations = neg->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); switch (neg->GetResultType()) { case Primitive::kPrimInt: DCHECK(in.IsRegister()); DCHECK(in.Equals(out)); __ negl(out.AsRegister<Register>()); break; case Primitive::kPrimLong: DCHECK(in.IsRegisterPair()); DCHECK(in.Equals(out)); __ negl(out.AsRegisterPairLow<Register>()); // Negation is similar to subtraction from zero. The least // significant byte triggers a borrow when it is different from // zero; to take it into account, add 1 to the most significant // byte if the carry flag (CF) is set to 1 after the first NEGL // operation. __ adcl(out.AsRegisterPairHigh<Register>(), Immediate(0)); __ negl(out.AsRegisterPairHigh<Register>()); break; case Primitive::kPrimFloat: { DCHECK(in.Equals(out)); Register constant = locations->GetTemp(0).AsRegister<Register>(); XmmRegister mask = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); // Implement float negation with an exclusive or with value // 0x80000000 (mask for bit 31, representing the sign of a // single-precision floating-point number). __ movl(constant, Immediate(INT32_C(0x80000000))); __ movd(mask, constant); __ xorps(out.AsFpuRegister<XmmRegister>(), mask); break; } case Primitive::kPrimDouble: { DCHECK(in.Equals(out)); XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); // Implement double negation with an exclusive or with value // 0x8000000000000000 (mask for bit 63, representing the sign of // a double-precision floating-point number). __ LoadLongConstant(mask, INT64_C(0x8000000000000000)); __ xorpd(out.AsFpuRegister<XmmRegister>(), mask); break; } default: LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); } } void LocationsBuilderX86::VisitX86FPNeg(HX86FPNeg* neg) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall); DCHECK(Primitive::IsFloatingPointType(neg->GetType())); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresFpuRegister()); } void InstructionCodeGeneratorX86::VisitX86FPNeg(HX86FPNeg* neg) { LocationSummary* locations = neg->GetLocations(); Location out = locations->Out(); DCHECK(locations->InAt(0).Equals(out)); Register constant_area = locations->InAt(1).AsRegister<Register>(); XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); if (neg->GetType() == Primitive::kPrimFloat) { __ movss(mask, codegen_->LiteralInt32Address(INT32_C(0x80000000), neg->GetBaseMethodAddress(), constant_area)); __ xorps(out.AsFpuRegister<XmmRegister>(), mask); } else { __ movsd(mask, codegen_->LiteralInt64Address(INT64_C(0x8000000000000000), neg->GetBaseMethodAddress(), constant_area)); __ xorpd(out.AsFpuRegister<XmmRegister>(), mask); } } void LocationsBuilderX86::VisitTypeConversion(HTypeConversion* conversion) { Primitive::Type result_type = conversion->GetResultType(); Primitive::Type input_type = conversion->GetInputType(); DCHECK_NE(result_type, input_type); // The float-to-long and double-to-long type conversions rely on a // call to the runtime. LocationSummary::CallKind call_kind = ((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble) && result_type == Primitive::kPrimLong) ? LocationSummary::kCallOnMainOnly : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind); // The Java language does not allow treating boolean as an integral type but // our bit representation makes it safe. switch (result_type) { case Primitive::kPrimByte: switch (input_type) { case Primitive::kPrimLong: { // Type conversion from long to byte is a result of code transformations. HInstruction* input = conversion->InputAt(0); Location input_location = input->IsConstant() ? Location::ConstantLocation(input->AsConstant()) : Location::RegisterPairLocation(EAX, EDX); locations->SetInAt(0, input_location); // Make the output overlap to please the register allocator. This greatly simplifies // the validation of the linear scan implementation locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); break; } case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-byte' instruction. locations->SetInAt(0, Location::ByteRegisterOrConstant(ECX, conversion->InputAt(0))); // Make the output overlap to please the register allocator. This greatly simplifies // the validation of the linear scan implementation locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimShort: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to short is a result of code transformations. case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-short' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimInt: switch (input_type) { case Primitive::kPrimLong: // Processing a Dex `long-to-int' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-int' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-int' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); locations->AddTemp(Location::RequiresFpuRegister()); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimLong: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-long' instruction. locations->SetInAt(0, Location::RegisterLocation(EAX)); locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); break; case Primitive::kPrimFloat: case Primitive::kPrimDouble: { // Processing a Dex `float-to-long' or 'double-to-long' instruction. InvokeRuntimeCallingConvention calling_convention; XmmRegister parameter = calling_convention.GetFpuRegisterAt(0); locations->SetInAt(0, Location::FpuRegisterLocation(parameter)); // The runtime helper puts the result in EAX, EDX. locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimChar: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to char is a result of code transformations. case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: // Processing a Dex `int-to-char' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimFloat: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-float' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimLong: // Processing a Dex `long-to-float' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::Any()); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-float' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; case Primitive::kPrimDouble: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-double' instruction. locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimLong: // Processing a Dex `long-to-double' instruction. locations->SetInAt(0, Location::Any()); locations->SetOut(Location::Any()); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-double' instruction. locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } } void InstructionCodeGeneratorX86::VisitTypeConversion(HTypeConversion* conversion) { LocationSummary* locations = conversion->GetLocations(); Location out = locations->Out(); Location in = locations->InAt(0); Primitive::Type result_type = conversion->GetResultType(); Primitive::Type input_type = conversion->GetInputType(); DCHECK_NE(result_type, input_type); switch (result_type) { case Primitive::kPrimByte: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to byte is a result of code transformations. if (in.IsRegisterPair()) { __ movsxb(out.AsRegister<Register>(), in.AsRegisterPairLow<ByteRegister>()); } else { DCHECK(in.GetConstant()->IsLongConstant()); int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value))); } break; case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-byte' instruction. if (in.IsRegister()) { __ movsxb(out.AsRegister<Register>(), in.AsRegister<ByteRegister>()); } else { DCHECK(in.GetConstant()->IsIntConstant()); int32_t value = in.GetConstant()->AsIntConstant()->GetValue(); __ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value))); } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimShort: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to short is a result of code transformations. if (in.IsRegisterPair()) { __ movsxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>()); } else if (in.IsDoubleStackSlot()) { __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); } else { DCHECK(in.GetConstant()->IsLongConstant()); int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value))); } break; case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-short' instruction. if (in.IsRegister()) { __ movsxw(out.AsRegister<Register>(), in.AsRegister<Register>()); } else if (in.IsStackSlot()) { __ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); } else { DCHECK(in.GetConstant()->IsIntConstant()); int32_t value = in.GetConstant()->AsIntConstant()->GetValue(); __ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value))); } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimInt: switch (input_type) { case Primitive::kPrimLong: // Processing a Dex `long-to-int' instruction. if (in.IsRegisterPair()) { __ movl(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>()); } else if (in.IsDoubleStackSlot()) { __ movl(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); } else { DCHECK(in.IsConstant()); DCHECK(in.GetConstant()->IsLongConstant()); int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); __ movl(out.AsRegister<Register>(), Immediate(static_cast<int32_t>(value))); } break; case Primitive::kPrimFloat: { // Processing a Dex `float-to-int' instruction. XmmRegister input = in.AsFpuRegister<XmmRegister>(); Register output = out.AsRegister<Register>(); XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); NearLabel done, nan; __ movl(output, Immediate(kPrimIntMax)); // temp = int-to-float(output) __ cvtsi2ss(temp, output); // if input >= temp goto done __ comiss(input, temp); __ j(kAboveEqual, &done); // if input == NaN goto nan __ j(kUnordered, &nan); // output = float-to-int-truncate(input) __ cvttss2si(output, input); __ jmp(&done); __ Bind(&nan); // output = 0 __ xorl(output, output); __ Bind(&done); break; } case Primitive::kPrimDouble: { // Processing a Dex `double-to-int' instruction. XmmRegister input = in.AsFpuRegister<XmmRegister>(); Register output = out.AsRegister<Register>(); XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); NearLabel done, nan; __ movl(output, Immediate(kPrimIntMax)); // temp = int-to-double(output) __ cvtsi2sd(temp, output); // if input >= temp goto done __ comisd(input, temp); __ j(kAboveEqual, &done); // if input == NaN goto nan __ j(kUnordered, &nan); // output = double-to-int-truncate(input) __ cvttsd2si(output, input); __ jmp(&done); __ Bind(&nan); // output = 0 __ xorl(output, output); __ Bind(&done); break; } default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimLong: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-long' instruction. DCHECK_EQ(out.AsRegisterPairLow<Register>(), EAX); DCHECK_EQ(out.AsRegisterPairHigh<Register>(), EDX); DCHECK_EQ(in.AsRegister<Register>(), EAX); __ cdq(); break; case Primitive::kPrimFloat: // Processing a Dex `float-to-long' instruction. codegen_->InvokeRuntime(kQuickF2l, conversion, conversion->GetDexPc()); CheckEntrypointTypes<kQuickF2l, int64_t, float>(); break; case Primitive::kPrimDouble: // Processing a Dex `double-to-long' instruction. codegen_->InvokeRuntime(kQuickD2l, conversion, conversion->GetDexPc()); CheckEntrypointTypes<kQuickD2l, int64_t, double>(); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimChar: switch (input_type) { case Primitive::kPrimLong: // Type conversion from long to short is a result of code transformations. if (in.IsRegisterPair()) { __ movzxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>()); } else if (in.IsDoubleStackSlot()) { __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); } else { DCHECK(in.GetConstant()->IsLongConstant()); int64_t value = in.GetConstant()->AsLongConstant()->GetValue(); __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value))); } break; case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: // Processing a Dex `Process a Dex `int-to-char'' instruction. if (in.IsRegister()) { __ movzxw(out.AsRegister<Register>(), in.AsRegister<Register>()); } else if (in.IsStackSlot()) { __ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex())); } else { DCHECK(in.GetConstant()->IsIntConstant()); int32_t value = in.GetConstant()->AsIntConstant()->GetValue(); __ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value))); } break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } break; case Primitive::kPrimFloat: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-float' instruction. __ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>()); break; case Primitive::kPrimLong: { // Processing a Dex `long-to-float' instruction. size_t adjustment = 0; // Create stack space for the call to // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstps below. // TODO: enhance register allocator to ask for stack temporaries. if (!in.IsDoubleStackSlot() || !out.IsStackSlot()) { adjustment = Primitive::ComponentSize(Primitive::kPrimLong); __ subl(ESP, Immediate(adjustment)); } // Load the value to the FP stack, using temporaries if needed. PushOntoFPStack(in, 0, adjustment, false, true); if (out.IsStackSlot()) { __ fstps(Address(ESP, out.GetStackIndex() + adjustment)); } else { __ fstps(Address(ESP, 0)); Location stack_temp = Location::StackSlot(0); codegen_->Move32(out, stack_temp); } // Remove the temporary stack space we allocated. if (adjustment != 0) { __ addl(ESP, Immediate(adjustment)); } break; } case Primitive::kPrimDouble: // Processing a Dex `double-to-float' instruction. __ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>()); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; case Primitive::kPrimDouble: switch (input_type) { case Primitive::kPrimBoolean: // Boolean input is a result of code transformations. case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimInt: case Primitive::kPrimChar: // Processing a Dex `int-to-double' instruction. __ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>()); break; case Primitive::kPrimLong: { // Processing a Dex `long-to-double' instruction. size_t adjustment = 0; // Create stack space for the call to // InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstpl below. // TODO: enhance register allocator to ask for stack temporaries. if (!in.IsDoubleStackSlot() || !out.IsDoubleStackSlot()) { adjustment = Primitive::ComponentSize(Primitive::kPrimLong); __ subl(ESP, Immediate(adjustment)); } // Load the value to the FP stack, using temporaries if needed. PushOntoFPStack(in, 0, adjustment, false, true); if (out.IsDoubleStackSlot()) { __ fstpl(Address(ESP, out.GetStackIndex() + adjustment)); } else { __ fstpl(Address(ESP, 0)); Location stack_temp = Location::DoubleStackSlot(0); codegen_->Move64(out, stack_temp); } // Remove the temporary stack space we allocated. if (adjustment != 0) { __ addl(ESP, Immediate(adjustment)); } break; } case Primitive::kPrimFloat: // Processing a Dex `float-to-double' instruction. __ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>()); break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; }; break; default: LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; } } void LocationsBuilderX86::VisitAdd(HAdd* add) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall); switch (add->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1))); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); if (add->InputAt(1)->IsX86LoadFromConstantTable()) { DCHECK(add->InputAt(1)->IsEmittedAtUseSite()); } else if (add->InputAt(1)->IsConstant()) { locations->SetInAt(1, Location::RequiresFpuRegister()); } else { locations->SetInAt(1, Location::Any()); } locations->SetOut(Location::SameAsFirstInput()); break; } default: LOG(FATAL) << "Unexpected add type " << add->GetResultType(); break; } } void InstructionCodeGeneratorX86::VisitAdd(HAdd* add) { LocationSummary* locations = add->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); Location out = locations->Out(); switch (add->GetResultType()) { case Primitive::kPrimInt: { if (second.IsRegister()) { if (out.AsRegister<Register>() == first.AsRegister<Register>()) { __ addl(out.AsRegister<Register>(), second.AsRegister<Register>()); } else if (out.AsRegister<Register>() == second.AsRegister<Register>()) { __ addl(out.AsRegister<Register>(), first.AsRegister<Register>()); } else { __ leal(out.AsRegister<Register>(), Address( first.AsRegister<Register>(), second.AsRegister<Register>(), TIMES_1, 0)); } } else if (second.IsConstant()) { int32_t value = second.GetConstant()->AsIntConstant()->GetValue(); if (out.AsRegister<Register>() == first.AsRegister<Register>()) { __ addl(out.AsRegister<Register>(), Immediate(value)); } else { __ leal(out.AsRegister<Register>(), Address(first.AsRegister<Register>(), value)); } } else { DCHECK(first.Equals(locations->Out())); __ addl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); } break; } case Primitive::kPrimLong: { if (second.IsRegisterPair()) { __ addl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); __ adcl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); } else if (second.IsDoubleStackSlot()) { __ addl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); __ adcl(first.AsRegisterPairHigh<Register>(), Address(ESP, second.GetHighStackIndex(kX86WordSize))); } else { DCHECK(second.IsConstant()) << second; int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); __ addl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value))); __ adcl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value))); } break; } case Primitive::kPrimFloat: { if (second.IsFpuRegister()) { __ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) { HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable(); DCHECK(const_area->IsEmittedAtUseSite()); __ addss(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralFloatAddress( const_area->GetConstant()->AsFloatConstant()->GetValue(), const_area->GetBaseMethodAddress(), const_area->GetLocations()->InAt(0).AsRegister<Register>())); } else { DCHECK(second.IsStackSlot()); __ addss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); } break; } case Primitive::kPrimDouble: { if (second.IsFpuRegister()) { __ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (add->InputAt(1)->IsX86LoadFromConstantTable()) { HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable(); DCHECK(const_area->IsEmittedAtUseSite()); __ addsd(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralDoubleAddress( const_area->GetConstant()->AsDoubleConstant()->GetValue(), const_area->GetBaseMethodAddress(), const_area->GetLocations()->InAt(0).AsRegister<Register>())); } else { DCHECK(second.IsDoubleStackSlot()); __ addsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); } break; } default: LOG(FATAL) << "Unexpected add type " << add->GetResultType(); } } void LocationsBuilderX86::VisitSub(HSub* sub) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall); switch (sub->GetResultType()) { case Primitive::kPrimInt: case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); if (sub->InputAt(1)->IsX86LoadFromConstantTable()) { DCHECK(sub->InputAt(1)->IsEmittedAtUseSite()); } else if (sub->InputAt(1)->IsConstant()) { locations->SetInAt(1, Location::RequiresFpuRegister()); } else { locations->SetInAt(1, Location::Any()); } locations->SetOut(Location::SameAsFirstInput()); break; } default: LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); } } void InstructionCodeGeneratorX86::VisitSub(HSub* sub) { LocationSummary* locations = sub->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); DCHECK(first.Equals(locations->Out())); switch (sub->GetResultType()) { case Primitive::kPrimInt: { if (second.IsRegister()) { __ subl(first.AsRegister<Register>(), second.AsRegister<Register>()); } else if (second.IsConstant()) { __ subl(first.AsRegister<Register>(), Immediate(second.GetConstant()->AsIntConstant()->GetValue())); } else { __ subl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); } break; } case Primitive::kPrimLong: { if (second.IsRegisterPair()) { __ subl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); __ sbbl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); } else if (second.IsDoubleStackSlot()) { __ subl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); __ sbbl(first.AsRegisterPairHigh<Register>(), Address(ESP, second.GetHighStackIndex(kX86WordSize))); } else { DCHECK(second.IsConstant()) << second; int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); __ subl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value))); __ sbbl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value))); } break; } case Primitive::kPrimFloat: { if (second.IsFpuRegister()) { __ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) { HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable(); DCHECK(const_area->IsEmittedAtUseSite()); __ subss(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralFloatAddress( const_area->GetConstant()->AsFloatConstant()->GetValue(), const_area->GetBaseMethodAddress(), const_area->GetLocations()->InAt(0).AsRegister<Register>())); } else { DCHECK(second.IsStackSlot()); __ subss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); } break; } case Primitive::kPrimDouble: { if (second.IsFpuRegister()) { __ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) { HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable(); DCHECK(const_area->IsEmittedAtUseSite()); __ subsd(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralDoubleAddress( const_area->GetConstant()->AsDoubleConstant()->GetValue(), const_area->GetBaseMethodAddress(), const_area->GetLocations()->InAt(0).AsRegister<Register>())); } else { DCHECK(second.IsDoubleStackSlot()); __ subsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); } break; } default: LOG(FATAL) << "Unexpected sub type " << sub->GetResultType(); } } void LocationsBuilderX86::VisitMul(HMul* mul) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall); switch (mul->GetResultType()) { case Primitive::kPrimInt: locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); if (mul->InputAt(1)->IsIntConstant()) { // Can use 3 operand multiply. locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } else { locations->SetOut(Location::SameAsFirstInput()); } break; case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); // Needed for imul on 32bits with 64bits output. locations->AddTemp(Location::RegisterLocation(EAX)); locations->AddTemp(Location::RegisterLocation(EDX)); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); if (mul->InputAt(1)->IsX86LoadFromConstantTable()) { DCHECK(mul->InputAt(1)->IsEmittedAtUseSite()); } else if (mul->InputAt(1)->IsConstant()) { locations->SetInAt(1, Location::RequiresFpuRegister()); } else { locations->SetInAt(1, Location::Any()); } locations->SetOut(Location::SameAsFirstInput()); break; } default: LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); } } void InstructionCodeGeneratorX86::VisitMul(HMul* mul) { LocationSummary* locations = mul->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); Location out = locations->Out(); switch (mul->GetResultType()) { case Primitive::kPrimInt: // The constant may have ended up in a register, so test explicitly to avoid // problems where the output may not be the same as the first operand. if (mul->InputAt(1)->IsIntConstant()) { Immediate imm(mul->InputAt(1)->AsIntConstant()->GetValue()); __ imull(out.AsRegister<Register>(), first.AsRegister<Register>(), imm); } else if (second.IsRegister()) { DCHECK(first.Equals(out)); __ imull(first.AsRegister<Register>(), second.AsRegister<Register>()); } else { DCHECK(second.IsStackSlot()); DCHECK(first.Equals(out)); __ imull(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); } break; case Primitive::kPrimLong: { Register in1_hi = first.AsRegisterPairHigh<Register>(); Register in1_lo = first.AsRegisterPairLow<Register>(); Register eax = locations->GetTemp(0).AsRegister<Register>(); Register edx = locations->GetTemp(1).AsRegister<Register>(); DCHECK_EQ(EAX, eax); DCHECK_EQ(EDX, edx); // input: in1 - 64 bits, in2 - 64 bits. // output: in1 // formula: in1.hi : in1.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo // parts: in1.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32] // parts: in1.lo = (in1.lo * in2.lo)[31:0] if (second.IsConstant()) { DCHECK(second.GetConstant()->IsLongConstant()); int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); int32_t low_value = Low32Bits(value); int32_t high_value = High32Bits(value); Immediate low(low_value); Immediate high(high_value); __ movl(eax, high); // eax <- in1.lo * in2.hi __ imull(eax, in1_lo); // in1.hi <- in1.hi * in2.lo __ imull(in1_hi, low); // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo __ addl(in1_hi, eax); // move in2_lo to eax to prepare for double precision __ movl(eax, low); // edx:eax <- in1.lo * in2.lo __ mull(in1_lo); // in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] __ addl(in1_hi, edx); // in1.lo <- (in1.lo * in2.lo)[31:0]; __ movl(in1_lo, eax); } else if (second.IsRegisterPair()) { Register in2_hi = second.AsRegisterPairHigh<Register>(); Register in2_lo = second.AsRegisterPairLow<Register>(); __ movl(eax, in2_hi); // eax <- in1.lo * in2.hi __ imull(eax, in1_lo); // in1.hi <- in1.hi * in2.lo __ imull(in1_hi, in2_lo); // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo __ addl(in1_hi, eax); // move in1_lo to eax to prepare for double precision __ movl(eax, in1_lo); // edx:eax <- in1.lo * in2.lo __ mull(in2_lo); // in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] __ addl(in1_hi, edx); // in1.lo <- (in1.lo * in2.lo)[31:0]; __ movl(in1_lo, eax); } else { DCHECK(second.IsDoubleStackSlot()) << second; Address in2_hi(ESP, second.GetHighStackIndex(kX86WordSize)); Address in2_lo(ESP, second.GetStackIndex()); __ movl(eax, in2_hi); // eax <- in1.lo * in2.hi __ imull(eax, in1_lo); // in1.hi <- in1.hi * in2.lo __ imull(in1_hi, in2_lo); // in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo __ addl(in1_hi, eax); // move in1_lo to eax to prepare for double precision __ movl(eax, in1_lo); // edx:eax <- in1.lo * in2.lo __ mull(in2_lo); // in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32] __ addl(in1_hi, edx); // in1.lo <- (in1.lo * in2.lo)[31:0]; __ movl(in1_lo, eax); } break; } case Primitive::kPrimFloat: { DCHECK(first.Equals(locations->Out())); if (second.IsFpuRegister()) { __ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) { HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable(); DCHECK(const_area->IsEmittedAtUseSite()); __ mulss(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralFloatAddress( const_area->GetConstant()->AsFloatConstant()->GetValue(), const_area->GetBaseMethodAddress(), const_area->GetLocations()->InAt(0).AsRegister<Register>())); } else { DCHECK(second.IsStackSlot()); __ mulss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); } break; } case Primitive::kPrimDouble: { DCHECK(first.Equals(locations->Out())); if (second.IsFpuRegister()) { __ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) { HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable(); DCHECK(const_area->IsEmittedAtUseSite()); __ mulsd(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralDoubleAddress( const_area->GetConstant()->AsDoubleConstant()->GetValue(), const_area->GetBaseMethodAddress(), const_area->GetLocations()->InAt(0).AsRegister<Register>())); } else { DCHECK(second.IsDoubleStackSlot()); __ mulsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); } break; } default: LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); } } void InstructionCodeGeneratorX86::PushOntoFPStack(Location source, uint32_t temp_offset, uint32_t stack_adjustment, bool is_fp, bool is_wide) { if (source.IsStackSlot()) { DCHECK(!is_wide); if (is_fp) { __ flds(Address(ESP, source.GetStackIndex() + stack_adjustment)); } else { __ filds(Address(ESP, source.GetStackIndex() + stack_adjustment)); } } else if (source.IsDoubleStackSlot()) { DCHECK(is_wide); if (is_fp) { __ fldl(Address(ESP, source.GetStackIndex() + stack_adjustment)); } else { __ fildl(Address(ESP, source.GetStackIndex() + stack_adjustment)); } } else { // Write the value to the temporary location on the stack and load to FP stack. if (!is_wide) { Location stack_temp = Location::StackSlot(temp_offset); codegen_->Move32(stack_temp, source); if (is_fp) { __ flds(Address(ESP, temp_offset)); } else { __ filds(Address(ESP, temp_offset)); } } else { Location stack_temp = Location::DoubleStackSlot(temp_offset); codegen_->Move64(stack_temp, source); if (is_fp) { __ fldl(Address(ESP, temp_offset)); } else { __ fildl(Address(ESP, temp_offset)); } } } } void InstructionCodeGeneratorX86::GenerateRemFP(HRem *rem) { Primitive::Type type = rem->GetResultType(); bool is_float = type == Primitive::kPrimFloat; size_t elem_size = Primitive::ComponentSize(type); LocationSummary* locations = rem->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); Location out = locations->Out(); // Create stack space for 2 elements. // TODO: enhance register allocator to ask for stack temporaries. __ subl(ESP, Immediate(2 * elem_size)); // Load the values to the FP stack in reverse order, using temporaries if needed. const bool is_wide = !is_float; PushOntoFPStack(second, elem_size, 2 * elem_size, /* is_fp */ true, is_wide); PushOntoFPStack(first, 0, 2 * elem_size, /* is_fp */ true, is_wide); // Loop doing FPREM until we stabilize. NearLabel retry; __ Bind(&retry); __ fprem(); // Move FP status to AX. __ fstsw(); // And see if the argument reduction is complete. This is signaled by the // C2 FPU flag bit set to 0. __ andl(EAX, Immediate(kC2ConditionMask)); __ j(kNotEqual, &retry); // We have settled on the final value. Retrieve it into an XMM register. // Store FP top of stack to real stack. if (is_float) { __ fsts(Address(ESP, 0)); } else { __ fstl(Address(ESP, 0)); } // Pop the 2 items from the FP stack. __ fucompp(); // Load the value from the stack into an XMM register. DCHECK(out.IsFpuRegister()) << out; if (is_float) { __ movss(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); } else { __ movsd(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); } // And remove the temporary stack space we allocated. __ addl(ESP, Immediate(2 * elem_size)); } void InstructionCodeGeneratorX86::DivRemOneOrMinusOne(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); LocationSummary* locations = instruction->GetLocations(); DCHECK(locations->InAt(1).IsConstant()); DCHECK(locations->InAt(1).GetConstant()->IsIntConstant()); Register out_register = locations->Out().AsRegister<Register>(); Register input_register = locations->InAt(0).AsRegister<Register>(); int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); DCHECK(imm == 1 || imm == -1); if (instruction->IsRem()) { __ xorl(out_register, out_register); } else { __ movl(out_register, input_register); if (imm == -1) { __ negl(out_register); } } } void InstructionCodeGeneratorX86::DivByPowerOfTwo(HDiv* instruction) { LocationSummary* locations = instruction->GetLocations(); Register out_register = locations->Out().AsRegister<Register>(); Register input_register = locations->InAt(0).AsRegister<Register>(); int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); DCHECK(IsPowerOfTwo(AbsOrMin(imm))); uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm)); Register num = locations->GetTemp(0).AsRegister<Register>(); __ leal(num, Address(input_register, abs_imm - 1)); __ testl(input_register, input_register); __ cmovl(kGreaterEqual, num, input_register); int shift = CTZ(imm); __ sarl(num, Immediate(shift)); if (imm < 0) { __ negl(num); } __ movl(out_register, num); } void InstructionCodeGeneratorX86::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); LocationSummary* locations = instruction->GetLocations(); int imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue(); Register eax = locations->InAt(0).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); Register num; Register edx; if (instruction->IsDiv()) { edx = locations->GetTemp(0).AsRegister<Register>(); num = locations->GetTemp(1).AsRegister<Register>(); } else { edx = locations->Out().AsRegister<Register>(); num = locations->GetTemp(0).AsRegister<Register>(); } DCHECK_EQ(EAX, eax); DCHECK_EQ(EDX, edx); if (instruction->IsDiv()) { DCHECK_EQ(EAX, out); } else { DCHECK_EQ(EDX, out); } int64_t magic; int shift; CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift); // Save the numerator. __ movl(num, eax); // EAX = magic __ movl(eax, Immediate(magic)); // EDX:EAX = magic * numerator __ imull(num); if (imm > 0 && magic < 0) { // EDX += num __ addl(edx, num); } else if (imm < 0 && magic > 0) { __ subl(edx, num); } // Shift if needed. if (shift != 0) { __ sarl(edx, Immediate(shift)); } // EDX += 1 if EDX < 0 __ movl(eax, edx); __ shrl(edx, Immediate(31)); __ addl(edx, eax); if (instruction->IsRem()) { __ movl(eax, num); __ imull(edx, Immediate(imm)); __ subl(eax, edx); __ movl(edx, eax); } else { __ movl(eax, edx); } } void InstructionCodeGeneratorX86::GenerateDivRemIntegral(HBinaryOperation* instruction) { DCHECK(instruction->IsDiv() || instruction->IsRem()); LocationSummary* locations = instruction->GetLocations(); Location out = locations->Out(); Location first = locations->InAt(0); Location second = locations->InAt(1); bool is_div = instruction->IsDiv(); switch (instruction->GetResultType()) { case Primitive::kPrimInt: { DCHECK_EQ(EAX, first.AsRegister<Register>()); DCHECK_EQ(is_div ? EAX : EDX, out.AsRegister<Register>()); if (second.IsConstant()) { int32_t imm = second.GetConstant()->AsIntConstant()->GetValue(); if (imm == 0) { // Do not generate anything for 0. DivZeroCheck would forbid any generated code. } else if (imm == 1 || imm == -1) { DivRemOneOrMinusOne(instruction); } else if (is_div && IsPowerOfTwo(AbsOrMin(imm))) { DivByPowerOfTwo(instruction->AsDiv()); } else { DCHECK(imm <= -2 || imm >= 2); GenerateDivRemWithAnyConstant(instruction); } } else { SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivRemMinusOneSlowPathX86( instruction, out.AsRegister<Register>(), is_div); codegen_->AddSlowPath(slow_path); Register second_reg = second.AsRegister<Register>(); // 0x80000000/-1 triggers an arithmetic exception! // Dividing by -1 is actually negation and -0x800000000 = 0x80000000 so // it's safe to just use negl instead of more complex comparisons. __ cmpl(second_reg, Immediate(-1)); __ j(kEqual, slow_path->GetEntryLabel()); // edx:eax <- sign-extended of eax __ cdq(); // eax = quotient, edx = remainder __ idivl(second_reg); __ Bind(slow_path->GetExitLabel()); } break; } case Primitive::kPrimLong: { InvokeRuntimeCallingConvention calling_convention; DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>()); DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>()); DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>()); DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>()); DCHECK_EQ(EAX, out.AsRegisterPairLow<Register>()); DCHECK_EQ(EDX, out.AsRegisterPairHigh<Register>()); if (is_div) { codegen_->InvokeRuntime(kQuickLdiv, instruction, instruction->GetDexPc()); CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>(); } else { codegen_->InvokeRuntime(kQuickLmod, instruction, instruction->GetDexPc()); CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>(); } break; } default: LOG(FATAL) << "Unexpected type for GenerateDivRemIntegral " << instruction->GetResultType(); } } void LocationsBuilderX86::VisitDiv(HDiv* div) { LocationSummary::CallKind call_kind = (div->GetResultType() == Primitive::kPrimLong) ? LocationSummary::kCallOnMainOnly : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind); switch (div->GetResultType()) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RegisterLocation(EAX)); locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); locations->SetOut(Location::SameAsFirstInput()); // Intel uses edx:eax as the dividend. locations->AddTemp(Location::RegisterLocation(EDX)); // We need to save the numerator while we tweak eax and edx. As we are using imul in a way // which enforces results to be in EAX and EDX, things are simpler if we use EAX also as // output and request another temp. if (div->InputAt(1)->IsIntConstant()) { locations->AddTemp(Location::RequiresRegister()); } break; } case Primitive::kPrimLong: { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterPairLocation( calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); locations->SetInAt(1, Location::RegisterPairLocation( calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); // Runtime helper puts the result in EAX, EDX. locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); if (div->InputAt(1)->IsX86LoadFromConstantTable()) { DCHECK(div->InputAt(1)->IsEmittedAtUseSite()); } else if (div->InputAt(1)->IsConstant()) { locations->SetInAt(1, Location::RequiresFpuRegister()); } else { locations->SetInAt(1, Location::Any()); } locations->SetOut(Location::SameAsFirstInput()); break; } default: LOG(FATAL) << "Unexpected div type " << div->GetResultType(); } } void InstructionCodeGeneratorX86::VisitDiv(HDiv* div) { LocationSummary* locations = div->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); switch (div->GetResultType()) { case Primitive::kPrimInt: case Primitive::kPrimLong: { GenerateDivRemIntegral(div); break; } case Primitive::kPrimFloat: { if (second.IsFpuRegister()) { __ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) { HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable(); DCHECK(const_area->IsEmittedAtUseSite()); __ divss(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralFloatAddress( const_area->GetConstant()->AsFloatConstant()->GetValue(), const_area->GetBaseMethodAddress(), const_area->GetLocations()->InAt(0).AsRegister<Register>())); } else { DCHECK(second.IsStackSlot()); __ divss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); } break; } case Primitive::kPrimDouble: { if (second.IsFpuRegister()) { __ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>()); } else if (div->InputAt(1)->IsX86LoadFromConstantTable()) { HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable(); DCHECK(const_area->IsEmittedAtUseSite()); __ divsd(first.AsFpuRegister<XmmRegister>(), codegen_->LiteralDoubleAddress( const_area->GetConstant()->AsDoubleConstant()->GetValue(), const_area->GetBaseMethodAddress(), const_area->GetLocations()->InAt(0).AsRegister<Register>())); } else { DCHECK(second.IsDoubleStackSlot()); __ divsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex())); } break; } default: LOG(FATAL) << "Unexpected div type " << div->GetResultType(); } } void LocationsBuilderX86::VisitRem(HRem* rem) { Primitive::Type type = rem->GetResultType(); LocationSummary::CallKind call_kind = (rem->GetResultType() == Primitive::kPrimLong) ? LocationSummary::kCallOnMainOnly : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind); switch (type) { case Primitive::kPrimInt: { locations->SetInAt(0, Location::RegisterLocation(EAX)); locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); locations->SetOut(Location::RegisterLocation(EDX)); // We need to save the numerator while we tweak eax and edx. As we are using imul in a way // which enforces results to be in EAX and EDX, things are simpler if we use EDX also as // output and request another temp. if (rem->InputAt(1)->IsIntConstant()) { locations->AddTemp(Location::RequiresRegister()); } break; } case Primitive::kPrimLong: { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterPairLocation( calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1))); locations->SetInAt(1, Location::RegisterPairLocation( calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3))); // Runtime helper puts the result in EAX, EDX. locations->SetOut(Location::RegisterPairLocation(EAX, EDX)); break; } case Primitive::kPrimDouble: case Primitive::kPrimFloat: { locations->SetInAt(0, Location::Any()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::RequiresFpuRegister()); locations->AddTemp(Location::RegisterLocation(EAX)); break; } default: LOG(FATAL) << "Unexpected rem type " << type; } } void InstructionCodeGeneratorX86::VisitRem(HRem* rem) { Primitive::Type type = rem->GetResultType(); switch (type) { case Primitive::kPrimInt: case Primitive::kPrimLong: { GenerateDivRemIntegral(rem); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { GenerateRemFP(rem); break; } default: LOG(FATAL) << "Unexpected rem type " << type; } } void LocationsBuilderX86::VisitDivZeroCheck(HDivZeroCheck* instruction) { LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); switch (instruction->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: { locations->SetInAt(0, Location::Any()); break; } case Primitive::kPrimLong: { locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); if (!instruction->IsConstant()) { locations->AddTemp(Location::RequiresRegister()); } break; } default: LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType(); } } void InstructionCodeGeneratorX86::VisitDivZeroCheck(HDivZeroCheck* instruction) { SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathX86(instruction); codegen_->AddSlowPath(slow_path); LocationSummary* locations = instruction->GetLocations(); Location value = locations->InAt(0); switch (instruction->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimChar: case Primitive::kPrimShort: case Primitive::kPrimInt: { if (value.IsRegister()) { __ testl(value.AsRegister<Register>(), value.AsRegister<Register>()); __ j(kEqual, slow_path->GetEntryLabel()); } else if (value.IsStackSlot()) { __ cmpl(Address(ESP, value.GetStackIndex()), Immediate(0)); __ j(kEqual, slow_path->GetEntryLabel()); } else { DCHECK(value.IsConstant()) << value; if (value.GetConstant()->AsIntConstant()->GetValue() == 0) { __ jmp(slow_path->GetEntryLabel()); } } break; } case Primitive::kPrimLong: { if (value.IsRegisterPair()) { Register temp = locations->GetTemp(0).AsRegister<Register>(); __ movl(temp, value.AsRegisterPairLow<Register>()); __ orl(temp, value.AsRegisterPairHigh<Register>()); __ j(kEqual, slow_path->GetEntryLabel()); } else { DCHECK(value.IsConstant()) << value; if (value.GetConstant()->AsLongConstant()->GetValue() == 0) { __ jmp(slow_path->GetEntryLabel()); } } break; } default: LOG(FATAL) << "Unexpected type for HDivZeroCheck" << instruction->GetType(); } } void LocationsBuilderX86::HandleShift(HBinaryOperation* op) { DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall); switch (op->GetResultType()) { case Primitive::kPrimInt: case Primitive::kPrimLong: { // Can't have Location::Any() and output SameAsFirstInput() locations->SetInAt(0, Location::RequiresRegister()); // The shift count needs to be in CL or a constant. locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, op->InputAt(1))); locations->SetOut(Location::SameAsFirstInput()); break; } default: LOG(FATAL) << "Unexpected op type " << op->GetResultType(); } } void InstructionCodeGeneratorX86::HandleShift(HBinaryOperation* op) { DCHECK(op->IsShl() || op->IsShr() || op->IsUShr()); LocationSummary* locations = op->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); DCHECK(first.Equals(locations->Out())); switch (op->GetResultType()) { case Primitive::kPrimInt: { DCHECK(first.IsRegister()); Register first_reg = first.AsRegister<Register>(); if (second.IsRegister()) { Register second_reg = second.AsRegister<Register>(); DCHECK_EQ(ECX, second_reg); if (op->IsShl()) { __ shll(first_reg, second_reg); } else if (op->IsShr()) { __ sarl(first_reg, second_reg); } else { __ shrl(first_reg, second_reg); } } else { int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance; if (shift == 0) { return; } Immediate imm(shift); if (op->IsShl()) { __ shll(first_reg, imm); } else if (op->IsShr()) { __ sarl(first_reg, imm); } else { __ shrl(first_reg, imm); } } break; } case Primitive::kPrimLong: { if (second.IsRegister()) { Register second_reg = second.AsRegister<Register>(); DCHECK_EQ(ECX, second_reg); if (op->IsShl()) { GenerateShlLong(first, second_reg); } else if (op->IsShr()) { GenerateShrLong(first, second_reg); } else { GenerateUShrLong(first, second_reg); } } else { // Shift by a constant. int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance; // Nothing to do if the shift is 0, as the input is already the output. if (shift != 0) { if (op->IsShl()) { GenerateShlLong(first, shift); } else if (op->IsShr()) { GenerateShrLong(first, shift); } else { GenerateUShrLong(first, shift); } } } break; } default: LOG(FATAL) << "Unexpected op type " << op->GetResultType(); } } void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, int shift) { Register low = loc.AsRegisterPairLow<Register>(); Register high = loc.AsRegisterPairHigh<Register>(); if (shift == 1) { // This is just an addition. __ addl(low, low); __ adcl(high, high); } else if (shift == 32) { // Shift by 32 is easy. High gets low, and low gets 0. codegen_->EmitParallelMoves( loc.ToLow(), loc.ToHigh(), Primitive::kPrimInt, Location::ConstantLocation(GetGraph()->GetIntConstant(0)), loc.ToLow(), Primitive::kPrimInt); } else if (shift > 32) { // Low part becomes 0. High part is low part << (shift-32). __ movl(high, low); __ shll(high, Immediate(shift - 32)); __ xorl(low, low); } else { // Between 1 and 31. __ shld(high, low, Immediate(shift)); __ shll(low, Immediate(shift)); } } void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, Register shifter) { NearLabel done; __ shld(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>(), shifter); __ shll(loc.AsRegisterPairLow<Register>(), shifter); __ testl(shifter, Immediate(32)); __ j(kEqual, &done); __ movl(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>()); __ movl(loc.AsRegisterPairLow<Register>(), Immediate(0)); __ Bind(&done); } void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, int shift) { Register low = loc.AsRegisterPairLow<Register>(); Register high = loc.AsRegisterPairHigh<Register>(); if (shift == 32) { // Need to copy the sign. DCHECK_NE(low, high); __ movl(low, high); __ sarl(high, Immediate(31)); } else if (shift > 32) { DCHECK_NE(low, high); // High part becomes sign. Low part is shifted by shift - 32. __ movl(low, high); __ sarl(high, Immediate(31)); __ sarl(low, Immediate(shift - 32)); } else { // Between 1 and 31. __ shrd(low, high, Immediate(shift)); __ sarl(high, Immediate(shift)); } } void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, Register shifter) { NearLabel done; __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter); __ sarl(loc.AsRegisterPairHigh<Register>(), shifter); __ testl(shifter, Immediate(32)); __ j(kEqual, &done); __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>()); __ sarl(loc.AsRegisterPairHigh<Register>(), Immediate(31)); __ Bind(&done); } void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, int shift) { Register low = loc.AsRegisterPairLow<Register>(); Register high = loc.AsRegisterPairHigh<Register>(); if (shift == 32) { // Shift by 32 is easy. Low gets high, and high gets 0. codegen_->EmitParallelMoves( loc.ToHigh(), loc.ToLow(), Primitive::kPrimInt, Location::ConstantLocation(GetGraph()->GetIntConstant(0)), loc.ToHigh(), Primitive::kPrimInt); } else if (shift > 32) { // Low part is high >> (shift - 32). High part becomes 0. __ movl(low, high); __ shrl(low, Immediate(shift - 32)); __ xorl(high, high); } else { // Between 1 and 31. __ shrd(low, high, Immediate(shift)); __ shrl(high, Immediate(shift)); } } void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, Register shifter) { NearLabel done; __ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter); __ shrl(loc.AsRegisterPairHigh<Register>(), shifter); __ testl(shifter, Immediate(32)); __ j(kEqual, &done); __ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>()); __ movl(loc.AsRegisterPairHigh<Register>(), Immediate(0)); __ Bind(&done); } void LocationsBuilderX86::VisitRor(HRor* ror) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall); switch (ror->GetResultType()) { case Primitive::kPrimLong: // Add the temporary needed. locations->AddTemp(Location::RequiresRegister()); FALLTHROUGH_INTENDED; case Primitive::kPrimInt: locations->SetInAt(0, Location::RequiresRegister()); // The shift count needs to be in CL (unless it is a constant). locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, ror->InputAt(1))); locations->SetOut(Location::SameAsFirstInput()); break; default: LOG(FATAL) << "Unexpected operation type " << ror->GetResultType(); UNREACHABLE(); } } void InstructionCodeGeneratorX86::VisitRor(HRor* ror) { LocationSummary* locations = ror->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); if (ror->GetResultType() == Primitive::kPrimInt) { Register first_reg = first.AsRegister<Register>(); if (second.IsRegister()) { Register second_reg = second.AsRegister<Register>(); __ rorl(first_reg, second_reg); } else { Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance); __ rorl(first_reg, imm); } return; } DCHECK_EQ(ror->GetResultType(), Primitive::kPrimLong); Register first_reg_lo = first.AsRegisterPairLow<Register>(); Register first_reg_hi = first.AsRegisterPairHigh<Register>(); Register temp_reg = locations->GetTemp(0).AsRegister<Register>(); if (second.IsRegister()) { Register second_reg = second.AsRegister<Register>(); DCHECK_EQ(second_reg, ECX); __ movl(temp_reg, first_reg_hi); __ shrd(first_reg_hi, first_reg_lo, second_reg); __ shrd(first_reg_lo, temp_reg, second_reg); __ movl(temp_reg, first_reg_hi); __ testl(second_reg, Immediate(32)); __ cmovl(kNotEqual, first_reg_hi, first_reg_lo); __ cmovl(kNotEqual, first_reg_lo, temp_reg); } else { int32_t shift_amt = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance; if (shift_amt == 0) { // Already fine. return; } if (shift_amt == 32) { // Just swap. __ movl(temp_reg, first_reg_lo); __ movl(first_reg_lo, first_reg_hi); __ movl(first_reg_hi, temp_reg); return; } Immediate imm(shift_amt); // Save the constents of the low value. __ movl(temp_reg, first_reg_lo); // Shift right into low, feeding bits from high. __ shrd(first_reg_lo, first_reg_hi, imm); // Shift right into high, feeding bits from the original low. __ shrd(first_reg_hi, temp_reg, imm); // Swap if needed. if (shift_amt > 32) { __ movl(temp_reg, first_reg_lo); __ movl(first_reg_lo, first_reg_hi); __ movl(first_reg_hi, temp_reg); } } } void LocationsBuilderX86::VisitShl(HShl* shl) { HandleShift(shl); } void InstructionCodeGeneratorX86::VisitShl(HShl* shl) { HandleShift(shl); } void LocationsBuilderX86::VisitShr(HShr* shr) { HandleShift(shr); } void InstructionCodeGeneratorX86::VisitShr(HShr* shr) { HandleShift(shr); } void LocationsBuilderX86::VisitUShr(HUShr* ushr) { HandleShift(ushr); } void InstructionCodeGeneratorX86::VisitUShr(HUShr* ushr) { HandleShift(ushr); } void LocationsBuilderX86::VisitNewInstance(HNewInstance* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); locations->SetOut(Location::RegisterLocation(EAX)); if (instruction->IsStringAlloc()) { locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument)); } else { InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } } void InstructionCodeGeneratorX86::VisitNewInstance(HNewInstance* instruction) { // Note: if heap poisoning is enabled, the entry point takes cares // of poisoning the reference. if (instruction->IsStringAlloc()) { // String is allocated through StringFactory. Call NewEmptyString entry point. Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>(); MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86PointerSize); __ fs()->movl(temp, Address::Absolute(QUICK_ENTRY_POINT(pNewEmptyString))); __ call(Address(temp, code_offset.Int32Value())); codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); } else { codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); DCHECK(!codegen_->IsLeafMethod()); } } void LocationsBuilderX86::VisitNewArray(HNewArray* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); locations->SetOut(Location::RegisterLocation(EAX)); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); } void InstructionCodeGeneratorX86::VisitNewArray(HNewArray* instruction) { // Note: if heap poisoning is enabled, the entry point takes cares // of poisoning the reference. QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction->GetLoadClass()->GetClass()); codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc()); CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>(); DCHECK(!codegen_->IsLeafMethod()); } void LocationsBuilderX86::VisitParameterValue(HParameterValue* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); if (location.IsStackSlot()) { location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); } else if (location.IsDoubleStackSlot()) { location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); } locations->SetOut(location); } void InstructionCodeGeneratorX86::VisitParameterValue( HParameterValue* instruction ATTRIBUTE_UNUSED) { } void LocationsBuilderX86::VisitCurrentMethod(HCurrentMethod* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument)); } void InstructionCodeGeneratorX86::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) { } void LocationsBuilderX86::VisitClassTableGet(HClassTableGet* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorX86::VisitClassTableGet(HClassTableGet* instruction) { LocationSummary* locations = instruction->GetLocations(); if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( instruction->GetIndex(), kX86PointerSize).SizeValue(); __ movl(locations->Out().AsRegister<Register>(), Address(locations->InAt(0).AsRegister<Register>(), method_offset)); } else { uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( instruction->GetIndex(), kX86PointerSize)); __ movl(locations->Out().AsRegister<Register>(), Address(locations->InAt(0).AsRegister<Register>(), mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value())); // temp = temp->GetImtEntryAt(method_offset); __ movl(locations->Out().AsRegister<Register>(), Address(locations->Out().AsRegister<Register>(), method_offset)); } } void LocationsBuilderX86::VisitNot(HNot* not_) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } void InstructionCodeGeneratorX86::VisitNot(HNot* not_) { LocationSummary* locations = not_->GetLocations(); Location in = locations->InAt(0); Location out = locations->Out(); DCHECK(in.Equals(out)); switch (not_->GetResultType()) { case Primitive::kPrimInt: __ notl(out.AsRegister<Register>()); break; case Primitive::kPrimLong: __ notl(out.AsRegisterPairLow<Register>()); __ notl(out.AsRegisterPairHigh<Register>()); break; default: LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType(); } } void LocationsBuilderX86::VisitBooleanNot(HBooleanNot* bool_not) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); } void InstructionCodeGeneratorX86::VisitBooleanNot(HBooleanNot* bool_not) { LocationSummary* locations = bool_not->GetLocations(); Location in = locations->InAt(0); Location out = locations->Out(); DCHECK(in.Equals(out)); __ xorl(out.AsRegister<Register>(), Immediate(1)); } void LocationsBuilderX86::VisitCompare(HCompare* compare) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall); switch (compare->InputAt(0)->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimChar: case Primitive::kPrimInt: case Primitive::kPrimLong: { locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); break; } case Primitive::kPrimFloat: case Primitive::kPrimDouble: { locations->SetInAt(0, Location::RequiresFpuRegister()); if (compare->InputAt(1)->IsX86LoadFromConstantTable()) { DCHECK(compare->InputAt(1)->IsEmittedAtUseSite()); } else if (compare->InputAt(1)->IsConstant()) { locations->SetInAt(1, Location::RequiresFpuRegister()); } else { locations->SetInAt(1, Location::Any()); } locations->SetOut(Location::RequiresRegister()); break; } default: LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); } } void InstructionCodeGeneratorX86::VisitCompare(HCompare* compare) { LocationSummary* locations = compare->GetLocations(); Register out = locations->Out().AsRegister<Register>(); Location left = locations->InAt(0); Location right = locations->InAt(1); NearLabel less, greater, done; Condition less_cond = kLess; switch (compare->InputAt(0)->GetType()) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: case Primitive::kPrimShort: case Primitive::kPrimChar: case Primitive::kPrimInt: { codegen_->GenerateIntCompare(left, right); break; } case Primitive::kPrimLong: { Register left_low = left.AsRegisterPairLow<Register>(); Register left_high = left.AsRegisterPairHigh<Register>(); int32_t val_low = 0; int32_t val_high = 0; bool right_is_const = false; if (right.IsConstant()) { DCHECK(right.GetConstant()->IsLongConstant()); right_is_const = true; int64_t val = right.GetConstant()->AsLongConstant()->GetValue(); val_low = Low32Bits(val); val_high = High32Bits(val); } if (right.IsRegisterPair()) { __ cmpl(left_high, right.AsRegisterPairHigh<Register>()); } else if (right.IsDoubleStackSlot()) { __ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize))); } else { DCHECK(right_is_const) << right; codegen_->Compare32BitValue(left_high, val_high); } __ j(kLess, &less); // Signed compare. __ j(kGreater, &greater); // Signed compare. if (right.IsRegisterPair()) { __ cmpl(left_low, right.AsRegisterPairLow<Register>()); } else if (right.IsDoubleStackSlot()) { __ cmpl(left_low, Address(ESP, right.GetStackIndex())); } else { DCHECK(right_is_const) << right; codegen_->Compare32BitValue(left_low, val_low); } less_cond = kBelow; // for CF (unsigned). break; } case Primitive::kPrimFloat: { GenerateFPCompare(left, right, compare, false); __ j(kUnordered, compare->IsGtBias() ? &greater : &less); less_cond = kBelow; // for CF (floats). break; } case Primitive::kPrimDouble: { GenerateFPCompare(left, right, compare, true); __ j(kUnordered, compare->IsGtBias() ? &greater : &less); less_cond = kBelow; // for CF (floats). break; } default: LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType(); } __ movl(out, Immediate(0)); __ j(kEqual, &done); __ j(less_cond, &less); __ Bind(&greater); __ movl(out, Immediate(1)); __ jmp(&done); __ Bind(&less); __ movl(out, Immediate(-1)); __ Bind(&done); } void LocationsBuilderX86::VisitPhi(HPhi* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { locations->SetInAt(i, Location::Any()); } locations->SetOut(Location::Any()); } void InstructionCodeGeneratorX86::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { LOG(FATAL) << "Unreachable"; } void CodeGeneratorX86::GenerateMemoryBarrier(MemBarrierKind kind) { /* * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence. * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model. * For those cases, all we need to ensure is that there is a scheduling barrier in place. */ switch (kind) { case MemBarrierKind::kAnyAny: { MemoryFence(); break; } case MemBarrierKind::kAnyStore: case MemBarrierKind::kLoadAny: case MemBarrierKind::kStoreStore: { // nop break; } case MemBarrierKind::kNTStoreStore: // Non-Temporal Store/Store needs an explicit fence. MemoryFence(/* non-temporal */ true); break; } } HInvokeStaticOrDirect::DispatchInfo CodeGeneratorX86::GetSupportedInvokeStaticOrDirectDispatch( const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, HInvokeStaticOrDirect* invoke ATTRIBUTE_UNUSED) { return desired_dispatch_info; } Register CodeGeneratorX86::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke, Register temp) { DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u); Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); if (!invoke->GetLocations()->Intrinsified()) { return location.AsRegister<Register>(); } // For intrinsics we allow any location, so it may be on the stack. if (!location.IsRegister()) { __ movl(temp, Address(ESP, location.GetStackIndex())); return temp; } // For register locations, check if the register was saved. If so, get it from the stack. // Note: There is a chance that the register was saved but not overwritten, so we could // save one load. However, since this is just an intrinsic slow path we prefer this // simple and more robust approach rather that trying to determine if that's the case. SlowPathCode* slow_path = GetCurrentSlowPath(); if (slow_path != nullptr) { if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) { int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>()); __ movl(temp, Address(ESP, stack_offset)); return temp; } } return location.AsRegister<Register>(); } Location CodeGeneratorX86::GenerateCalleeMethodStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) { Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. switch (invoke->GetMethodLoadKind()) { case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: { // temp = thread->string_init_entrypoint uint32_t offset = GetThreadOffset<kX86PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value(); __ fs()->movl(temp.AsRegister<Register>(), Address::Absolute(offset)); break; } case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); break; case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress: __ movl(temp.AsRegister<Register>(), Immediate(invoke->GetMethodAddress())); break; case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: { Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke, temp.AsRegister<Register>()); __ movl(temp.AsRegister<Register>(), Address(base_reg, kDummy32BitOffset)); // Bind a new fixup label at the end of the "movl" insn. uint32_t offset = invoke->GetDexCacheArrayOffset(); __ Bind(NewPcRelativeDexCacheArrayPatch( invoke->InputAt(invoke->GetSpecialInputIndex())->AsX86ComputeBaseMethodAddress(), invoke->GetDexFileForPcRelativeDexCache(), offset)); break; } case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: { Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex()); Register method_reg; Register reg = temp.AsRegister<Register>(); if (current_method.IsRegister()) { method_reg = current_method.AsRegister<Register>(); } else { DCHECK(invoke->GetLocations()->Intrinsified()); DCHECK(!current_method.IsValid()); method_reg = reg; __ movl(reg, Address(ESP, kCurrentMethodStackOffset)); } // /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_; __ movl(reg, Address(method_reg, ArtMethod::DexCacheResolvedMethodsOffset(kX86PointerSize).Int32Value())); // temp = temp[index_in_cache]; // Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file. uint32_t index_in_cache = invoke->GetDexMethodIndex(); __ movl(reg, Address(reg, CodeGenerator::GetCachePointerOffset(index_in_cache))); break; } } return callee_method; } void CodeGeneratorX86::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) { Location callee_method = GenerateCalleeMethodStaticOrDirectCall(invoke, temp); switch (invoke->GetCodePtrLocation()) { case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf: __ call(GetFrameEntryLabel()); break; case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod: // (callee_method + offset_of_quick_compiled_code)() __ call(Address(callee_method.AsRegister<Register>(), ArtMethod::EntryPointFromQuickCompiledCodeOffset( kX86PointerSize).Int32Value())); break; } DCHECK(!IsLeafMethod()); } void CodeGeneratorX86::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) { Register temp = temp_in.AsRegister<Register>(); uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( invoke->GetVTableIndex(), kX86PointerSize).Uint32Value(); // Use the calling convention instead of the location of the receiver, as // intrinsics may have put the receiver in a different register. In the intrinsics // slow path, the arguments have been moved to the right place, so here we are // guaranteed that the receiver is the first register of the calling convention. InvokeDexCallingConvention calling_convention; Register receiver = calling_convention.GetRegisterAt(0); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); // /* HeapReference<Class> */ temp = receiver->klass_ __ movl(temp, Address(receiver, class_offset)); MaybeRecordImplicitNullCheck(invoke); // Instead of simply (possibly) unpoisoning `temp` here, we should // emit a read barrier for the previous class reference load. // However this is not required in practice, as this is an // intermediate/temporary reference and because the current // concurrent copying collector keeps the from-space memory // intact/accessible until the end of the marking phase (the // concurrent copying collector may not in the future). __ MaybeUnpoisonHeapReference(temp); // temp = temp->GetMethodAt(method_offset); __ movl(temp, Address(temp, method_offset)); // call temp->GetEntryPoint(); __ call(Address( temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86PointerSize).Int32Value())); } void CodeGeneratorX86::RecordBootStringPatch(HLoadString* load_string) { DCHECK(GetCompilerOptions().IsBootImage()); HX86ComputeBaseMethodAddress* address = nullptr; if (GetCompilerOptions().GetCompilePic()) { address = load_string->InputAt(0)->AsX86ComputeBaseMethodAddress(); } else { DCHECK_EQ(load_string->InputCount(), 0u); } string_patches_.emplace_back(address, load_string->GetDexFile(), load_string->GetStringIndex().index_); __ Bind(&string_patches_.back().label); } void CodeGeneratorX86::RecordBootTypePatch(HLoadClass* load_class) { HX86ComputeBaseMethodAddress* address = nullptr; if (GetCompilerOptions().GetCompilePic()) { address = load_class->InputAt(0)->AsX86ComputeBaseMethodAddress(); } else { DCHECK_EQ(load_class->InputCount(), 0u); } boot_image_type_patches_.emplace_back(address, load_class->GetDexFile(), load_class->GetTypeIndex().index_); __ Bind(&boot_image_type_patches_.back().label); } Label* CodeGeneratorX86::NewTypeBssEntryPatch(HLoadClass* load_class) { HX86ComputeBaseMethodAddress* address = load_class->InputAt(0)->AsX86ComputeBaseMethodAddress(); type_bss_entry_patches_.emplace_back( address, load_class->GetDexFile(), load_class->GetTypeIndex().index_); return &type_bss_entry_patches_.back().label; } Label* CodeGeneratorX86::NewStringBssEntryPatch(HLoadString* load_string) { DCHECK(!GetCompilerOptions().IsBootImage()); HX86ComputeBaseMethodAddress* address = load_string->InputAt(0)->AsX86ComputeBaseMethodAddress(); string_patches_.emplace_back( address, load_string->GetDexFile(), load_string->GetStringIndex().index_); return &string_patches_.back().label; } Label* CodeGeneratorX86::NewPcRelativeDexCacheArrayPatch( HX86ComputeBaseMethodAddress* method_address, const DexFile& dex_file, uint32_t element_offset) { // Add the patch entry and bind its label at the end of the instruction. pc_relative_dex_cache_patches_.emplace_back(method_address, dex_file, element_offset); return &pc_relative_dex_cache_patches_.back().label; } // The label points to the end of the "movl" or another instruction but the literal offset // for method patch needs to point to the embedded constant which occupies the last 4 bytes. constexpr uint32_t kLabelPositionToLiteralOffsetAdjustment = 4u; template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)> inline void CodeGeneratorX86::EmitPcRelativeLinkerPatches( const ArenaDeque<X86PcRelativePatchInfo>& infos, ArenaVector<LinkerPatch>* linker_patches) { for (const X86PcRelativePatchInfo& info : infos) { uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; linker_patches->push_back(Factory( literal_offset, &info.dex_file, GetMethodAddressOffset(info.method_address), info.index)); } } void CodeGeneratorX86::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) { DCHECK(linker_patches->empty()); size_t size = pc_relative_dex_cache_patches_.size() + string_patches_.size() + boot_image_type_patches_.size() + type_bss_entry_patches_.size(); linker_patches->reserve(size); EmitPcRelativeLinkerPatches<LinkerPatch::DexCacheArrayPatch>(pc_relative_dex_cache_patches_, linker_patches); if (!GetCompilerOptions().IsBootImage()) { DCHECK(boot_image_type_patches_.empty()); EmitPcRelativeLinkerPatches<LinkerPatch::StringBssEntryPatch>(string_patches_, linker_patches); } else if (GetCompilerOptions().GetCompilePic()) { EmitPcRelativeLinkerPatches<LinkerPatch::RelativeTypePatch>(boot_image_type_patches_, linker_patches); EmitPcRelativeLinkerPatches<LinkerPatch::RelativeStringPatch>(string_patches_, linker_patches); } else { for (const PatchInfo<Label>& info : boot_image_type_patches_) { uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; linker_patches->push_back(LinkerPatch::TypePatch(literal_offset, &info.dex_file, info.index)); } for (const PatchInfo<Label>& info : string_patches_) { uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; linker_patches->push_back( LinkerPatch::StringPatch(literal_offset, &info.dex_file, info.index)); } } EmitPcRelativeLinkerPatches<LinkerPatch::TypeBssEntryPatch>(type_bss_entry_patches_, linker_patches); DCHECK_EQ(size, linker_patches->size()); } void CodeGeneratorX86::MarkGCCard(Register temp, Register card, Register object, Register value, bool value_can_be_null) { NearLabel is_null; if (value_can_be_null) { __ testl(value, value); __ j(kEqual, &is_null); } __ fs()->movl(card, Address::Absolute(Thread::CardTableOffset<kX86PointerSize>().Int32Value())); __ movl(temp, object); __ shrl(temp, Immediate(gc::accounting::CardTable::kCardShift)); __ movb(Address(temp, card, TIMES_1, 0), X86ManagedRegister::FromCpuRegister(card).AsByteRegister()); if (value_can_be_null) { __ Bind(&is_null); } } void LocationsBuilderX86::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); bool object_field_get_with_read_barrier = kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::RequiresRegister()); if (Primitive::IsFloatingPointType(instruction->GetType())) { locations->SetOut(Location::RequiresFpuRegister()); } else { // The output overlaps in case of long: we don't want the low move // to overwrite the object's location. Likewise, in the case of // an object field get with read barriers enabled, we do not want // the move to overwrite the object's location, as we need it to emit // the read barrier. locations->SetOut( Location::RequiresRegister(), (object_field_get_with_read_barrier || instruction->GetType() == Primitive::kPrimLong) ? Location::kOutputOverlap : Location::kNoOutputOverlap); } if (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) { // Long values can be loaded atomically into an XMM using movsd. // So we use an XMM register as a temp to achieve atomicity (first // load the temp into the XMM and then copy the XMM into the // output, 32 bits at a time). locations->AddTemp(Location::RequiresFpuRegister()); } } void InstructionCodeGeneratorX86::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet()); LocationSummary* locations = instruction->GetLocations(); Location base_loc = locations->InAt(0); Register base = base_loc.AsRegister<Register>(); Location out = locations->Out(); bool is_volatile = field_info.IsVolatile(); Primitive::Type field_type = field_info.GetFieldType(); uint32_t offset = field_info.GetFieldOffset().Uint32Value(); switch (field_type) { case Primitive::kPrimBoolean: { __ movzxb(out.AsRegister<Register>(), Address(base, offset)); break; } case Primitive::kPrimByte: { __ movsxb(out.AsRegister<Register>(), Address(base, offset)); break; } case Primitive::kPrimShort: { __ movsxw(out.AsRegister<Register>(), Address(base, offset)); break; } case Primitive::kPrimChar: { __ movzxw(out.AsRegister<Register>(), Address(base, offset)); break; } case Primitive::kPrimInt: __ movl(out.AsRegister<Register>(), Address(base, offset)); break; case Primitive::kPrimNot: { // /* HeapReference<Object> */ out = *(base + offset) if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // Note that a potential implicit null check is handled in this // CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier call. codegen_->GenerateFieldLoadWithBakerReadBarrier( instruction, out, base, offset, /* needs_null_check */ true); if (is_volatile) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); } } else { __ movl(out.AsRegister<Register>(), Address(base, offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); if (is_volatile) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); } // If read barriers are enabled, emit read barriers other than // Baker's using a slow path (and also unpoison the loaded // reference, if heap poisoning is enabled). codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset); } break; } case Primitive::kPrimLong: { if (is_volatile) { XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); __ movsd(temp, Address(base, offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); __ movd(out.AsRegisterPairLow<Register>(), temp); __ psrlq(temp, Immediate(32)); __ movd(out.AsRegisterPairHigh<Register>(), temp); } else { DCHECK_NE(base, out.AsRegisterPairLow<Register>()); __ movl(out.AsRegisterPairLow<Register>(), Address(base, offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); __ movl(out.AsRegisterPairHigh<Register>(), Address(base, kX86WordSize + offset)); } break; } case Primitive::kPrimFloat: { __ movss(out.AsFpuRegister<XmmRegister>(), Address(base, offset)); break; } case Primitive::kPrimDouble: { __ movsd(out.AsFpuRegister<XmmRegister>(), Address(base, offset)); break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << field_type; UNREACHABLE(); } if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimLong) { // Potential implicit null checks, in the case of reference or // long fields, are handled in the previous switch statement. } else { codegen_->MaybeRecordImplicitNullCheck(instruction); } if (is_volatile) { if (field_type == Primitive::kPrimNot) { // Memory barriers, in the case of references, are also handled // in the previous switch statement. } else { codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); } } } void LocationsBuilderX86::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) { DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); bool is_volatile = field_info.IsVolatile(); Primitive::Type field_type = field_info.GetFieldType(); bool is_byte_type = (field_type == Primitive::kPrimBoolean) || (field_type == Primitive::kPrimByte); // The register allocator does not support multiple // inputs that die at entry with one in a specific register. if (is_byte_type) { // Ensure the value is in a byte register. locations->SetInAt(1, Location::RegisterLocation(EAX)); } else if (Primitive::IsFloatingPointType(field_type)) { if (is_volatile && field_type == Primitive::kPrimDouble) { // In order to satisfy the semantics of volatile, this must be a single instruction store. locations->SetInAt(1, Location::RequiresFpuRegister()); } else { locations->SetInAt(1, Location::FpuRegisterOrConstant(instruction->InputAt(1))); } } else if (is_volatile && field_type == Primitive::kPrimLong) { // In order to satisfy the semantics of volatile, this must be a single instruction store. locations->SetInAt(1, Location::RequiresRegister()); // 64bits value can be atomically written to an address with movsd and an XMM register. // We need two XMM registers because there's no easier way to (bit) copy a register pair // into a single XMM register (we copy each pair part into the XMMs and then interleave them). // NB: We could make the register allocator understand fp_reg <-> core_reg moves but given the // isolated cases when we need this it isn't worth adding the extra complexity. locations->AddTemp(Location::RequiresFpuRegister()); locations->AddTemp(Location::RequiresFpuRegister()); } else { locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { // Temporary registers for the write barrier. locations->AddTemp(Location::RequiresRegister()); // May be used for reference poisoning too. // Ensure the card is in a byte register. locations->AddTemp(Location::RegisterLocation(ECX)); } } } void InstructionCodeGeneratorX86::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info, bool value_can_be_null) { DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); LocationSummary* locations = instruction->GetLocations(); Register base = locations->InAt(0).AsRegister<Register>(); Location value = locations->InAt(1); bool is_volatile = field_info.IsVolatile(); Primitive::Type field_type = field_info.GetFieldType(); uint32_t offset = field_info.GetFieldOffset().Uint32Value(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)); if (is_volatile) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore); } bool maybe_record_implicit_null_check_done = false; switch (field_type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: { __ movb(Address(base, offset), value.AsRegister<ByteRegister>()); break; } case Primitive::kPrimShort: case Primitive::kPrimChar: { if (value.IsConstant()) { int16_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); __ movw(Address(base, offset), Immediate(v)); } else { __ movw(Address(base, offset), value.AsRegister<Register>()); } break; } case Primitive::kPrimInt: case Primitive::kPrimNot: { if (kPoisonHeapReferences && needs_write_barrier) { // Note that in the case where `value` is a null reference, // we do not enter this block, as the reference does not // need poisoning. DCHECK_EQ(field_type, Primitive::kPrimNot); Register temp = locations->GetTemp(0).AsRegister<Register>(); __ movl(temp, value.AsRegister<Register>()); __ PoisonHeapReference(temp); __ movl(Address(base, offset), temp); } else if (value.IsConstant()) { int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); __ movl(Address(base, offset), Immediate(v)); } else { DCHECK(value.IsRegister()) << value; __ movl(Address(base, offset), value.AsRegister<Register>()); } break; } case Primitive::kPrimLong: { if (is_volatile) { XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); __ movd(temp1, value.AsRegisterPairLow<Register>()); __ movd(temp2, value.AsRegisterPairHigh<Register>()); __ punpckldq(temp1, temp2); __ movsd(Address(base, offset), temp1); codegen_->MaybeRecordImplicitNullCheck(instruction); } else if (value.IsConstant()) { int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant()); __ movl(Address(base, offset), Immediate(Low32Bits(v))); codegen_->MaybeRecordImplicitNullCheck(instruction); __ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v))); } else { __ movl(Address(base, offset), value.AsRegisterPairLow<Register>()); codegen_->MaybeRecordImplicitNullCheck(instruction); __ movl(Address(base, kX86WordSize + offset), value.AsRegisterPairHigh<Register>()); } maybe_record_implicit_null_check_done = true; break; } case Primitive::kPrimFloat: { if (value.IsConstant()) { int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); __ movl(Address(base, offset), Immediate(v)); } else { __ movss(Address(base, offset), value.AsFpuRegister<XmmRegister>()); } break; } case Primitive::kPrimDouble: { if (value.IsConstant()) { int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant()); __ movl(Address(base, offset), Immediate(Low32Bits(v))); codegen_->MaybeRecordImplicitNullCheck(instruction); __ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v))); maybe_record_implicit_null_check_done = true; } else { __ movsd(Address(base, offset), value.AsFpuRegister<XmmRegister>()); } break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << field_type; UNREACHABLE(); } if (!maybe_record_implicit_null_check_done) { codegen_->MaybeRecordImplicitNullCheck(instruction); } if (needs_write_barrier) { Register temp = locations->GetTemp(0).AsRegister<Register>(); Register card = locations->GetTemp(1).AsRegister<Register>(); codegen_->MarkGCCard(temp, card, base, value.AsRegister<Register>(), value_can_be_null); } if (is_volatile) { codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny); } } void LocationsBuilderX86::VisitStaticFieldGet(HStaticFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorX86::VisitStaticFieldGet(HStaticFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderX86::VisitStaticFieldSet(HStaticFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorX86::VisitStaticFieldSet(HStaticFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); } void LocationsBuilderX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); } void LocationsBuilderX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void InstructionCodeGeneratorX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { HandleFieldGet(instruction, instruction->GetFieldInfo()); } void LocationsBuilderX86::VisitUnresolvedInstanceFieldGet( HUnresolvedInstanceFieldGet* instruction) { FieldAccessCallingConventionX86 calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldGet( HUnresolvedInstanceFieldGet* instruction) { FieldAccessCallingConventionX86 calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderX86::VisitUnresolvedInstanceFieldSet( HUnresolvedInstanceFieldSet* instruction) { FieldAccessCallingConventionX86 calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldSet( HUnresolvedInstanceFieldSet* instruction) { FieldAccessCallingConventionX86 calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderX86::VisitUnresolvedStaticFieldGet( HUnresolvedStaticFieldGet* instruction) { FieldAccessCallingConventionX86 calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldGet( HUnresolvedStaticFieldGet* instruction) { FieldAccessCallingConventionX86 calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderX86::VisitUnresolvedStaticFieldSet( HUnresolvedStaticFieldSet* instruction) { FieldAccessCallingConventionX86 calling_convention; codegen_->CreateUnresolvedFieldLocationSummary( instruction, instruction->GetFieldType(), calling_convention); } void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldSet( HUnresolvedStaticFieldSet* instruction) { FieldAccessCallingConventionX86 calling_convention; codegen_->GenerateUnresolvedFieldAccess(instruction, instruction->GetFieldType(), instruction->GetFieldIndex(), instruction->GetDexPc(), calling_convention); } void LocationsBuilderX86::VisitNullCheck(HNullCheck* instruction) { LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); Location loc = codegen_->GetCompilerOptions().GetImplicitNullChecks() ? Location::RequiresRegister() : Location::Any(); locations->SetInAt(0, loc); } void CodeGeneratorX86::GenerateImplicitNullCheck(HNullCheck* instruction) { if (CanMoveNullCheckToUser(instruction)) { return; } LocationSummary* locations = instruction->GetLocations(); Location obj = locations->InAt(0); __ testl(EAX, Address(obj.AsRegister<Register>(), 0)); RecordPcInfo(instruction, instruction->GetDexPc()); } void CodeGeneratorX86::GenerateExplicitNullCheck(HNullCheck* instruction) { SlowPathCode* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathX86(instruction); AddSlowPath(slow_path); LocationSummary* locations = instruction->GetLocations(); Location obj = locations->InAt(0); if (obj.IsRegister()) { __ testl(obj.AsRegister<Register>(), obj.AsRegister<Register>()); } else if (obj.IsStackSlot()) { __ cmpl(Address(ESP, obj.GetStackIndex()), Immediate(0)); } else { DCHECK(obj.IsConstant()) << obj; DCHECK(obj.GetConstant()->IsNullConstant()); __ jmp(slow_path->GetEntryLabel()); return; } __ j(kEqual, slow_path->GetEntryLabel()); } void InstructionCodeGeneratorX86::VisitNullCheck(HNullCheck* instruction) { codegen_->GenerateNullCheck(instruction); } void LocationsBuilderX86::VisitArrayGet(HArrayGet* instruction) { bool object_array_get_with_read_barrier = kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, object_array_get_with_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (Primitive::IsFloatingPointType(instruction->GetType())) { locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } else { // The output overlaps in case of long: we don't want the low move // to overwrite the array's location. Likewise, in the case of an // object array get with read barriers enabled, we do not want the // move to overwrite the array's location, as we need it to emit // the read barrier. locations->SetOut( Location::RequiresRegister(), (instruction->GetType() == Primitive::kPrimLong || object_array_get_with_read_barrier) ? Location::kOutputOverlap : Location::kNoOutputOverlap); } } void InstructionCodeGeneratorX86::VisitArrayGet(HArrayGet* instruction) { LocationSummary* locations = instruction->GetLocations(); Location obj_loc = locations->InAt(0); Register obj = obj_loc.AsRegister<Register>(); Location index = locations->InAt(1); Location out_loc = locations->Out(); uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction); Primitive::Type type = instruction->GetType(); switch (type) { case Primitive::kPrimBoolean: { Register out = out_loc.AsRegister<Register>(); __ movzxb(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_1, data_offset)); break; } case Primitive::kPrimByte: { Register out = out_loc.AsRegister<Register>(); __ movsxb(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_1, data_offset)); break; } case Primitive::kPrimShort: { Register out = out_loc.AsRegister<Register>(); __ movsxw(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_2, data_offset)); break; } case Primitive::kPrimChar: { Register out = out_loc.AsRegister<Register>(); if (mirror::kUseStringCompression && instruction->IsStringCharAt()) { // Branch cases into compressed and uncompressed for each index's type. uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); NearLabel done, not_compressed; __ testb(Address(obj, count_offset), Immediate(1)); codegen_->MaybeRecordImplicitNullCheck(instruction); static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ j(kNotZero, ¬_compressed); __ movzxb(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_1, data_offset)); __ jmp(&done); __ Bind(¬_compressed); __ movzxw(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_2, data_offset)); __ Bind(&done); } else { // Common case for charAt of array of char or when string compression's // feature is turned off. __ movzxw(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_2, data_offset)); } break; } case Primitive::kPrimInt: { Register out = out_loc.AsRegister<Register>(); __ movl(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_4, data_offset)); break; } case Primitive::kPrimNot: { static_assert( sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); // /* HeapReference<Object> */ out = // *(obj + data_offset + index * sizeof(HeapReference<Object>)) if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // Note that a potential implicit null check is handled in this // CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier call. codegen_->GenerateArrayLoadWithBakerReadBarrier( instruction, out_loc, obj, data_offset, index, /* needs_null_check */ true); } else { Register out = out_loc.AsRegister<Register>(); __ movl(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_4, data_offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); // If read barriers are enabled, emit read barriers other than // Baker's using a slow path (and also unpoison the loaded // reference, if heap poisoning is enabled). if (index.IsConstant()) { uint32_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset; codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset); } else { codegen_->MaybeGenerateReadBarrierSlow( instruction, out_loc, out_loc, obj_loc, data_offset, index); } } break; } case Primitive::kPrimLong: { DCHECK_NE(obj, out_loc.AsRegisterPairLow<Register>()); __ movl(out_loc.AsRegisterPairLow<Register>(), CodeGeneratorX86::ArrayAddress(obj, index, TIMES_8, data_offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); __ movl(out_loc.AsRegisterPairHigh<Register>(), CodeGeneratorX86::ArrayAddress(obj, index, TIMES_8, data_offset + kX86WordSize)); break; } case Primitive::kPrimFloat: { XmmRegister out = out_loc.AsFpuRegister<XmmRegister>(); __ movss(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_4, data_offset)); break; } case Primitive::kPrimDouble: { XmmRegister out = out_loc.AsFpuRegister<XmmRegister>(); __ movsd(out, CodeGeneratorX86::ArrayAddress(obj, index, TIMES_8, data_offset)); break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << type; UNREACHABLE(); } if (type == Primitive::kPrimNot || type == Primitive::kPrimLong) { // Potential implicit null checks, in the case of reference or // long arrays, are handled in the previous switch statement. } else { codegen_->MaybeRecordImplicitNullCheck(instruction); } } void LocationsBuilderX86::VisitArraySet(HArraySet* instruction) { Primitive::Type value_type = instruction->GetComponentType(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary( instruction, may_need_runtime_call_for_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); bool is_byte_type = (value_type == Primitive::kPrimBoolean) || (value_type == Primitive::kPrimByte); // We need the inputs to be different than the output in case of long operation. // In case of a byte operation, the register allocator does not support multiple // inputs that die at entry with one in a specific register. locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); if (is_byte_type) { // Ensure the value is in a byte register. locations->SetInAt(2, Location::ByteRegisterOrConstant(EAX, instruction->InputAt(2))); } else if (Primitive::IsFloatingPointType(value_type)) { locations->SetInAt(2, Location::FpuRegisterOrConstant(instruction->InputAt(2))); } else { locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2))); } if (needs_write_barrier) { // Temporary registers for the write barrier. locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too. // Ensure the card is in a byte register. locations->AddTemp(Location::RegisterLocation(ECX)); } } void InstructionCodeGeneratorX86::VisitArraySet(HArraySet* instruction) { LocationSummary* locations = instruction->GetLocations(); Location array_loc = locations->InAt(0); Register array = array_loc.AsRegister<Register>(); Location index = locations->InAt(1); Location value = locations->InAt(2); Primitive::Type value_type = instruction->GetComponentType(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck(); bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); switch (value_type) { case Primitive::kPrimBoolean: case Primitive::kPrimByte: { uint32_t offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value(); Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_1, offset); if (value.IsRegister()) { __ movb(address, value.AsRegister<ByteRegister>()); } else { __ movb(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue())); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case Primitive::kPrimShort: case Primitive::kPrimChar: { uint32_t offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value(); Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_2, offset); if (value.IsRegister()) { __ movw(address, value.AsRegister<Register>()); } else { __ movw(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue())); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case Primitive::kPrimNot: { uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_4, offset); if (!value.IsRegister()) { // Just setting null. DCHECK(instruction->InputAt(2)->IsNullConstant()); DCHECK(value.IsConstant()) << value; __ movl(address, Immediate(0)); codegen_->MaybeRecordImplicitNullCheck(instruction); DCHECK(!needs_write_barrier); DCHECK(!may_need_runtime_call_for_type_check); break; } DCHECK(needs_write_barrier); Register register_value = value.AsRegister<Register>(); // We cannot use a NearLabel for `done`, as its range may be too // short when Baker read barriers are enabled. Label done; NearLabel not_null, do_put; SlowPathCode* slow_path = nullptr; Location temp_loc = locations->GetTemp(0); Register temp = temp_loc.AsRegister<Register>(); if (may_need_runtime_call_for_type_check) { slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathX86(instruction); codegen_->AddSlowPath(slow_path); if (instruction->GetValueCanBeNull()) { __ testl(register_value, register_value); __ j(kNotEqual, ¬_null); __ movl(address, Immediate(0)); codegen_->MaybeRecordImplicitNullCheck(instruction); __ jmp(&done); __ Bind(¬_null); } // Note that when Baker read barriers are enabled, the type // checks are performed without read barriers. This is fine, // even in the case where a class object is in the from-space // after the flip, as a comparison involving such a type would // not produce a false positive; it may of course produce a // false negative, in which case we would take the ArraySet // slow path. // /* HeapReference<Class> */ temp = array->klass_ __ movl(temp, Address(array, class_offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); __ MaybeUnpoisonHeapReference(temp); // /* HeapReference<Class> */ temp = temp->component_type_ __ movl(temp, Address(temp, component_offset)); // If heap poisoning is enabled, no need to unpoison `temp` // nor the object reference in `register_value->klass`, as // we are comparing two poisoned references. __ cmpl(temp, Address(register_value, class_offset)); if (instruction->StaticTypeOfArrayIsObjectArray()) { __ j(kEqual, &do_put); // If heap poisoning is enabled, the `temp` reference has // not been unpoisoned yet; unpoison it now. __ MaybeUnpoisonHeapReference(temp); // If heap poisoning is enabled, no need to unpoison the // heap reference loaded below, as it is only used for a // comparison with null. __ cmpl(Address(temp, super_offset), Immediate(0)); __ j(kNotEqual, slow_path->GetEntryLabel()); __ Bind(&do_put); } else { __ j(kNotEqual, slow_path->GetEntryLabel()); } } if (kPoisonHeapReferences) { __ movl(temp, register_value); __ PoisonHeapReference(temp); __ movl(address, temp); } else { __ movl(address, register_value); } if (!may_need_runtime_call_for_type_check) { codegen_->MaybeRecordImplicitNullCheck(instruction); } Register card = locations->GetTemp(1).AsRegister<Register>(); codegen_->MarkGCCard( temp, card, array, value.AsRegister<Register>(), instruction->GetValueCanBeNull()); __ Bind(&done); if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } break; } case Primitive::kPrimInt: { uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value(); Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_4, offset); if (value.IsRegister()) { __ movl(address, value.AsRegister<Register>()); } else { DCHECK(value.IsConstant()) << value; int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant()); __ movl(address, Immediate(v)); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case Primitive::kPrimLong: { uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value(); if (value.IsRegisterPair()) { __ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset), value.AsRegisterPairLow<Register>()); codegen_->MaybeRecordImplicitNullCheck(instruction); __ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset + kX86WordSize), value.AsRegisterPairHigh<Register>()); } else { DCHECK(value.IsConstant()); int64_t val = value.GetConstant()->AsLongConstant()->GetValue(); __ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset), Immediate(Low32Bits(val))); codegen_->MaybeRecordImplicitNullCheck(instruction); __ movl(CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, data_offset + kX86WordSize), Immediate(High32Bits(val))); } break; } case Primitive::kPrimFloat: { uint32_t offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value(); Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_4, offset); if (value.IsFpuRegister()) { __ movss(address, value.AsFpuRegister<XmmRegister>()); } else { DCHECK(value.IsConstant()); int32_t v = bit_cast<int32_t, float>(value.GetConstant()->AsFloatConstant()->GetValue()); __ movl(address, Immediate(v)); } codegen_->MaybeRecordImplicitNullCheck(instruction); break; } case Primitive::kPrimDouble: { uint32_t offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value(); Address address = CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, offset); if (value.IsFpuRegister()) { __ movsd(address, value.AsFpuRegister<XmmRegister>()); } else { DCHECK(value.IsConstant()); Address address_hi = CodeGeneratorX86::ArrayAddress(array, index, TIMES_8, offset + kX86WordSize); int64_t v = bit_cast<int64_t, double>(value.GetConstant()->AsDoubleConstant()->GetValue()); __ movl(address, Immediate(Low32Bits(v))); codegen_->MaybeRecordImplicitNullCheck(instruction); __ movl(address_hi, Immediate(High32Bits(v))); } break; } case Primitive::kPrimVoid: LOG(FATAL) << "Unreachable type " << instruction->GetType(); UNREACHABLE(); } } void LocationsBuilderX86::VisitArrayLength(HArrayLength* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction); locations->SetInAt(0, Location::RequiresRegister()); if (!instruction->IsEmittedAtUseSite()) { locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } } void InstructionCodeGeneratorX86::VisitArrayLength(HArrayLength* instruction) { if (instruction->IsEmittedAtUseSite()) { return; } LocationSummary* locations = instruction->GetLocations(); uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); Register obj = locations->InAt(0).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); __ movl(out, Address(obj, offset)); codegen_->MaybeRecordImplicitNullCheck(instruction); // Mask out most significant bit in case the array is String's array of char. if (mirror::kUseStringCompression && instruction->IsStringLength()) { __ shrl(out, Immediate(1)); } } void LocationsBuilderX86::VisitBoundsCheck(HBoundsCheck* instruction) { RegisterSet caller_saves = RegisterSet::Empty(); InvokeRuntimeCallingConvention calling_convention; caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1))); LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); HInstruction* length = instruction->InputAt(1); if (!length->IsEmittedAtUseSite()) { locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); } // Need register to see array's length. if (mirror::kUseStringCompression && instruction->IsStringCharAt()) { locations->AddTemp(Location::RequiresRegister()); } } void InstructionCodeGeneratorX86::VisitBoundsCheck(HBoundsCheck* instruction) { const bool is_string_compressed_char_at = mirror::kUseStringCompression && instruction->IsStringCharAt(); LocationSummary* locations = instruction->GetLocations(); Location index_loc = locations->InAt(0); Location length_loc = locations->InAt(1); SlowPathCode* slow_path = new (GetGraph()->GetArena()) BoundsCheckSlowPathX86(instruction); if (length_loc.IsConstant()) { int32_t length = CodeGenerator::GetInt32ValueOf(length_loc.GetConstant()); if (index_loc.IsConstant()) { // BCE will remove the bounds check if we are guarenteed to pass. int32_t index = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); if (index < 0 || index >= length) { codegen_->AddSlowPath(slow_path); __ jmp(slow_path->GetEntryLabel()); } else { // Some optimization after BCE may have generated this, and we should not // generate a bounds check if it is a valid range. } return; } // We have to reverse the jump condition because the length is the constant. Register index_reg = index_loc.AsRegister<Register>(); __ cmpl(index_reg, Immediate(length)); codegen_->AddSlowPath(slow_path); __ j(kAboveEqual, slow_path->GetEntryLabel()); } else { HInstruction* array_length = instruction->InputAt(1); if (array_length->IsEmittedAtUseSite()) { // Address the length field in the array. DCHECK(array_length->IsArrayLength()); uint32_t len_offset = CodeGenerator::GetArrayLengthOffset(array_length->AsArrayLength()); Location array_loc = array_length->GetLocations()->InAt(0); Address array_len(array_loc.AsRegister<Register>(), len_offset); if (is_string_compressed_char_at) { // TODO: if index_loc.IsConstant(), compare twice the index (to compensate for // the string compression flag) with the in-memory length and avoid the temporary. Register length_reg = locations->GetTemp(0).AsRegister<Register>(); __ movl(length_reg, array_len); codegen_->MaybeRecordImplicitNullCheck(array_length); __ shrl(length_reg, Immediate(1)); codegen_->GenerateIntCompare(length_reg, index_loc); } else { // Checking bounds for general case: // Array of char or string's array with feature compression off. if (index_loc.IsConstant()) { int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant()); __ cmpl(array_len, Immediate(value)); } else { __ cmpl(array_len, index_loc.AsRegister<Register>()); } codegen_->MaybeRecordImplicitNullCheck(array_length); } } else { codegen_->GenerateIntCompare(length_loc, index_loc); } codegen_->AddSlowPath(slow_path); __ j(kBelowEqual, slow_path->GetEntryLabel()); } } void LocationsBuilderX86::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { LOG(FATAL) << "Unreachable"; } void InstructionCodeGeneratorX86::VisitParallelMove(HParallelMove* instruction) { codegen_->GetMoveResolver()->EmitNativeCode(instruction); } void LocationsBuilderX86::VisitSuspendCheck(HSuspendCheck* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath); // In suspend check slow path, usually there are no caller-save registers at all. // If SIMD instructions are present, however, we force spilling all live SIMD // registers in full width (since the runtime only saves/restores lower part). locations->SetCustomSlowPathCallerSaves( GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty()); } void InstructionCodeGeneratorX86::VisitSuspendCheck(HSuspendCheck* instruction) { HBasicBlock* block = instruction->GetBlock(); if (block->GetLoopInformation() != nullptr) { DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); // The back edge will generate the suspend check. return; } if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { // The goto will generate the suspend check. return; } GenerateSuspendCheck(instruction, nullptr); } void InstructionCodeGeneratorX86::GenerateSuspendCheck(HSuspendCheck* instruction, HBasicBlock* successor) { SuspendCheckSlowPathX86* slow_path = down_cast<SuspendCheckSlowPathX86*>(instruction->GetSlowPath()); if (slow_path == nullptr) { slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathX86(instruction, successor); instruction->SetSlowPath(slow_path); codegen_->AddSlowPath(slow_path); if (successor != nullptr) { DCHECK(successor->IsLoopHeader()); codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction); } } else { DCHECK_EQ(slow_path->GetSuccessor(), successor); } __ fs()->cmpw(Address::Absolute(Thread::ThreadFlagsOffset<kX86PointerSize>().Int32Value()), Immediate(0)); if (successor == nullptr) { __ j(kNotEqual, slow_path->GetEntryLabel()); __ Bind(slow_path->GetReturnLabel()); } else { __ j(kEqual, codegen_->GetLabelOf(successor)); __ jmp(slow_path->GetEntryLabel()); } } X86Assembler* ParallelMoveResolverX86::GetAssembler() const { return codegen_->GetAssembler(); } void ParallelMoveResolverX86::MoveMemoryToMemory32(int dst, int src) { ScratchRegisterScope ensure_scratch( this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister()); int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; __ movl(temp_reg, Address(ESP, src + stack_offset)); __ movl(Address(ESP, dst + stack_offset), temp_reg); } void ParallelMoveResolverX86::MoveMemoryToMemory64(int dst, int src) { ScratchRegisterScope ensure_scratch( this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister()); int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; __ movl(temp_reg, Address(ESP, src + stack_offset)); __ movl(Address(ESP, dst + stack_offset), temp_reg); __ movl(temp_reg, Address(ESP, src + stack_offset + kX86WordSize)); __ movl(Address(ESP, dst + stack_offset + kX86WordSize), temp_reg); } void ParallelMoveResolverX86::EmitMove(size_t index) { MoveOperands* move = moves_[index]; Location source = move->GetSource(); Location destination = move->GetDestination(); if (source.IsRegister()) { if (destination.IsRegister()) { __ movl(destination.AsRegister<Register>(), source.AsRegister<Register>()); } else if (destination.IsFpuRegister()) { __ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>()); } else { DCHECK(destination.IsStackSlot()); __ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>()); } } else if (source.IsRegisterPair()) { size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt); // Create stack space for 2 elements. __ subl(ESP, Immediate(2 * elem_size)); __ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>()); __ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>()); __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0)); // And remove the temporary stack space we allocated. __ addl(ESP, Immediate(2 * elem_size)); } else if (source.IsFpuRegister()) { if (destination.IsRegister()) { __ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>()); } else if (destination.IsFpuRegister()) { __ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); } else if (destination.IsRegisterPair()) { XmmRegister src_reg = source.AsFpuRegister<XmmRegister>(); __ movd(destination.AsRegisterPairLow<Register>(), src_reg); __ psrlq(src_reg, Immediate(32)); __ movd(destination.AsRegisterPairHigh<Register>(), src_reg); } else if (destination.IsStackSlot()) { __ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); } else if (destination.IsDoubleStackSlot()) { __ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); } else { DCHECK(destination.IsSIMDStackSlot()); __ movups(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>()); } } else if (source.IsStackSlot()) { if (destination.IsRegister()) { __ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex())); } else if (destination.IsFpuRegister()) { __ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); } else { DCHECK(destination.IsStackSlot()); MoveMemoryToMemory32(destination.GetStackIndex(), source.GetStackIndex()); } } else if (source.IsDoubleStackSlot()) { if (destination.IsRegisterPair()) { __ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex())); __ movl(destination.AsRegisterPairHigh<Register>(), Address(ESP, source.GetHighStackIndex(kX86WordSize))); } else if (destination.IsFpuRegister()) { __ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); } else { DCHECK(destination.IsDoubleStackSlot()) << destination; MoveMemoryToMemory64(destination.GetStackIndex(), source.GetStackIndex()); } } else if (source.IsSIMDStackSlot()) { DCHECK(destination.IsFpuRegister()); __ movups(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex())); } else if (source.IsConstant()) { HConstant* constant = source.GetConstant(); if (constant->IsIntConstant() || constant->IsNullConstant()) { int32_t value = CodeGenerator::GetInt32ValueOf(constant); if (destination.IsRegister()) { if (value == 0) { __ xorl(destination.AsRegister<Register>(), destination.AsRegister<Register>()); } else { __ movl(destination.AsRegister<Register>(), Immediate(value)); } } else { DCHECK(destination.IsStackSlot()) << destination; __ movl(Address(ESP, destination.GetStackIndex()), Immediate(value)); } } else if (constant->IsFloatConstant()) { float fp_value = constant->AsFloatConstant()->GetValue(); int32_t value = bit_cast<int32_t, float>(fp_value); Immediate imm(value); if (destination.IsFpuRegister()) { XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); if (value == 0) { // Easy handling of 0.0. __ xorps(dest, dest); } else { ScratchRegisterScope ensure_scratch( this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); Register temp = static_cast<Register>(ensure_scratch.GetRegister()); __ movl(temp, Immediate(value)); __ movd(dest, temp); } } else { DCHECK(destination.IsStackSlot()) << destination; __ movl(Address(ESP, destination.GetStackIndex()), imm); } } else if (constant->IsLongConstant()) { int64_t value = constant->AsLongConstant()->GetValue(); int32_t low_value = Low32Bits(value); int32_t high_value = High32Bits(value); Immediate low(low_value); Immediate high(high_value); if (destination.IsDoubleStackSlot()) { __ movl(Address(ESP, destination.GetStackIndex()), low); __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high); } else { __ movl(destination.AsRegisterPairLow<Register>(), low); __ movl(destination.AsRegisterPairHigh<Register>(), high); } } else { DCHECK(constant->IsDoubleConstant()); double dbl_value = constant->AsDoubleConstant()->GetValue(); int64_t value = bit_cast<int64_t, double>(dbl_value); int32_t low_value = Low32Bits(value); int32_t high_value = High32Bits(value); Immediate low(low_value); Immediate high(high_value); if (destination.IsFpuRegister()) { XmmRegister dest = destination.AsFpuRegister<XmmRegister>(); if (value == 0) { // Easy handling of 0.0. __ xorpd(dest, dest); } else { __ pushl(high); __ pushl(low); __ movsd(dest, Address(ESP, 0)); __ addl(ESP, Immediate(8)); } } else { DCHECK(destination.IsDoubleStackSlot()) << destination; __ movl(Address(ESP, destination.GetStackIndex()), low); __ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high); } } } else { LOG(FATAL) << "Unimplemented move: " << destination << " <- " << source; } } void ParallelMoveResolverX86::Exchange(Register reg, int mem) { Register suggested_scratch = reg == EAX ? EBX : EAX; ScratchRegisterScope ensure_scratch( this, reg, suggested_scratch, codegen_->GetNumberOfCoreRegisters()); int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; __ movl(static_cast<Register>(ensure_scratch.GetRegister()), Address(ESP, mem + stack_offset)); __ movl(Address(ESP, mem + stack_offset), reg); __ movl(reg, static_cast<Register>(ensure_scratch.GetRegister())); } void ParallelMoveResolverX86::Exchange32(XmmRegister reg, int mem) { ScratchRegisterScope ensure_scratch( this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister()); int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0; __ movl(temp_reg, Address(ESP, mem + stack_offset)); __ movss(Address(ESP, mem + stack_offset), reg); __ movd(reg, temp_reg); } void ParallelMoveResolverX86::Exchange(int mem1, int mem2) { ScratchRegisterScope ensure_scratch1( this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters()); Register suggested_scratch = ensure_scratch1.GetRegister() == EAX ? EBX : EAX; ScratchRegisterScope ensure_scratch2( this, ensure_scratch1.GetRegister(), suggested_scratch, codegen_->GetNumberOfCoreRegisters()); int stack_offset = ensure_scratch1.IsSpilled() ? kX86WordSize : 0; stack_offset += ensure_scratch2.IsSpilled() ? kX86WordSize : 0; __ movl(static_cast<Register>(ensure_scratch1.GetRegister()), Address(ESP, mem1 + stack_offset)); __ movl(static_cast<Register>(ensure_scratch2.GetRegister()), Address(ESP, mem2 + stack_offset)); __ movl(Address(ESP, mem2 + stack_offset), static_cast<Register>(ensure_scratch1.GetRegister())); __ movl(Address(ESP, mem1 + stack_offset), static_cast<Register>(ensure_scratch2.GetRegister())); } void ParallelMoveResolverX86::EmitSwap(size_t index) { MoveOperands* move = moves_[index]; Location source = move->GetSource(); Location destination = move->GetDestination(); if (source.IsRegister() && destination.IsRegister()) { // Use XOR swap algorithm to avoid serializing XCHG instruction or using a temporary. DCHECK_NE(destination.AsRegister<Register>(), source.AsRegister<Register>()); __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>()); __ xorl(source.AsRegister<Register>(), destination.AsRegister<Register>()); __ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>()); } else if (source.IsRegister() && destination.IsStackSlot()) { Exchange(source.AsRegister<Register>(), destination.GetStackIndex()); } else if (source.IsStackSlot() && destination.IsRegister()) { Exchange(destination.AsRegister<Register>(), source.GetStackIndex()); } else if (source.IsStackSlot() && destination.IsStackSlot()) { Exchange(destination.GetStackIndex(), source.GetStackIndex()); } else if (source.IsFpuRegister() && destination.IsFpuRegister()) { // Use XOR Swap algorithm to avoid a temporary. DCHECK_NE(source.reg(), destination.reg()); __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); __ xorpd(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>()); __ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>()); } else if (source.IsFpuRegister() && destination.IsStackSlot()) { Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex()); } else if (destination.IsFpuRegister() && source.IsStackSlot()) { Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex()); } else if (source.IsFpuRegister() && destination.IsDoubleStackSlot()) { // Take advantage of the 16 bytes in the XMM register. XmmRegister reg = source.AsFpuRegister<XmmRegister>(); Address stack(ESP, destination.GetStackIndex()); // Load the double into the high doubleword. __ movhpd(reg, stack); // Store the low double into the destination. __ movsd(stack, reg); // Move the high double to the low double. __ psrldq(reg, Immediate(8)); } else if (destination.IsFpuRegister() && source.IsDoubleStackSlot()) { // Take advantage of the 16 bytes in the XMM register. XmmRegister reg = destination.AsFpuRegister<XmmRegister>(); Address stack(ESP, source.GetStackIndex()); // Load the double into the high doubleword. __ movhpd(reg, stack); // Store the low double into the destination. __ movsd(stack, reg); // Move the high double to the low double. __ psrldq(reg, Immediate(8)); } else if (destination.IsDoubleStackSlot() && source.IsDoubleStackSlot()) { Exchange(destination.GetStackIndex(), source.GetStackIndex()); Exchange(destination.GetHighStackIndex(kX86WordSize), source.GetHighStackIndex(kX86WordSize)); } else { LOG(FATAL) << "Unimplemented: source: " << source << ", destination: " << destination; } } void ParallelMoveResolverX86::SpillScratch(int reg) { __ pushl(static_cast<Register>(reg)); } void ParallelMoveResolverX86::RestoreScratch(int reg) { __ popl(static_cast<Register>(reg)); } HLoadClass::LoadKind CodeGeneratorX86::GetSupportedLoadClassKind( HLoadClass::LoadKind desired_class_load_kind) { switch (desired_class_load_kind) { case HLoadClass::LoadKind::kInvalid: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); case HLoadClass::LoadKind::kReferrersClass: break; case HLoadClass::LoadKind::kBootImageLinkTimeAddress: DCHECK(!GetCompilerOptions().GetCompilePic()); break; case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: DCHECK(GetCompilerOptions().GetCompilePic()); FALLTHROUGH_INTENDED; case HLoadClass::LoadKind::kBssEntry: DCHECK(!Runtime::Current()->UseJitCompilation()); // Note: boot image is also non-JIT. break; case HLoadClass::LoadKind::kBootImageAddress: break; case HLoadClass::LoadKind::kJitTableAddress: DCHECK(Runtime::Current()->UseJitCompilation()); break; case HLoadClass::LoadKind::kDexCacheViaMethod: break; } return desired_class_load_kind; } void LocationsBuilderX86::VisitLoadClass(HLoadClass* cls) { HLoadClass::LoadKind load_kind = cls->GetLoadKind(); if (load_kind == HLoadClass::LoadKind::kDexCacheViaMethod) { InvokeRuntimeCallingConvention calling_convention; CodeGenerator::CreateLoadClassRuntimeCallLocationSummary( cls, Location::RegisterLocation(calling_convention.GetRegisterAt(0)), Location::RegisterLocation(EAX)); DCHECK_EQ(calling_convention.GetRegisterAt(0), EAX); return; } DCHECK(!cls->NeedsAccessCheck()); const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage(); LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier) ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind); if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } if (load_kind == HLoadClass::LoadKind::kReferrersClass || load_kind == HLoadClass::LoadKind::kBootImageLinkTimePcRelative || load_kind == HLoadClass::LoadKind::kBssEntry) { locations->SetInAt(0, Location::RequiresRegister()); } locations->SetOut(Location::RequiresRegister()); if (load_kind == HLoadClass::LoadKind::kBssEntry) { if (!kUseReadBarrier || kUseBakerReadBarrier) { // Rely on the type resolution and/or initialization to save everything. RegisterSet caller_saves = RegisterSet::Empty(); InvokeRuntimeCallingConvention calling_convention; caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetCustomSlowPathCallerSaves(caller_saves); } else { // For non-Baker read barrier we have a temp-clobbering call. } } } Label* CodeGeneratorX86::NewJitRootClassPatch(const DexFile& dex_file, dex::TypeIndex dex_index, Handle<mirror::Class> handle) { jit_class_roots_.Overwrite(TypeReference(&dex_file, dex_index), reinterpret_cast64<uint64_t>(handle.GetReference())); // Add a patch entry and return the label. jit_class_patches_.emplace_back(dex_file, dex_index.index_); PatchInfo<Label>* info = &jit_class_patches_.back(); return &info->label; } // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not // move. void InstructionCodeGeneratorX86::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS { HLoadClass::LoadKind load_kind = cls->GetLoadKind(); if (load_kind == HLoadClass::LoadKind::kDexCacheViaMethod) { codegen_->GenerateLoadClassRuntimeCall(cls); return; } DCHECK(!cls->NeedsAccessCheck()); LocationSummary* locations = cls->GetLocations(); Location out_loc = locations->Out(); Register out = out_loc.AsRegister<Register>(); bool generate_null_check = false; const ReadBarrierOption read_barrier_option = cls->IsInBootImage() ? kWithoutReadBarrier : kCompilerReadBarrierOption; switch (load_kind) { case HLoadClass::LoadKind::kReferrersClass: { DCHECK(!cls->CanCallRuntime()); DCHECK(!cls->MustGenerateClinitCheck()); // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ Register current_method = locations->InAt(0).AsRegister<Register>(); GenerateGcRootFieldLoad( cls, out_loc, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value()), /* fixup_label */ nullptr, read_barrier_option); break; } case HLoadClass::LoadKind::kBootImageLinkTimeAddress: { DCHECK(codegen_->GetCompilerOptions().IsBootImage()); DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); __ movl(out, Immediate(/* placeholder */ 0)); codegen_->RecordBootTypePatch(cls); break; } case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { DCHECK(codegen_->GetCompilerOptions().IsBootImage()); DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); Register method_address = locations->InAt(0).AsRegister<Register>(); __ leal(out, Address(method_address, CodeGeneratorX86::kDummy32BitOffset)); codegen_->RecordBootTypePatch(cls); break; } case HLoadClass::LoadKind::kBootImageAddress: { DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); uint32_t address = dchecked_integral_cast<uint32_t>( reinterpret_cast<uintptr_t>(cls->GetClass().Get())); DCHECK_NE(address, 0u); __ movl(out, Immediate(address)); break; } case HLoadClass::LoadKind::kBssEntry: { Register method_address = locations->InAt(0).AsRegister<Register>(); Address address(method_address, CodeGeneratorX86::kDummy32BitOffset); Label* fixup_label = codegen_->NewTypeBssEntryPatch(cls); GenerateGcRootFieldLoad(cls, out_loc, address, fixup_label, read_barrier_option); generate_null_check = true; break; } case HLoadClass::LoadKind::kJitTableAddress: { Address address = Address::Absolute(CodeGeneratorX86::kDummy32BitOffset); Label* fixup_label = codegen_->NewJitRootClassPatch( cls->GetDexFile(), cls->GetTypeIndex(), cls->GetClass()); // /* GcRoot<mirror::Class> */ out = *address GenerateGcRootFieldLoad(cls, out_loc, address, fixup_label, read_barrier_option); break; } case HLoadClass::LoadKind::kDexCacheViaMethod: case HLoadClass::LoadKind::kInvalid: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } if (generate_null_check || cls->MustGenerateClinitCheck()) { DCHECK(cls->CanCallRuntime()); SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86( cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck()); codegen_->AddSlowPath(slow_path); if (generate_null_check) { __ testl(out, out); __ j(kEqual, slow_path->GetEntryLabel()); } if (cls->MustGenerateClinitCheck()) { GenerateClassInitializationCheck(slow_path, out); } else { __ Bind(slow_path->GetExitLabel()); } } } void LocationsBuilderX86::VisitClinitCheck(HClinitCheck* check) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath); locations->SetInAt(0, Location::RequiresRegister()); if (check->HasUses()) { locations->SetOut(Location::SameAsFirstInput()); } } void InstructionCodeGeneratorX86::VisitClinitCheck(HClinitCheck* check) { // We assume the class to not be null. SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86( check->GetLoadClass(), check, check->GetDexPc(), true); codegen_->AddSlowPath(slow_path); GenerateClassInitializationCheck(slow_path, check->GetLocations()->InAt(0).AsRegister<Register>()); } void InstructionCodeGeneratorX86::GenerateClassInitializationCheck( SlowPathCode* slow_path, Register class_reg) { __ cmpl(Address(class_reg, mirror::Class::StatusOffset().Int32Value()), Immediate(mirror::Class::kStatusInitialized)); __ j(kLess, slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); // No need for memory fence, thanks to the X86 memory model. } HLoadString::LoadKind CodeGeneratorX86::GetSupportedLoadStringKind( HLoadString::LoadKind desired_string_load_kind) { switch (desired_string_load_kind) { case HLoadString::LoadKind::kBootImageLinkTimeAddress: DCHECK(!GetCompilerOptions().GetCompilePic()); break; case HLoadString::LoadKind::kBootImageLinkTimePcRelative: DCHECK(GetCompilerOptions().GetCompilePic()); FALLTHROUGH_INTENDED; case HLoadString::LoadKind::kBssEntry: DCHECK(!Runtime::Current()->UseJitCompilation()); // Note: boot image is also non-JIT. break; case HLoadString::LoadKind::kBootImageAddress: break; case HLoadString::LoadKind::kJitTableAddress: DCHECK(Runtime::Current()->UseJitCompilation()); break; case HLoadString::LoadKind::kDexCacheViaMethod: break; } return desired_string_load_kind; } void LocationsBuilderX86::VisitLoadString(HLoadString* load) { LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load); LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind); HLoadString::LoadKind load_kind = load->GetLoadKind(); if (load_kind == HLoadString::LoadKind::kBootImageLinkTimePcRelative || load_kind == HLoadString::LoadKind::kBssEntry) { locations->SetInAt(0, Location::RequiresRegister()); } if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod) { locations->SetOut(Location::RegisterLocation(EAX)); } else { locations->SetOut(Location::RequiresRegister()); if (load_kind == HLoadString::LoadKind::kBssEntry) { if (!kUseReadBarrier || kUseBakerReadBarrier) { // Rely on the pResolveString to save everything. RegisterSet caller_saves = RegisterSet::Empty(); InvokeRuntimeCallingConvention calling_convention; caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetCustomSlowPathCallerSaves(caller_saves); } else { // For non-Baker read barrier we have a temp-clobbering call. } } } } Label* CodeGeneratorX86::NewJitRootStringPatch(const DexFile& dex_file, dex::StringIndex dex_index, Handle<mirror::String> handle) { jit_string_roots_.Overwrite( StringReference(&dex_file, dex_index), reinterpret_cast64<uint64_t>(handle.GetReference())); // Add a patch entry and return the label. jit_string_patches_.emplace_back(dex_file, dex_index.index_); PatchInfo<Label>* info = &jit_string_patches_.back(); return &info->label; } // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not // move. void InstructionCodeGeneratorX86::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS { LocationSummary* locations = load->GetLocations(); Location out_loc = locations->Out(); Register out = out_loc.AsRegister<Register>(); switch (load->GetLoadKind()) { case HLoadString::LoadKind::kBootImageLinkTimeAddress: { DCHECK(codegen_->GetCompilerOptions().IsBootImage()); __ movl(out, Immediate(/* placeholder */ 0)); codegen_->RecordBootStringPatch(load); return; // No dex cache slow path. } case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { DCHECK(codegen_->GetCompilerOptions().IsBootImage()); Register method_address = locations->InAt(0).AsRegister<Register>(); __ leal(out, Address(method_address, CodeGeneratorX86::kDummy32BitOffset)); codegen_->RecordBootStringPatch(load); return; // No dex cache slow path. } case HLoadString::LoadKind::kBootImageAddress: { uint32_t address = dchecked_integral_cast<uint32_t>( reinterpret_cast<uintptr_t>(load->GetString().Get())); DCHECK_NE(address, 0u); __ movl(out, Immediate(address)); return; // No dex cache slow path. } case HLoadString::LoadKind::kBssEntry: { Register method_address = locations->InAt(0).AsRegister<Register>(); Address address = Address(method_address, CodeGeneratorX86::kDummy32BitOffset); Label* fixup_label = codegen_->NewStringBssEntryPatch(load); // /* GcRoot<mirror::String> */ out = *address /* PC-relative */ GenerateGcRootFieldLoad(load, out_loc, address, fixup_label, kCompilerReadBarrierOption); SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathX86(load); codegen_->AddSlowPath(slow_path); __ testl(out, out); __ j(kEqual, slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); return; } case HLoadString::LoadKind::kJitTableAddress: { Address address = Address::Absolute(CodeGeneratorX86::kDummy32BitOffset); Label* fixup_label = codegen_->NewJitRootStringPatch( load->GetDexFile(), load->GetStringIndex(), load->GetString()); // /* GcRoot<mirror::String> */ out = *address GenerateGcRootFieldLoad(load, out_loc, address, fixup_label, kCompilerReadBarrierOption); return; } default: break; } // TODO: Re-add the compiler code to do string dex cache lookup again. InvokeRuntimeCallingConvention calling_convention; DCHECK_EQ(calling_convention.GetRegisterAt(0), out); __ movl(calling_convention.GetRegisterAt(0), Immediate(load->GetStringIndex().index_)); codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc()); CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); } static Address GetExceptionTlsAddress() { return Address::Absolute(Thread::ExceptionOffset<kX86PointerSize>().Int32Value()); } void LocationsBuilderX86::VisitLoadException(HLoadException* load) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorX86::VisitLoadException(HLoadException* load) { __ fs()->movl(load->GetLocations()->Out().AsRegister<Register>(), GetExceptionTlsAddress()); } void LocationsBuilderX86::VisitClearException(HClearException* clear) { new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall); } void InstructionCodeGeneratorX86::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { __ fs()->movl(GetExceptionTlsAddress(), Immediate(0)); } void LocationsBuilderX86::VisitThrow(HThrow* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } void InstructionCodeGeneratorX86::VisitThrow(HThrow* instruction) { codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); } // Temp is used for read barrier. static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) { if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier && (type_check_kind == TypeCheckKind::kAbstractClassCheck || type_check_kind == TypeCheckKind::kClassHierarchyCheck || type_check_kind == TypeCheckKind::kArrayObjectCheck)) { return 1; } return 0; } // Interface case has 3 temps, one for holding the number of interfaces, one for the current // interface pointer, one for loading the current interface. // The other checks have one temp for loading the object's class. static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) { if (type_check_kind == TypeCheckKind::kInterfaceCheck && !kPoisonHeapReferences) { return 2; } return 1 + NumberOfInstanceOfTemps(type_check_kind); } void LocationsBuilderX86::VisitInstanceOf(HInstanceOf* instruction) { LocationSummary::CallKind call_kind = LocationSummary::kNoCall; TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); bool baker_read_barrier_slow_path = false; switch (type_check_kind) { case TypeCheckKind::kExactCheck: case TypeCheckKind::kAbstractClassCheck: case TypeCheckKind::kClassHierarchyCheck: case TypeCheckKind::kArrayObjectCheck: call_kind = kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; baker_read_barrier_slow_path = kUseBakerReadBarrier; break; case TypeCheckKind::kArrayCheck: case TypeCheckKind::kUnresolvedCheck: case TypeCheckKind::kInterfaceCheck: call_kind = LocationSummary::kCallOnSlowPath; break; } LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); if (baker_read_barrier_slow_path) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); // Note that TypeCheckSlowPathX86 uses this "out" register too. locations->SetOut(Location::RequiresRegister()); // When read barriers are enabled, we need a temporary register for some cases. locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind)); } void InstructionCodeGeneratorX86::VisitInstanceOf(HInstanceOf* instruction) { TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); LocationSummary* locations = instruction->GetLocations(); Location obj_loc = locations->InAt(0); Register obj = obj_loc.AsRegister<Register>(); Location cls = locations->InAt(1); Location out_loc = locations->Out(); Register out = out_loc.AsRegister<Register>(); const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind); DCHECK_LE(num_temps, 1u); Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); SlowPathCode* slow_path = nullptr; NearLabel done, zero; // Return 0 if `obj` is null. // Avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { __ testl(obj, obj); __ j(kEqual, &zero); } switch (type_check_kind) { case TypeCheckKind::kExactCheck: { // /* HeapReference<Class> */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, kCompilerReadBarrierOption); if (cls.IsRegister()) { __ cmpl(out, cls.AsRegister<Register>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(out, Address(ESP, cls.GetStackIndex())); } // Classes must be equal for the instanceof to succeed. __ j(kNotEqual, &zero); __ movl(out, Immediate(1)); __ jmp(&done); break; } case TypeCheckKind::kAbstractClassCheck: { // /* HeapReference<Class> */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, kCompilerReadBarrierOption); // If the class is abstract, we eagerly fetch the super class of the // object to avoid doing a comparison we know will fail. NearLabel loop; __ Bind(&loop); // /* HeapReference<Class> */ out = out->super_class_ GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc, kCompilerReadBarrierOption); __ testl(out, out); // If `out` is null, we use it for the result, and jump to `done`. __ j(kEqual, &done); if (cls.IsRegister()) { __ cmpl(out, cls.AsRegister<Register>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(out, Address(ESP, cls.GetStackIndex())); } __ j(kNotEqual, &loop); __ movl(out, Immediate(1)); if (zero.IsLinked()) { __ jmp(&done); } break; } case TypeCheckKind::kClassHierarchyCheck: { // /* HeapReference<Class> */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, kCompilerReadBarrierOption); // Walk over the class hierarchy to find a match. NearLabel loop, success; __ Bind(&loop); if (cls.IsRegister()) { __ cmpl(out, cls.AsRegister<Register>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(out, Address(ESP, cls.GetStackIndex())); } __ j(kEqual, &success); // /* HeapReference<Class> */ out = out->super_class_ GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc, kCompilerReadBarrierOption); __ testl(out, out); __ j(kNotEqual, &loop); // If `out` is null, we use it for the result, and jump to `done`. __ jmp(&done); __ Bind(&success); __ movl(out, Immediate(1)); if (zero.IsLinked()) { __ jmp(&done); } break; } case TypeCheckKind::kArrayObjectCheck: { // /* HeapReference<Class> */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, kCompilerReadBarrierOption); // Do an exact check. NearLabel exact_check; if (cls.IsRegister()) { __ cmpl(out, cls.AsRegister<Register>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(out, Address(ESP, cls.GetStackIndex())); } __ j(kEqual, &exact_check); // Otherwise, we need to check that the object's class is a non-primitive array. // /* HeapReference<Class> */ out = out->component_type_ GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc, kCompilerReadBarrierOption); __ testl(out, out); // If `out` is null, we use it for the result, and jump to `done`. __ j(kEqual, &done); __ cmpw(Address(out, primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kNotEqual, &zero); __ Bind(&exact_check); __ movl(out, Immediate(1)); __ jmp(&done); break; } case TypeCheckKind::kArrayCheck: { // No read barrier since the slow path will retry upon failure. // /* HeapReference<Class> */ out = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, kWithoutReadBarrier); if (cls.IsRegister()) { __ cmpl(out, cls.AsRegister<Register>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(out, Address(ESP, cls.GetStackIndex())); } DCHECK(locations->OnlyCallsOnSlowPath()); slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction, /* is_fatal */ false); codegen_->AddSlowPath(slow_path); __ j(kNotEqual, slow_path->GetEntryLabel()); __ movl(out, Immediate(1)); if (zero.IsLinked()) { __ jmp(&done); } break; } case TypeCheckKind::kUnresolvedCheck: case TypeCheckKind::kInterfaceCheck: { // Note that we indeed only call on slow path, but we always go // into the slow path for the unresolved and interface check // cases. // // We cannot directly call the InstanceofNonTrivial runtime // entry point without resorting to a type checking slow path // here (i.e. by calling InvokeRuntime directly), as it would // require to assign fixed registers for the inputs of this // HInstanceOf instruction (following the runtime calling // convention), which might be cluttered by the potential first // read barrier emission at the beginning of this method. // // TODO: Introduce a new runtime entry point taking the object // to test (instead of its class) as argument, and let it deal // with the read barrier issues. This will let us refactor this // case of the `switch` code as it was previously (with a direct // call to the runtime not using a type checking slow path). // This should also be beneficial for the other cases above. DCHECK(locations->OnlyCallsOnSlowPath()); slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction, /* is_fatal */ false); codegen_->AddSlowPath(slow_path); __ jmp(slow_path->GetEntryLabel()); if (zero.IsLinked()) { __ jmp(&done); } break; } } if (zero.IsLinked()) { __ Bind(&zero); __ xorl(out, out); } if (done.IsLinked()) { __ Bind(&done); } if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } static bool IsTypeCheckSlowPathFatal(TypeCheckKind type_check_kind, bool throws_into_catch) { switch (type_check_kind) { case TypeCheckKind::kExactCheck: case TypeCheckKind::kAbstractClassCheck: case TypeCheckKind::kClassHierarchyCheck: case TypeCheckKind::kArrayObjectCheck: return !throws_into_catch && !kEmitCompilerReadBarrier; case TypeCheckKind::kInterfaceCheck: return !throws_into_catch && !kEmitCompilerReadBarrier && !kPoisonHeapReferences; case TypeCheckKind::kArrayCheck: case TypeCheckKind::kUnresolvedCheck: return false; } LOG(FATAL) << "Unreachable"; UNREACHABLE(); } void LocationsBuilderX86::VisitCheckCast(HCheckCast* instruction) { bool throws_into_catch = instruction->CanThrowIntoCatchBlock(); TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); LocationSummary::CallKind call_kind = IsTypeCheckSlowPathFatal(type_check_kind, throws_into_catch) ? LocationSummary::kNoCall : LocationSummary::kCallOnSlowPath; LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind); locations->SetInAt(0, Location::RequiresRegister()); if (type_check_kind == TypeCheckKind::kInterfaceCheck) { // Require a register for the interface check since there is a loop that compares the class to // a memory address. locations->SetInAt(1, Location::RequiresRegister()); } else { locations->SetInAt(1, Location::Any()); } // Note that TypeCheckSlowPathX86 uses this "temp" register too. locations->AddTemp(Location::RequiresRegister()); // When read barriers are enabled, we need an additional temporary register for some cases. locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind)); } void InstructionCodeGeneratorX86::VisitCheckCast(HCheckCast* instruction) { TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); LocationSummary* locations = instruction->GetLocations(); Location obj_loc = locations->InAt(0); Register obj = obj_loc.AsRegister<Register>(); Location cls = locations->InAt(1); Location temp_loc = locations->GetTemp(0); Register temp = temp_loc.AsRegister<Register>(); const size_t num_temps = NumberOfCheckCastTemps(type_check_kind); DCHECK_GE(num_temps, 1u); DCHECK_LE(num_temps, 2u); Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation(); const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); const uint32_t object_array_data_offset = mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); // Always false for read barriers since we may need to go to the entrypoint for non-fatal cases // from false negatives. The false negatives may come from avoiding read barriers below. Avoiding // read barriers is done for performance and code size reasons. bool is_type_check_slow_path_fatal = IsTypeCheckSlowPathFatal(type_check_kind, instruction->CanThrowIntoCatchBlock()); SlowPathCode* type_check_slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction, is_type_check_slow_path_fatal); codegen_->AddSlowPath(type_check_slow_path); NearLabel done; // Avoid null check if we know obj is not null. if (instruction->MustDoNullCheck()) { __ testl(obj, obj); __ j(kEqual, &done); } switch (type_check_kind) { case TypeCheckKind::kExactCheck: case TypeCheckKind::kArrayCheck: { // /* HeapReference<Class> */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, kWithoutReadBarrier); if (cls.IsRegister()) { __ cmpl(temp, cls.AsRegister<Register>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(temp, Address(ESP, cls.GetStackIndex())); } // Jump to slow path for throwing the exception or doing a // more involved array check. __ j(kNotEqual, type_check_slow_path->GetEntryLabel()); break; } case TypeCheckKind::kAbstractClassCheck: { // /* HeapReference<Class> */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, kWithoutReadBarrier); // If the class is abstract, we eagerly fetch the super class of the // object to avoid doing a comparison we know will fail. NearLabel loop; __ Bind(&loop); // /* HeapReference<Class> */ temp = temp->super_class_ GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc, kWithoutReadBarrier); // If the class reference currently in `temp` is null, jump to the slow path to throw the // exception. __ testl(temp, temp); __ j(kZero, type_check_slow_path->GetEntryLabel()); // Otherwise, compare the classes if (cls.IsRegister()) { __ cmpl(temp, cls.AsRegister<Register>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(temp, Address(ESP, cls.GetStackIndex())); } __ j(kNotEqual, &loop); break; } case TypeCheckKind::kClassHierarchyCheck: { // /* HeapReference<Class> */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, kWithoutReadBarrier); // Walk over the class hierarchy to find a match. NearLabel loop; __ Bind(&loop); if (cls.IsRegister()) { __ cmpl(temp, cls.AsRegister<Register>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(temp, Address(ESP, cls.GetStackIndex())); } __ j(kEqual, &done); // /* HeapReference<Class> */ temp = temp->super_class_ GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc, kWithoutReadBarrier); // If the class reference currently in `temp` is not null, jump // back at the beginning of the loop. __ testl(temp, temp); __ j(kNotZero, &loop); // Otherwise, jump to the slow path to throw the exception.; __ jmp(type_check_slow_path->GetEntryLabel()); break; } case TypeCheckKind::kArrayObjectCheck: { // /* HeapReference<Class> */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, kWithoutReadBarrier); // Do an exact check. if (cls.IsRegister()) { __ cmpl(temp, cls.AsRegister<Register>()); } else { DCHECK(cls.IsStackSlot()) << cls; __ cmpl(temp, Address(ESP, cls.GetStackIndex())); } __ j(kEqual, &done); // Otherwise, we need to check that the object's class is a non-primitive array. // /* HeapReference<Class> */ temp = temp->component_type_ GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc, kWithoutReadBarrier); // If the component type is null (i.e. the object not an array), jump to the slow path to // throw the exception. Otherwise proceed with the check. __ testl(temp, temp); __ j(kZero, type_check_slow_path->GetEntryLabel()); __ cmpw(Address(temp, primitive_offset), Immediate(Primitive::kPrimNot)); __ j(kNotEqual, type_check_slow_path->GetEntryLabel()); break; } case TypeCheckKind::kUnresolvedCheck: // We always go into the type check slow path for the unresolved check case. // We cannot directly call the CheckCast runtime entry point // without resorting to a type checking slow path here (i.e. by // calling InvokeRuntime directly), as it would require to // assign fixed registers for the inputs of this HInstanceOf // instruction (following the runtime calling convention), which // might be cluttered by the potential first read barrier // emission at the beginning of this method. __ jmp(type_check_slow_path->GetEntryLabel()); break; case TypeCheckKind::kInterfaceCheck: { // Fast path for the interface check. Since we compare with a memory location in the inner // loop we would need to have cls poisoned. However unpoisoning cls would reset the // conditional flags and cause the conditional jump to be incorrect. Therefore we just jump // to the slow path if we are running under poisoning. if (!kPoisonHeapReferences) { // Try to avoid read barriers to improve the fast path. We can not get false positives by // doing this. // /* HeapReference<Class> */ temp = obj->klass_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, kWithoutReadBarrier); // /* HeapReference<Class> */ temp = temp->iftable_ GenerateReferenceLoadTwoRegisters(instruction, temp_loc, temp_loc, iftable_offset, kWithoutReadBarrier); // Iftable is never null. __ movl(maybe_temp2_loc.AsRegister<Register>(), Address(temp, array_length_offset)); // Loop through the iftable and check if any class matches. NearLabel start_loop; __ Bind(&start_loop); // Need to subtract first to handle the empty array case. __ subl(maybe_temp2_loc.AsRegister<Register>(), Immediate(2)); __ j(kNegative, type_check_slow_path->GetEntryLabel()); // Go to next interface if the classes do not match. __ cmpl(cls.AsRegister<Register>(), CodeGeneratorX86::ArrayAddress(temp, maybe_temp2_loc, TIMES_4, object_array_data_offset)); __ j(kNotEqual, &start_loop); } else { __ jmp(type_check_slow_path->GetEntryLabel()); } break; } } __ Bind(&done); __ Bind(type_check_slow_path->GetExitLabel()); } void LocationsBuilderX86::VisitMonitorOperation(HMonitorOperation* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } void InstructionCodeGeneratorX86::VisitMonitorOperation(HMonitorOperation* instruction) { codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject, instruction, instruction->GetDexPc()); if (instruction->IsEnter()) { CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); } else { CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); } } void LocationsBuilderX86::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); } void LocationsBuilderX86::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); } void LocationsBuilderX86::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); } void LocationsBuilderX86::HandleBitwiseOperation(HBinaryOperation* instruction) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall); DCHECK(instruction->GetResultType() == Primitive::kPrimInt || instruction->GetResultType() == Primitive::kPrimLong); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::Any()); locations->SetOut(Location::SameAsFirstInput()); } void InstructionCodeGeneratorX86::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); } void InstructionCodeGeneratorX86::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); } void InstructionCodeGeneratorX86::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); } void InstructionCodeGeneratorX86::HandleBitwiseOperation(HBinaryOperation* instruction) { LocationSummary* locations = instruction->GetLocations(); Location first = locations->InAt(0); Location second = locations->InAt(1); DCHECK(first.Equals(locations->Out())); if (instruction->GetResultType() == Primitive::kPrimInt) { if (second.IsRegister()) { if (instruction->IsAnd()) { __ andl(first.AsRegister<Register>(), second.AsRegister<Register>()); } else if (instruction->IsOr()) { __ orl(first.AsRegister<Register>(), second.AsRegister<Register>()); } else { DCHECK(instruction->IsXor()); __ xorl(first.AsRegister<Register>(), second.AsRegister<Register>()); } } else if (second.IsConstant()) { if (instruction->IsAnd()) { __ andl(first.AsRegister<Register>(), Immediate(second.GetConstant()->AsIntConstant()->GetValue())); } else if (instruction->IsOr()) { __ orl(first.AsRegister<Register>(), Immediate(second.GetConstant()->AsIntConstant()->GetValue())); } else { DCHECK(instruction->IsXor()); __ xorl(first.AsRegister<Register>(), Immediate(second.GetConstant()->AsIntConstant()->GetValue())); } } else { if (instruction->IsAnd()) { __ andl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); } else if (instruction->IsOr()) { __ orl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); } else { DCHECK(instruction->IsXor()); __ xorl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex())); } } } else { DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong); if (second.IsRegisterPair()) { if (instruction->IsAnd()) { __ andl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); __ andl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); } else if (instruction->IsOr()) { __ orl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); __ orl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); } else { DCHECK(instruction->IsXor()); __ xorl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>()); __ xorl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>()); } } else if (second.IsDoubleStackSlot()) { if (instruction->IsAnd()) { __ andl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); __ andl(first.AsRegisterPairHigh<Register>(), Address(ESP, second.GetHighStackIndex(kX86WordSize))); } else if (instruction->IsOr()) { __ orl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); __ orl(first.AsRegisterPairHigh<Register>(), Address(ESP, second.GetHighStackIndex(kX86WordSize))); } else { DCHECK(instruction->IsXor()); __ xorl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex())); __ xorl(first.AsRegisterPairHigh<Register>(), Address(ESP, second.GetHighStackIndex(kX86WordSize))); } } else { DCHECK(second.IsConstant()) << second; int64_t value = second.GetConstant()->AsLongConstant()->GetValue(); int32_t low_value = Low32Bits(value); int32_t high_value = High32Bits(value); Immediate low(low_value); Immediate high(high_value); Register first_low = first.AsRegisterPairLow<Register>(); Register first_high = first.AsRegisterPairHigh<Register>(); if (instruction->IsAnd()) { if (low_value == 0) { __ xorl(first_low, first_low); } else if (low_value != -1) { __ andl(first_low, low); } if (high_value == 0) { __ xorl(first_high, first_high); } else if (high_value != -1) { __ andl(first_high, high); } } else if (instruction->IsOr()) { if (low_value != 0) { __ orl(first_low, low); } if (high_value != 0) { __ orl(first_high, high); } } else { DCHECK(instruction->IsXor()); if (low_value != 0) { __ xorl(first_low, low); } if (high_value != 0) { __ xorl(first_high, high); } } } } } void InstructionCodeGeneratorX86::GenerateReferenceLoadOneRegister( HInstruction* instruction, Location out, uint32_t offset, Location maybe_temp, ReadBarrierOption read_barrier_option) { Register out_reg = out.AsRegister<Register>(); if (read_barrier_option == kWithReadBarrier) { CHECK(kEmitCompilerReadBarrier); if (kUseBakerReadBarrier) { // Load with fast path based Baker's read barrier. // /* HeapReference<Object> */ out = *(out + offset) codegen_->GenerateFieldLoadWithBakerReadBarrier( instruction, out, out_reg, offset, /* needs_null_check */ false); } else { // Load with slow path based read barrier. // Save the value of `out` into `maybe_temp` before overwriting it // in the following move operation, as we will need it for the // read barrier below. DCHECK(maybe_temp.IsRegister()) << maybe_temp; __ movl(maybe_temp.AsRegister<Register>(), out_reg); // /* HeapReference<Object> */ out = *(out + offset) __ movl(out_reg, Address(out_reg, offset)); codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); } } else { // Plain load with no read barrier. // /* HeapReference<Object> */ out = *(out + offset) __ movl(out_reg, Address(out_reg, offset)); __ MaybeUnpoisonHeapReference(out_reg); } } void InstructionCodeGeneratorX86::GenerateReferenceLoadTwoRegisters( HInstruction* instruction, Location out, Location obj, uint32_t offset, ReadBarrierOption read_barrier_option) { Register out_reg = out.AsRegister<Register>(); Register obj_reg = obj.AsRegister<Register>(); if (read_barrier_option == kWithReadBarrier) { CHECK(kEmitCompilerReadBarrier); if (kUseBakerReadBarrier) { // Load with fast path based Baker's read barrier. // /* HeapReference<Object> */ out = *(obj + offset) codegen_->GenerateFieldLoadWithBakerReadBarrier( instruction, out, obj_reg, offset, /* needs_null_check */ false); } else { // Load with slow path based read barrier. // /* HeapReference<Object> */ out = *(obj + offset) __ movl(out_reg, Address(obj_reg, offset)); codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); } } else { // Plain load with no read barrier. // /* HeapReference<Object> */ out = *(obj + offset) __ movl(out_reg, Address(obj_reg, offset)); __ MaybeUnpoisonHeapReference(out_reg); } } void InstructionCodeGeneratorX86::GenerateGcRootFieldLoad( HInstruction* instruction, Location root, const Address& address, Label* fixup_label, ReadBarrierOption read_barrier_option) { Register root_reg = root.AsRegister<Register>(); if (read_barrier_option == kWithReadBarrier) { DCHECK(kEmitCompilerReadBarrier); if (kUseBakerReadBarrier) { // Fast path implementation of art::ReadBarrier::BarrierForRoot when // Baker's read barrier are used: // // root = obj.field; // temp = Thread::Current()->pReadBarrierMarkReg ## root.reg() // if (temp != null) { // root = temp(root) // } // /* GcRoot<mirror::Object> */ root = *address __ movl(root_reg, address); if (fixup_label != nullptr) { __ Bind(fixup_label); } static_assert( sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>), "art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> " "have different sizes."); static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t), "art::mirror::CompressedReference<mirror::Object> and int32_t " "have different sizes."); // Slow path marking the GC root `root`. SlowPathCode* slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86( instruction, root, /* unpoison_ref_before_marking */ false); codegen_->AddSlowPath(slow_path); // Test the entrypoint (`Thread::Current()->pReadBarrierMarkReg ## root.reg()`). const int32_t entry_point_offset = CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kX86PointerSize>(root.reg()); __ fs()->cmpl(Address::Absolute(entry_point_offset), Immediate(0)); // The entrypoint is null when the GC is not marking. __ j(kNotEqual, slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } else { // GC root loaded through a slow path for read barriers other // than Baker's. // /* GcRoot<mirror::Object>* */ root = address __ leal(root_reg, address); if (fixup_label != nullptr) { __ Bind(fixup_label); } // /* mirror::Object* */ root = root->Read() codegen_->GenerateReadBarrierForRootSlow(instruction, root, root); } } else { // Plain GC root load with no read barrier. // /* GcRoot<mirror::Object> */ root = *address __ movl(root_reg, address); if (fixup_label != nullptr) { __ Bind(fixup_label); } // Note that GC roots are not affected by heap poisoning, thus we // do not have to unpoison `root_reg` here. } } void CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, Register obj, uint32_t offset, bool needs_null_check) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); // /* HeapReference<Object> */ ref = *(obj + offset) Address src(obj, offset); GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, needs_null_check); } void CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, Register obj, uint32_t data_offset, Location index, bool needs_null_check) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); static_assert( sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); // /* HeapReference<Object> */ ref = // *(obj + data_offset + index * sizeof(HeapReference<Object>)) Address src = CodeGeneratorX86::ArrayAddress(obj, index, TIMES_4, data_offset); GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, needs_null_check); } void CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, Register obj, const Address& src, bool needs_null_check, bool always_update_field, Register* temp) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); // In slow path based read barriers, the read barrier call is // inserted after the original load. However, in fast path based // Baker's read barriers, we need to perform the load of // mirror::Object::monitor_ *before* the original reference load. // This load-load ordering is required by the read barrier. // The fast path/slow path (for Baker's algorithm) should look like: // // uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState(); // lfence; // Load fence or artificial data dependency to prevent load-load reordering // HeapReference<Object> ref = *src; // Original reference load. // bool is_gray = (rb_state == ReadBarrier::GrayState()); // if (is_gray) { // ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path. // } // // Note: the original implementation in ReadBarrier::Barrier is // slightly more complex as: // - it implements the load-load fence using a data dependency on // the high-bits of rb_state, which are expected to be all zeroes // (we use CodeGeneratorX86::GenerateMemoryBarrier instead here, // which is a no-op thanks to the x86 memory model); // - it performs additional checks that we do not do here for // performance reasons. Register ref_reg = ref.AsRegister<Register>(); uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); // Given the numeric representation, it's enough to check the low bit of the rb_state. static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte; constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte; constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position); // if (rb_state == ReadBarrier::GrayState()) // ref = ReadBarrier::Mark(ref); // At this point, just do the "if" and make sure that flags are preserved until the branch. __ testb(Address(obj, monitor_offset + gray_byte_position), Immediate(test_value)); if (needs_null_check) { MaybeRecordImplicitNullCheck(instruction); } // Load fence to prevent load-load reordering. // Note that this is a no-op, thanks to the x86 memory model. GenerateMemoryBarrier(MemBarrierKind::kLoadAny); // The actual reference load. // /* HeapReference<Object> */ ref = *src __ movl(ref_reg, src); // Flags are unaffected. // Note: Reference unpoisoning modifies the flags, so we need to delay it after the branch. // Slow path marking the object `ref` when it is gray. SlowPathCode* slow_path; if (always_update_field) { DCHECK(temp != nullptr); slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkAndUpdateFieldSlowPathX86( instruction, ref, obj, src, /* unpoison_ref_before_marking */ true, *temp); } else { slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86( instruction, ref, /* unpoison_ref_before_marking */ true); } AddSlowPath(slow_path); // We have done the "if" of the gray bit check above, now branch based on the flags. __ j(kNotZero, slow_path->GetEntryLabel()); // Object* ref = ref_addr->AsMirrorPtr() __ MaybeUnpoisonHeapReference(ref_reg); __ Bind(slow_path->GetExitLabel()); } void CodeGeneratorX86::GenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) { DCHECK(kEmitCompilerReadBarrier); // Insert a slow path based read barrier *after* the reference load. // // If heap poisoning is enabled, the unpoisoning of the loaded // reference will be carried out by the runtime within the slow // path. // // Note that `ref` currently does not get unpoisoned (when heap // poisoning is enabled), which is alright as the `ref` argument is // not used by the artReadBarrierSlow entry point. // // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. SlowPathCode* slow_path = new (GetGraph()->GetArena()) ReadBarrierForHeapReferenceSlowPathX86(instruction, out, ref, obj, offset, index); AddSlowPath(slow_path); __ jmp(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } void CodeGeneratorX86::MaybeGenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index) { if (kEmitCompilerReadBarrier) { // Baker's read barriers shall be handled by the fast path // (CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier). DCHECK(!kUseBakerReadBarrier); // If heap poisoning is enabled, unpoisoning will be taken care of // by the runtime within the slow path. GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); } else if (kPoisonHeapReferences) { __ UnpoisonHeapReference(out.AsRegister<Register>()); } } void CodeGeneratorX86::GenerateReadBarrierForRootSlow(HInstruction* instruction, Location out, Location root) { DCHECK(kEmitCompilerReadBarrier); // Insert a slow path based read barrier *after* the GC root load. // // Note that GC roots are not affected by heap poisoning, so we do // not need to do anything special for this here. SlowPathCode* slow_path = new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathX86(instruction, out, root); AddSlowPath(slow_path); __ jmp(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); } void LocationsBuilderX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { // Nothing to do, this should be removed during prepare for register allocator. LOG(FATAL) << "Unreachable"; } void InstructionCodeGeneratorX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { // Nothing to do, this should be removed during prepare for register allocator. LOG(FATAL) << "Unreachable"; } // Simple implementation of packed switch - generate cascaded compare/jumps. void LocationsBuilderX86::VisitPackedSwitch(HPackedSwitch* switch_instr) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); } void InstructionCodeGeneratorX86::GenPackedSwitchWithCompares(Register value_reg, int32_t lower_bound, uint32_t num_entries, HBasicBlock* switch_block, HBasicBlock* default_block) { // Figure out the correct compare values and jump conditions. // Handle the first compare/branch as a special case because it might // jump to the default case. DCHECK_GT(num_entries, 2u); Condition first_condition; uint32_t index; const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors(); if (lower_bound != 0) { first_condition = kLess; __ cmpl(value_reg, Immediate(lower_bound)); __ j(first_condition, codegen_->GetLabelOf(default_block)); __ j(kEqual, codegen_->GetLabelOf(successors[0])); index = 1; } else { // Handle all the compare/jumps below. first_condition = kBelow; index = 0; } // Handle the rest of the compare/jumps. for (; index + 1 < num_entries; index += 2) { int32_t compare_to_value = lower_bound + index + 1; __ cmpl(value_reg, Immediate(compare_to_value)); // Jump to successors[index] if value < case_value[index]. __ j(first_condition, codegen_->GetLabelOf(successors[index])); // Jump to successors[index + 1] if value == case_value[index + 1]. __ j(kEqual, codegen_->GetLabelOf(successors[index + 1])); } if (index != num_entries) { // There are an odd number of entries. Handle the last one. DCHECK_EQ(index + 1, num_entries); __ cmpl(value_reg, Immediate(lower_bound + index)); __ j(kEqual, codegen_->GetLabelOf(successors[index])); } // And the default for any other value. if (!codegen_->GoesToNextBlock(switch_block, default_block)) { __ jmp(codegen_->GetLabelOf(default_block)); } } void InstructionCodeGeneratorX86::VisitPackedSwitch(HPackedSwitch* switch_instr) { int32_t lower_bound = switch_instr->GetStartValue(); uint32_t num_entries = switch_instr->GetNumEntries(); LocationSummary* locations = switch_instr->GetLocations(); Register value_reg = locations->InAt(0).AsRegister<Register>(); GenPackedSwitchWithCompares(value_reg, lower_bound, num_entries, switch_instr->GetBlock(), switch_instr->GetDefaultBlock()); } void LocationsBuilderX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); // Constant area pointer. locations->SetInAt(1, Location::RequiresRegister()); // And the temporary we need. locations->AddTemp(Location::RequiresRegister()); } void InstructionCodeGeneratorX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) { int32_t lower_bound = switch_instr->GetStartValue(); uint32_t num_entries = switch_instr->GetNumEntries(); LocationSummary* locations = switch_instr->GetLocations(); Register value_reg = locations->InAt(0).AsRegister<Register>(); HBasicBlock* default_block = switch_instr->GetDefaultBlock(); if (num_entries <= kPackedSwitchJumpTableThreshold) { GenPackedSwitchWithCompares(value_reg, lower_bound, num_entries, switch_instr->GetBlock(), default_block); return; } // Optimizing has a jump area. Register temp_reg = locations->GetTemp(0).AsRegister<Register>(); Register constant_area = locations->InAt(1).AsRegister<Register>(); // Remove the bias, if needed. if (lower_bound != 0) { __ leal(temp_reg, Address(value_reg, -lower_bound)); value_reg = temp_reg; } // Is the value in range? DCHECK_GE(num_entries, 1u); __ cmpl(value_reg, Immediate(num_entries - 1)); __ j(kAbove, codegen_->GetLabelOf(default_block)); // We are in the range of the table. // Load (target-constant_area) from the jump table, indexing by the value. __ movl(temp_reg, codegen_->LiteralCaseTable(switch_instr, constant_area, value_reg)); // Compute the actual target address by adding in constant_area. __ addl(temp_reg, constant_area); // And jump. __ jmp(temp_reg); } void LocationsBuilderX86::VisitX86ComputeBaseMethodAddress( HX86ComputeBaseMethodAddress* insn) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall); locations->SetOut(Location::RequiresRegister()); } void InstructionCodeGeneratorX86::VisitX86ComputeBaseMethodAddress( HX86ComputeBaseMethodAddress* insn) { LocationSummary* locations = insn->GetLocations(); Register reg = locations->Out().AsRegister<Register>(); // Generate call to next instruction. Label next_instruction; __ call(&next_instruction); __ Bind(&next_instruction); // Remember this offset for later use with constant area. codegen_->AddMethodAddressOffset(insn, GetAssembler()->CodeSize()); // Grab the return address off the stack. __ popl(reg); } void LocationsBuilderX86::VisitX86LoadFromConstantTable( HX86LoadFromConstantTable* insn) { LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::ConstantLocation(insn->GetConstant())); // If we don't need to be materialized, we only need the inputs to be set. if (insn->IsEmittedAtUseSite()) { return; } switch (insn->GetType()) { case Primitive::kPrimFloat: case Primitive::kPrimDouble: locations->SetOut(Location::RequiresFpuRegister()); break; case Primitive::kPrimInt: locations->SetOut(Location::RequiresRegister()); break; default: LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType(); } } void InstructionCodeGeneratorX86::VisitX86LoadFromConstantTable(HX86LoadFromConstantTable* insn) { if (insn->IsEmittedAtUseSite()) { return; } LocationSummary* locations = insn->GetLocations(); Location out = locations->Out(); Register const_area = locations->InAt(0).AsRegister<Register>(); HConstant *value = insn->GetConstant(); switch (insn->GetType()) { case Primitive::kPrimFloat: __ movss(out.AsFpuRegister<XmmRegister>(), codegen_->LiteralFloatAddress( value->AsFloatConstant()->GetValue(), insn->GetBaseMethodAddress(), const_area)); break; case Primitive::kPrimDouble: __ movsd(out.AsFpuRegister<XmmRegister>(), codegen_->LiteralDoubleAddress( value->AsDoubleConstant()->GetValue(), insn->GetBaseMethodAddress(), const_area)); break; case Primitive::kPrimInt: __ movl(out.AsRegister<Register>(), codegen_->LiteralInt32Address( value->AsIntConstant()->GetValue(), insn->GetBaseMethodAddress(), const_area)); break; default: LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType(); } } /** * Class to handle late fixup of offsets into constant area. */ class RIPFixup : public AssemblerFixup, public ArenaObject<kArenaAllocCodeGenerator> { public: RIPFixup(CodeGeneratorX86& codegen, HX86ComputeBaseMethodAddress* base_method_address, size_t offset) : codegen_(&codegen), base_method_address_(base_method_address), offset_into_constant_area_(offset) {} protected: void SetOffset(size_t offset) { offset_into_constant_area_ = offset; } CodeGeneratorX86* codegen_; HX86ComputeBaseMethodAddress* base_method_address_; private: void Process(const MemoryRegion& region, int pos) OVERRIDE { // Patch the correct offset for the instruction. The place to patch is the // last 4 bytes of the instruction. // The value to patch is the distance from the offset in the constant area // from the address computed by the HX86ComputeBaseMethodAddress instruction. int32_t constant_offset = codegen_->ConstantAreaStart() + offset_into_constant_area_; int32_t relative_position = constant_offset - codegen_->GetMethodAddressOffset(base_method_address_); // Patch in the right value. region.StoreUnaligned<int32_t>(pos - 4, relative_position); } // Location in constant area that the fixup refers to. int32_t offset_into_constant_area_; }; /** * Class to handle late fixup of offsets to a jump table that will be created in the * constant area. */ class JumpTableRIPFixup : public RIPFixup { public: JumpTableRIPFixup(CodeGeneratorX86& codegen, HX86PackedSwitch* switch_instr) : RIPFixup(codegen, switch_instr->GetBaseMethodAddress(), static_cast<size_t>(-1)), switch_instr_(switch_instr) {} void CreateJumpTable() { X86Assembler* assembler = codegen_->GetAssembler(); // Ensure that the reference to the jump table has the correct offset. const int32_t offset_in_constant_table = assembler->ConstantAreaSize(); SetOffset(offset_in_constant_table); // The label values in the jump table are computed relative to the // instruction addressing the constant area. const int32_t relative_offset = codegen_->GetMethodAddressOffset(base_method_address_); // Populate the jump table with the correct values for the jump table. int32_t num_entries = switch_instr_->GetNumEntries(); HBasicBlock* block = switch_instr_->GetBlock(); const ArenaVector<HBasicBlock*>& successors = block->GetSuccessors(); // The value that we want is the target offset - the position of the table. for (int32_t i = 0; i < num_entries; i++) { HBasicBlock* b = successors[i]; Label* l = codegen_->GetLabelOf(b); DCHECK(l->IsBound()); int32_t offset_to_block = l->Position() - relative_offset; assembler->AppendInt32(offset_to_block); } } private: const HX86PackedSwitch* switch_instr_; }; void CodeGeneratorX86::Finalize(CodeAllocator* allocator) { // Generate the constant area if needed. X86Assembler* assembler = GetAssembler(); if (!assembler->IsConstantAreaEmpty() || !fixups_to_jump_tables_.empty()) { // Align to 4 byte boundary to reduce cache misses, as the data is 4 and 8 // byte values. assembler->Align(4, 0); constant_area_start_ = assembler->CodeSize(); // Populate any jump tables. for (auto jump_table : fixups_to_jump_tables_) { jump_table->CreateJumpTable(); } // And now add the constant area to the generated code. assembler->AddConstantArea(); } // And finish up. CodeGenerator::Finalize(allocator); } Address CodeGeneratorX86::LiteralDoubleAddress(double v, HX86ComputeBaseMethodAddress* method_base, Register reg) { AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, method_base, __ AddDouble(v)); return Address(reg, kDummy32BitOffset, fixup); } Address CodeGeneratorX86::LiteralFloatAddress(float v, HX86ComputeBaseMethodAddress* method_base, Register reg) { AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, method_base, __ AddFloat(v)); return Address(reg, kDummy32BitOffset, fixup); } Address CodeGeneratorX86::LiteralInt32Address(int32_t v, HX86ComputeBaseMethodAddress* method_base, Register reg) { AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, method_base, __ AddInt32(v)); return Address(reg, kDummy32BitOffset, fixup); } Address CodeGeneratorX86::LiteralInt64Address(int64_t v, HX86ComputeBaseMethodAddress* method_base, Register reg) { AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, method_base, __ AddInt64(v)); return Address(reg, kDummy32BitOffset, fixup); } void CodeGeneratorX86::Load32BitValue(Register dest, int32_t value) { if (value == 0) { __ xorl(dest, dest); } else { __ movl(dest, Immediate(value)); } } void CodeGeneratorX86::Compare32BitValue(Register dest, int32_t value) { if (value == 0) { __ testl(dest, dest); } else { __ cmpl(dest, Immediate(value)); } } void CodeGeneratorX86::GenerateIntCompare(Location lhs, Location rhs) { Register lhs_reg = lhs.AsRegister<Register>(); GenerateIntCompare(lhs_reg, rhs); } void CodeGeneratorX86::GenerateIntCompare(Register lhs, Location rhs) { if (rhs.IsConstant()) { int32_t value = CodeGenerator::GetInt32ValueOf(rhs.GetConstant()); Compare32BitValue(lhs, value); } else if (rhs.IsStackSlot()) { __ cmpl(lhs, Address(ESP, rhs.GetStackIndex())); } else { __ cmpl(lhs, rhs.AsRegister<Register>()); } } Address CodeGeneratorX86::ArrayAddress(Register obj, Location index, ScaleFactor scale, uint32_t data_offset) { return index.IsConstant() ? Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << scale) + data_offset) : Address(obj, index.AsRegister<Register>(), scale, data_offset); } Address CodeGeneratorX86::LiteralCaseTable(HX86PackedSwitch* switch_instr, Register reg, Register value) { // Create a fixup to be used to create and address the jump table. JumpTableRIPFixup* table_fixup = new (GetGraph()->GetArena()) JumpTableRIPFixup(*this, switch_instr); // We have to populate the jump tables. fixups_to_jump_tables_.push_back(table_fixup); // We want a scaled address, as we are extracting the correct offset from the table. return Address(reg, value, TIMES_4, kDummy32BitOffset, table_fixup); } // TODO: target as memory. void CodeGeneratorX86::MoveFromReturnRegister(Location target, Primitive::Type type) { if (!target.IsValid()) { DCHECK_EQ(type, Primitive::kPrimVoid); return; } DCHECK_NE(type, Primitive::kPrimVoid); Location return_loc = InvokeDexCallingConventionVisitorX86().GetReturnLocation(type); if (target.Equals(return_loc)) { return; } // TODO: Consider pairs in the parallel move resolver, then this could be nicely merged // with the else branch. if (type == Primitive::kPrimLong) { HParallelMove parallel_move(GetGraph()->GetArena()); parallel_move.AddMove(return_loc.ToLow(), target.ToLow(), Primitive::kPrimInt, nullptr); parallel_move.AddMove(return_loc.ToHigh(), target.ToHigh(), Primitive::kPrimInt, nullptr); GetMoveResolver()->EmitNativeCode(¶llel_move); } else { // Let the parallel move resolver take care of all of this. HParallelMove parallel_move(GetGraph()->GetArena()); parallel_move.AddMove(return_loc, target, type, nullptr); GetMoveResolver()->EmitNativeCode(¶llel_move); } } void CodeGeneratorX86::PatchJitRootUse(uint8_t* code, const uint8_t* roots_data, const PatchInfo<Label>& info, uint64_t index_in_table) const { uint32_t code_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment; uintptr_t address = reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>); typedef __attribute__((__aligned__(1))) uint32_t unaligned_uint32_t; reinterpret_cast<unaligned_uint32_t*>(code + code_offset)[0] = dchecked_integral_cast<uint32_t>(address); } void CodeGeneratorX86::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) { for (const PatchInfo<Label>& info : jit_string_patches_) { const auto& it = jit_string_roots_.find( StringReference(&info.dex_file, dex::StringIndex(info.index))); DCHECK(it != jit_string_roots_.end()); PatchJitRootUse(code, roots_data, info, it->second); } for (const PatchInfo<Label>& info : jit_class_patches_) { const auto& it = jit_class_roots_.find( TypeReference(&info.dex_file, dex::TypeIndex(info.index))); DCHECK(it != jit_class_roots_.end()); PatchJitRootUse(code, roots_data, info, it->second); } } #undef __ } // namespace x86 } // namespace art