/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <regex> #include "base/arena_allocator.h" #include "builder.h" #include "induction_var_analysis.h" #include "nodes.h" #include "optimizing_unit_test.h" namespace art { /** * Fixture class for the InductionVarAnalysis tests. */ class InductionVarAnalysisTest : public CommonCompilerTest { public: InductionVarAnalysisTest() : pool_(), allocator_(&pool_), iva_(nullptr), entry_(nullptr), return_(nullptr), exit_(nullptr), parameter_(nullptr), constant0_(nullptr), constant1_(nullptr), constant2_(nullptr), constant7_(nullptr), constant100_(nullptr), constantm1_(nullptr), float_constant0_(nullptr) { graph_ = CreateGraph(&allocator_); } ~InductionVarAnalysisTest() { } // Builds single for-loop at depth d. void BuildForLoop(int d, int n) { ASSERT_LT(d, n); loop_preheader_[d] = new (&allocator_) HBasicBlock(graph_); graph_->AddBlock(loop_preheader_[d]); loop_header_[d] = new (&allocator_) HBasicBlock(graph_); graph_->AddBlock(loop_header_[d]); loop_preheader_[d]->AddSuccessor(loop_header_[d]); if (d < (n - 1)) { BuildForLoop(d + 1, n); } loop_body_[d] = new (&allocator_) HBasicBlock(graph_); graph_->AddBlock(loop_body_[d]); loop_body_[d]->AddSuccessor(loop_header_[d]); if (d < (n - 1)) { loop_header_[d]->AddSuccessor(loop_preheader_[d + 1]); loop_header_[d + 1]->AddSuccessor(loop_body_[d]); } else { loop_header_[d]->AddSuccessor(loop_body_[d]); } } // Builds a n-nested loop in CFG where each loop at depth 0 <= d < n // is defined as "for (int i_d = 0; i_d < 100; i_d++)". Tests can further // populate the loop with instructions to set up interesting scenarios. void BuildLoopNest(int n) { ASSERT_LE(n, 10); graph_->SetNumberOfVRegs(n + 3); // Build basic blocks with entry, nested loop, exit. entry_ = new (&allocator_) HBasicBlock(graph_); graph_->AddBlock(entry_); BuildForLoop(0, n); return_ = new (&allocator_) HBasicBlock(graph_); graph_->AddBlock(return_); exit_ = new (&allocator_) HBasicBlock(graph_); graph_->AddBlock(exit_); entry_->AddSuccessor(loop_preheader_[0]); loop_header_[0]->AddSuccessor(return_); return_->AddSuccessor(exit_); graph_->SetEntryBlock(entry_); graph_->SetExitBlock(exit_); // Provide entry and exit instructions. parameter_ = new (&allocator_) HParameterValue( graph_->GetDexFile(), dex::TypeIndex(0), 0, Primitive::kPrimNot, true); entry_->AddInstruction(parameter_); constant0_ = graph_->GetIntConstant(0); constant1_ = graph_->GetIntConstant(1); constant2_ = graph_->GetIntConstant(2); constant7_ = graph_->GetIntConstant(7); constant100_ = graph_->GetIntConstant(100); constantm1_ = graph_->GetIntConstant(-1); float_constant0_ = graph_->GetFloatConstant(0.0f); return_->AddInstruction(new (&allocator_) HReturnVoid()); exit_->AddInstruction(new (&allocator_) HExit()); // Provide loop instructions. for (int d = 0; d < n; d++) { basic_[d] = new (&allocator_) HPhi(&allocator_, d, 0, Primitive::kPrimInt); loop_preheader_[d]->AddInstruction(new (&allocator_) HGoto()); loop_header_[d]->AddPhi(basic_[d]); HInstruction* compare = new (&allocator_) HLessThan(basic_[d], constant100_); loop_header_[d]->AddInstruction(compare); loop_header_[d]->AddInstruction(new (&allocator_) HIf(compare)); increment_[d] = new (&allocator_) HAdd(Primitive::kPrimInt, basic_[d], constant1_); loop_body_[d]->AddInstruction(increment_[d]); loop_body_[d]->AddInstruction(new (&allocator_) HGoto()); basic_[d]->AddInput(constant0_); basic_[d]->AddInput(increment_[d]); } } // Builds if-statement at depth d. HPhi* BuildIf(int d, HBasicBlock** ifT, HBasicBlock** ifF) { HBasicBlock* cond = new (&allocator_) HBasicBlock(graph_); HBasicBlock* ifTrue = new (&allocator_) HBasicBlock(graph_); HBasicBlock* ifFalse = new (&allocator_) HBasicBlock(graph_); graph_->AddBlock(cond); graph_->AddBlock(ifTrue); graph_->AddBlock(ifFalse); // Conditional split. loop_header_[d]->ReplaceSuccessor(loop_body_[d], cond); cond->AddSuccessor(ifTrue); cond->AddSuccessor(ifFalse); ifTrue->AddSuccessor(loop_body_[d]); ifFalse->AddSuccessor(loop_body_[d]); cond->AddInstruction(new (&allocator_) HIf(parameter_)); *ifT = ifTrue; *ifF = ifFalse; HPhi* select_phi = new (&allocator_) HPhi(&allocator_, -1, 0, Primitive::kPrimInt); loop_body_[d]->AddPhi(select_phi); return select_phi; } // Inserts instruction right before increment at depth d. HInstruction* InsertInstruction(HInstruction* instruction, int d) { loop_body_[d]->InsertInstructionBefore(instruction, increment_[d]); return instruction; } // Inserts a phi to loop header at depth d and returns it. HPhi* InsertLoopPhi(int vreg, int d) { HPhi* phi = new (&allocator_) HPhi(&allocator_, vreg, 0, Primitive::kPrimInt); loop_header_[d]->AddPhi(phi); return phi; } // Inserts an array store with given `subscript` at depth d to // enable tests to inspect the computed induction at that point easily. HInstruction* InsertArrayStore(HInstruction* subscript, int d) { // ArraySet is given a float value in order to avoid SsaBuilder typing // it from the array's non-existent reference type info. return InsertInstruction(new (&allocator_) HArraySet( parameter_, subscript, float_constant0_, Primitive::kPrimFloat, 0), d); } // Returns induction information of instruction in loop at depth d. std::string GetInductionInfo(HInstruction* instruction, int d) { return HInductionVarAnalysis::InductionToString( iva_->LookupInfo(loop_body_[d]->GetLoopInformation(), instruction)); } // Returns induction information of the trip-count of loop at depth d. std::string GetTripCount(int d) { HInstruction* control = loop_header_[d]->GetLastInstruction(); DCHECK(control->IsIf()); return GetInductionInfo(control, d); } // Returns true if instructions have identical induction. bool HaveSameInduction(HInstruction* instruction1, HInstruction* instruction2) { return HInductionVarAnalysis::InductionEqual( iva_->LookupInfo(loop_body_[0]->GetLoopInformation(), instruction1), iva_->LookupInfo(loop_body_[0]->GetLoopInformation(), instruction2)); } // Returns true for narrowing linear induction. bool IsNarrowingLinear(HInstruction* instruction) { return HInductionVarAnalysis::IsNarrowingLinear( iva_->LookupInfo(loop_body_[0]->GetLoopInformation(), instruction)); } // Performs InductionVarAnalysis (after proper set up). void PerformInductionVarAnalysis() { graph_->BuildDominatorTree(); iva_ = new (&allocator_) HInductionVarAnalysis(graph_); iva_->Run(); } // General building fields. ArenaPool pool_; ArenaAllocator allocator_; HGraph* graph_; HInductionVarAnalysis* iva_; // Fixed basic blocks and instructions. HBasicBlock* entry_; HBasicBlock* return_; HBasicBlock* exit_; HInstruction* parameter_; // "this" HInstruction* constant0_; HInstruction* constant1_; HInstruction* constant2_; HInstruction* constant7_; HInstruction* constant100_; HInstruction* constantm1_; HInstruction* float_constant0_; // Loop specifics. HBasicBlock* loop_preheader_[10]; HBasicBlock* loop_header_[10]; HBasicBlock* loop_body_[10]; HInstruction* increment_[10]; HPhi* basic_[10]; // "vreg_d", the "i_d" }; // // The actual InductionVarAnalysis tests. // TEST_F(InductionVarAnalysisTest, ProperLoopSetup) { // Setup: // for (int i_0 = 0; i_0 < 100; i_0++) { // .. // for (int i_9 = 0; i_9 < 100; i_9++) { // } // .. // } BuildLoopNest(10); graph_->BuildDominatorTree(); ASSERT_EQ(entry_->GetLoopInformation(), nullptr); for (int d = 0; d < 1; d++) { ASSERT_EQ(loop_preheader_[d]->GetLoopInformation(), (d == 0) ? nullptr : loop_header_[d - 1]->GetLoopInformation()); ASSERT_NE(loop_header_[d]->GetLoopInformation(), nullptr); ASSERT_NE(loop_body_[d]->GetLoopInformation(), nullptr); ASSERT_EQ(loop_header_[d]->GetLoopInformation(), loop_body_[d]->GetLoopInformation()); } ASSERT_EQ(exit_->GetLoopInformation(), nullptr); } TEST_F(InductionVarAnalysisTest, FindBasicInduction) { // Setup: // for (int i = 0; i < 100; i++) { // a[i] = 0; // } BuildLoopNest(1); HInstruction* store = InsertArrayStore(basic_[0], 0); PerformInductionVarAnalysis(); EXPECT_STREQ("((1) * i + (0)):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); EXPECT_STREQ("((1) * i + (1)):PrimInt", GetInductionInfo(increment_[0], 0).c_str()); // Offset matters! EXPECT_FALSE(HaveSameInduction(store->InputAt(1), increment_[0])); // Trip-count. EXPECT_STREQ("((100) (TC-loop) ((0) < (100)))", GetTripCount(0).c_str()); } TEST_F(InductionVarAnalysisTest, FindDerivedInduction) { // Setup: // for (int i = 0; i < 100; i++) { // t = 100 + i; // t = 100 - i; // t = 100 * i; // t = i << 1; // t = - i; // } BuildLoopNest(1); HInstruction* add = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, constant100_, basic_[0]), 0); HInstruction* sub = InsertInstruction( new (&allocator_) HSub(Primitive::kPrimInt, constant100_, basic_[0]), 0); HInstruction* mul = InsertInstruction( new (&allocator_) HMul(Primitive::kPrimInt, constant100_, basic_[0]), 0); HInstruction* shl = InsertInstruction( new (&allocator_) HShl(Primitive::kPrimInt, basic_[0], constant1_), 0); HInstruction* neg = InsertInstruction( new (&allocator_) HNeg(Primitive::kPrimInt, basic_[0]), 0); PerformInductionVarAnalysis(); EXPECT_STREQ("((1) * i + (100)):PrimInt", GetInductionInfo(add, 0).c_str()); EXPECT_STREQ("(( - (1)) * i + (100)):PrimInt", GetInductionInfo(sub, 0).c_str()); EXPECT_STREQ("((100) * i + (0)):PrimInt", GetInductionInfo(mul, 0).c_str()); EXPECT_STREQ("((2) * i + (0)):PrimInt", GetInductionInfo(shl, 0).c_str()); EXPECT_STREQ("(( - (1)) * i + (0)):PrimInt", GetInductionInfo(neg, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindChainInduction) { // Setup: // k = 0; // for (int i = 0; i < 100; i++) { // k = k + 100; // a[k] = 0; // k = k - 1; // a[k] = 0; // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant0_); HInstruction* add = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, k_header, constant100_), 0); HInstruction* store1 = InsertArrayStore(add, 0); HInstruction* sub = InsertInstruction( new (&allocator_) HSub(Primitive::kPrimInt, add, constant1_), 0); HInstruction* store2 = InsertArrayStore(sub, 0); k_header->AddInput(sub); PerformInductionVarAnalysis(); EXPECT_STREQ("(((100) - (1)) * i + (0)):PrimInt", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("(((100) - (1)) * i + (100)):PrimInt", GetInductionInfo(store1->InputAt(1), 0).c_str()); EXPECT_STREQ("(((100) - (1)) * i + ((100) - (1))):PrimInt", GetInductionInfo(store2->InputAt(1), 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindTwoWayBasicInduction) { // Setup: // k = 0; // for (int i = 0; i < 100; i++) { // if () k = k + 1; // else k = k + 1; // a[k] = 0; // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant0_); HBasicBlock* ifTrue; HBasicBlock* ifFalse; HPhi* k_body = BuildIf(0, &ifTrue, &ifFalse); // True-branch. HInstruction* inc1 = new (&allocator_) HAdd(Primitive::kPrimInt, k_header, constant1_); ifTrue->AddInstruction(inc1); k_body->AddInput(inc1); // False-branch. HInstruction* inc2 = new (&allocator_) HAdd(Primitive::kPrimInt, k_header, constant1_); ifFalse->AddInstruction(inc2); k_body->AddInput(inc2); // Merge over a phi. HInstruction* store = InsertArrayStore(k_body, 0); k_header->AddInput(k_body); PerformInductionVarAnalysis(); EXPECT_STREQ("((1) * i + (0)):PrimInt", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("((1) * i + (1)):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); // Both increments get same induction. EXPECT_TRUE(HaveSameInduction(store->InputAt(1), inc1)); EXPECT_TRUE(HaveSameInduction(store->InputAt(1), inc2)); } TEST_F(InductionVarAnalysisTest, FindTwoWayDerivedInduction) { // Setup: // for (int i = 0; i < 100; i++) { // if () k = i + 1; // else k = i + 1; // a[k] = 0; // } BuildLoopNest(1); HBasicBlock* ifTrue; HBasicBlock* ifFalse; HPhi* k = BuildIf(0, &ifTrue, &ifFalse); // True-branch. HInstruction* inc1 = new (&allocator_) HAdd(Primitive::kPrimInt, basic_[0], constant1_); ifTrue->AddInstruction(inc1); k->AddInput(inc1); // False-branch. HInstruction* inc2 = new (&allocator_) HAdd(Primitive::kPrimInt, basic_[0], constant1_); ifFalse->AddInstruction(inc2); k->AddInput(inc2); // Merge over a phi. HInstruction* store = InsertArrayStore(k, 0); PerformInductionVarAnalysis(); EXPECT_STREQ("((1) * i + (1)):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); // Both increments get same induction. EXPECT_TRUE(HaveSameInduction(store->InputAt(1), inc1)); EXPECT_TRUE(HaveSameInduction(store->InputAt(1), inc2)); } TEST_F(InductionVarAnalysisTest, AddLinear) { // Setup: // for (int i = 0; i < 100; i++) { // t1 = i + i; // t2 = 7 + i; // t3 = t1 + t2; // } BuildLoopNest(1); HInstruction* add1 = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, basic_[0], basic_[0]), 0); HInstruction* add2 = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, constant7_, basic_[0]), 0); HInstruction* add3 = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, add1, add2), 0); PerformInductionVarAnalysis(); EXPECT_STREQ("((1) * i + (0)):PrimInt", GetInductionInfo(basic_[0], 0).c_str()); EXPECT_STREQ("(((1) + (1)) * i + (0)):PrimInt", GetInductionInfo(add1, 0).c_str()); EXPECT_STREQ("((1) * i + (7)):PrimInt", GetInductionInfo(add2, 0).c_str()); EXPECT_STREQ("((((1) + (1)) + (1)) * i + (7)):PrimInt", GetInductionInfo(add3, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindPolynomialInduction) { // Setup: // k = 1; // for (int i = 0; i < 100; i++) { // t = i * 2; // t = 100 + t // k = t + k; // polynomial // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant1_); HInstruction* mul = InsertInstruction( new (&allocator_) HMul(Primitive::kPrimInt, basic_[0], constant2_), 0); HInstruction* add = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, constant100_, mul), 0); HInstruction* pol = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, add, k_header), 0); k_header->AddInput(pol); PerformInductionVarAnalysis(); // Note, only the phi in the cycle and the base linear induction are classified. EXPECT_STREQ("poly(sum_lt(((2) * i + (100)):PrimInt) + (1)):PrimInt", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("((2) * i + (100)):PrimInt", GetInductionInfo(add, 0).c_str()); EXPECT_STREQ("", GetInductionInfo(pol, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindPolynomialInductionAndDerived) { // Setup: // k = 1; // for (int i = 0; i < 100; i++) { // t = k + 100; // t = k - 1; // t = - t // t = k * 2; // t = k << 2; // k = k + i; // polynomial // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant1_); HInstruction* add = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, k_header, constant100_), 0); HInstruction* sub = InsertInstruction( new (&allocator_) HSub(Primitive::kPrimInt, k_header, constant1_), 0); HInstruction* neg = InsertInstruction( new (&allocator_) HNeg(Primitive::kPrimInt, sub), 0); HInstruction* mul = InsertInstruction( new (&allocator_) HMul(Primitive::kPrimInt, k_header, constant2_), 0); HInstruction* shl = InsertInstruction( new (&allocator_) HShl(Primitive::kPrimInt, k_header, constant2_), 0); HInstruction* pol = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, k_header, basic_[0]), 0); k_header->AddInput(pol); PerformInductionVarAnalysis(); // Note, only the phi in the cycle and derived are classified. EXPECT_STREQ("poly(sum_lt(((1) * i + (0)):PrimInt) + (1)):PrimInt", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("poly(sum_lt(((1) * i + (0)):PrimInt) + ((1) + (100))):PrimInt", GetInductionInfo(add, 0).c_str()); EXPECT_STREQ("poly(sum_lt(((1) * i + (0)):PrimInt) + ((1) - (1))):PrimInt", GetInductionInfo(sub, 0).c_str()); EXPECT_STREQ("poly(sum_lt((( - (1)) * i + (0)):PrimInt) + ((1) - (1))):PrimInt", GetInductionInfo(neg, 0).c_str()); EXPECT_STREQ("poly(sum_lt(((2) * i + (0)):PrimInt) + (2)):PrimInt", GetInductionInfo(mul, 0).c_str()); EXPECT_STREQ("poly(sum_lt(((4) * i + (0)):PrimInt) + (4)):PrimInt", GetInductionInfo(shl, 0).c_str()); EXPECT_STREQ("", GetInductionInfo(pol, 0).c_str()); } TEST_F(InductionVarAnalysisTest, AddPolynomial) { // Setup: // k = 7; // for (int i = 0; i < 100; i++) { // t = k + k; // t = t + k; // k = k + i // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant7_); HInstruction* add1 = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, k_header, k_header), 0); HInstruction* add2 = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, add1, k_header), 0); HInstruction* add3 = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, k_header, basic_[0]), 0); k_header->AddInput(add3); PerformInductionVarAnalysis(); // Note, only the phi in the cycle and added-derived are classified. EXPECT_STREQ("poly(sum_lt(((1) * i + (0)):PrimInt) + (7)):PrimInt", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("poly(sum_lt((((1) + (1)) * i + (0)):PrimInt) + ((7) + (7))):PrimInt", GetInductionInfo(add1, 0).c_str()); EXPECT_STREQ( "poly(sum_lt(((((1) + (1)) + (1)) * i + (0)):PrimInt) + (((7) + (7)) + (7))):PrimInt", GetInductionInfo(add2, 0).c_str()); EXPECT_STREQ("", GetInductionInfo(add3, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindGeometricMulInduction) { // Setup: // k = 1; // for (int i = 0; i < 100; i++) { // k = k * 100; // geometric (x 100) // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant1_); HInstruction* mul = InsertInstruction( new (&allocator_) HMul(Primitive::kPrimInt, k_header, constant100_), 0); k_header->AddInput(mul); PerformInductionVarAnalysis(); EXPECT_STREQ("geo((1) * 100 ^ i + (0)):PrimInt", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("geo((100) * 100 ^ i + (0)):PrimInt", GetInductionInfo(mul, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindGeometricShlInductionAndDerived) { // Setup: // k = 1; // for (int i = 0; i < 100; i++) { // t = k + 1; // k = k << 1; // geometric (x 2) // t = k + 100; // t = k - 1; // t = - t; // t = k * 2; // t = k << 2; // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant1_); HInstruction* add1 = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, k_header, constant1_), 0); HInstruction* shl1 = InsertInstruction( new (&allocator_) HShl(Primitive::kPrimInt, k_header, constant1_), 0); HInstruction* add2 = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, shl1, constant100_), 0); HInstruction* sub = InsertInstruction( new (&allocator_) HSub(Primitive::kPrimInt, shl1, constant1_), 0); HInstruction* neg = InsertInstruction( new (&allocator_) HNeg(Primitive::kPrimInt, sub), 0); HInstruction* mul = InsertInstruction( new (&allocator_) HMul(Primitive::kPrimInt, shl1, constant2_), 0); HInstruction* shl2 = InsertInstruction( new (&allocator_) HShl(Primitive::kPrimInt, shl1, constant2_), 0); k_header->AddInput(shl1); PerformInductionVarAnalysis(); EXPECT_STREQ("geo((1) * 2 ^ i + (0)):PrimInt", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("geo((1) * 2 ^ i + (1)):PrimInt", GetInductionInfo(add1, 0).c_str()); EXPECT_STREQ("geo((2) * 2 ^ i + (0)):PrimInt", GetInductionInfo(shl1, 0).c_str()); EXPECT_STREQ("geo((2) * 2 ^ i + (100)):PrimInt", GetInductionInfo(add2, 0).c_str()); EXPECT_STREQ("geo((2) * 2 ^ i + ((0) - (1))):PrimInt", GetInductionInfo(sub, 0).c_str()); EXPECT_STREQ("geo(( - (2)) * 2 ^ i + ( - ((0) - (1)))):PrimInt", GetInductionInfo(neg, 0).c_str()); EXPECT_STREQ("geo(((2) * (2)) * 2 ^ i + (0)):PrimInt", GetInductionInfo(mul, 0).c_str()); EXPECT_STREQ("geo(((2) * (4)) * 2 ^ i + (0)):PrimInt", GetInductionInfo(shl2, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindGeometricDivInductionAndDerived) { // Setup: // k = 1; // for (int i = 0; i < 100; i++) { // t = k + 100; // t = k - 1; // t = - t // t = k * 2; // t = k << 2; // k = k / 100; // geometric (/ 100) // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant1_); HInstruction* add = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, k_header, constant100_), 0); HInstruction* sub = InsertInstruction( new (&allocator_) HSub(Primitive::kPrimInt, k_header, constant1_), 0); HInstruction* neg = InsertInstruction( new (&allocator_) HNeg(Primitive::kPrimInt, sub), 0); HInstruction* mul = InsertInstruction( new (&allocator_) HMul(Primitive::kPrimInt, k_header, constant2_), 0); HInstruction* shl = InsertInstruction( new (&allocator_) HShl(Primitive::kPrimInt, k_header, constant2_), 0); HInstruction* div = InsertInstruction( new (&allocator_) HDiv(Primitive::kPrimInt, k_header, constant100_, kNoDexPc), 0); k_header->AddInput(div); PerformInductionVarAnalysis(); // Note, only the phi in the cycle and direct additive derived are classified. EXPECT_STREQ("geo((1) * 100 ^ -i + (0)):PrimInt", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("geo((1) * 100 ^ -i + (100)):PrimInt", GetInductionInfo(add, 0).c_str()); EXPECT_STREQ("geo((1) * 100 ^ -i + ((0) - (1))):PrimInt", GetInductionInfo(sub, 0).c_str()); EXPECT_STREQ("", GetInductionInfo(neg, 0).c_str()); EXPECT_STREQ("", GetInductionInfo(mul, 0).c_str()); EXPECT_STREQ("", GetInductionInfo(shl, 0).c_str()); EXPECT_STREQ("", GetInductionInfo(div, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindGeometricShrInduction) { // Setup: // k = 100; // for (int i = 0; i < 100; i++) { // k = k >> 1; // geometric (/ 2) // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant100_); HInstruction* shr = InsertInstruction( new (&allocator_) HShr(Primitive::kPrimInt, k_header, constant1_), 0); k_header->AddInput(shr); PerformInductionVarAnalysis(); // Note, only the phi in the cycle is classified. EXPECT_STREQ("geo((100) * 2 ^ -i + (0)):PrimInt", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("", GetInductionInfo(shr, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindNotGeometricShrInduction) { // Setup: // k = -1; // for (int i = 0; i < 100; i++) { // k = k >> 1; // initial value is negative // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constantm1_); HInstruction* shr = InsertInstruction( new (&allocator_) HShr(Primitive::kPrimInt, k_header, constant1_), 0); k_header->AddInput(shr); PerformInductionVarAnalysis(); EXPECT_STREQ("", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("", GetInductionInfo(shr, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindRemWrapAroundInductionAndDerived) { // Setup: // k = 100; // for (int i = 0; i < 100; i++) { // t = k + 100; // t = k - 1; // t = -t // t = k * 2; // t = k << 2; // k = k % 7; // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant100_); HInstruction* add = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, k_header, constant100_), 0); HInstruction* sub = InsertInstruction( new (&allocator_) HSub(Primitive::kPrimInt, k_header, constant1_), 0); HInstruction* neg = InsertInstruction( new (&allocator_) HNeg(Primitive::kPrimInt, sub), 0); HInstruction* mul = InsertInstruction( new (&allocator_) HMul(Primitive::kPrimInt, k_header, constant2_), 0); HInstruction* shl = InsertInstruction( new (&allocator_) HShl(Primitive::kPrimInt, k_header, constant2_), 0); HInstruction* rem = InsertInstruction( new (&allocator_) HRem(Primitive::kPrimInt, k_header, constant7_, kNoDexPc), 0); k_header->AddInput(rem); PerformInductionVarAnalysis(); // Note, only the phi in the cycle and derived are classified. EXPECT_STREQ("wrap((100), ((100) % (7))):PrimInt", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("wrap(((100) + (100)), (((100) % (7)) + (100))):PrimInt", GetInductionInfo(add, 0).c_str()); EXPECT_STREQ("wrap(((100) - (1)), (((100) % (7)) - (1))):PrimInt", GetInductionInfo(sub, 0).c_str()); EXPECT_STREQ("wrap(( - ((100) - (1))), ( - (((100) % (7)) - (1)))):PrimInt", GetInductionInfo(neg, 0).c_str()); EXPECT_STREQ("wrap(((100) * (2)), (((100) % (7)) * (2))):PrimInt", GetInductionInfo(mul, 0).c_str()); EXPECT_STREQ("wrap(((100) * (4)), (((100) % (7)) * (4))):PrimInt", GetInductionInfo(shl, 0).c_str()); EXPECT_STREQ("", GetInductionInfo(rem, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindFirstOrderWrapAroundInduction) { // Setup: // k = 0; // for (int i = 0; i < 100; i++) { // a[k] = 0; // k = 100 - i; // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant0_); HInstruction* store = InsertArrayStore(k_header, 0); HInstruction* sub = InsertInstruction( new (&allocator_) HSub(Primitive::kPrimInt, constant100_, basic_[0]), 0); k_header->AddInput(sub); PerformInductionVarAnalysis(); EXPECT_STREQ("wrap((0), (( - (1)) * i + (100)):PrimInt):PrimInt", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("wrap((0), (( - (1)) * i + (100)):PrimInt):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); EXPECT_STREQ("(( - (1)) * i + (100)):PrimInt", GetInductionInfo(sub, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindSecondOrderWrapAroundInduction) { // Setup: // k = 0; // t = 100; // for (int i = 0; i < 100; i++) { // a[k] = 0; // k = t; // t = 100 - i; // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant0_); HPhi* t = InsertLoopPhi(1, 0); t->AddInput(constant100_); HInstruction* store = InsertArrayStore(k_header, 0); k_header->AddInput(t); HInstruction* sub = InsertInstruction( new (&allocator_) HSub(Primitive::kPrimInt, constant100_, basic_[0], 0), 0); t->AddInput(sub); PerformInductionVarAnalysis(); EXPECT_STREQ("wrap((0), wrap((100), (( - (1)) * i + (100)):PrimInt):PrimInt):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindWrapAroundDerivedInduction) { // Setup: // k = 0; // for (int i = 0; i < 100; i++) { // t = k + 100; // t = k - 100; // t = k * 100; // t = k << 1; // t = - k; // k = i << 1; // t = - k; // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant0_); HInstruction* add = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, k_header, constant100_), 0); HInstruction* sub = InsertInstruction( new (&allocator_) HSub(Primitive::kPrimInt, k_header, constant100_), 0); HInstruction* mul = InsertInstruction( new (&allocator_) HMul(Primitive::kPrimInt, k_header, constant100_), 0); HInstruction* shl1 = InsertInstruction( new (&allocator_) HShl(Primitive::kPrimInt, k_header, constant1_), 0); HInstruction* neg1 = InsertInstruction( new (&allocator_) HNeg(Primitive::kPrimInt, k_header), 0); HInstruction* shl2 = InsertInstruction( new (&allocator_) HShl(Primitive::kPrimInt, basic_[0], constant1_), 0); HInstruction* neg2 = InsertInstruction( new (&allocator_) HNeg(Primitive::kPrimInt, shl2), 0); k_header->AddInput(shl2); PerformInductionVarAnalysis(); EXPECT_STREQ("wrap((100), ((2) * i + (100)):PrimInt):PrimInt", GetInductionInfo(add, 0).c_str()); EXPECT_STREQ("wrap(((0) - (100)), ((2) * i + ((0) - (100))):PrimInt):PrimInt", GetInductionInfo(sub, 0).c_str()); EXPECT_STREQ("wrap((0), (((2) * (100)) * i + (0)):PrimInt):PrimInt", GetInductionInfo(mul, 0).c_str()); EXPECT_STREQ("wrap((0), (((2) * (2)) * i + (0)):PrimInt):PrimInt", GetInductionInfo(shl1, 0).c_str()); EXPECT_STREQ("wrap((0), (( - (2)) * i + (0)):PrimInt):PrimInt", GetInductionInfo(neg1, 0).c_str()); EXPECT_STREQ("((2) * i + (0)):PrimInt", GetInductionInfo(shl2, 0).c_str()); EXPECT_STREQ("(( - (2)) * i + (0)):PrimInt", GetInductionInfo(neg2, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindPeriodicInduction) { // Setup: // k = 0; // t = 100; // for (int i = 0; i < 100; i++) { // a[k] = 0; // a[t] = 0; // // Swap t <-> k. // d = t; // t = k; // k = d; // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant0_); HPhi* t = InsertLoopPhi(1, 0); t->AddInput(constant100_); HInstruction* store1 = InsertArrayStore(k_header, 0); HInstruction* store2 = InsertArrayStore(t, 0); k_header->AddInput(t); t->AddInput(k_header); PerformInductionVarAnalysis(); EXPECT_STREQ("periodic((0), (100)):PrimInt", GetInductionInfo(store1->InputAt(1), 0).c_str()); EXPECT_STREQ("periodic((100), (0)):PrimInt", GetInductionInfo(store2->InputAt(1), 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindIdiomaticPeriodicInduction) { // Setup: // k = 0; // for (int i = 0; i < 100; i++) { // a[k] = 0; // k = 1 - k; // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant0_); HInstruction* store = InsertArrayStore(k_header, 0); HInstruction* sub = InsertInstruction( new (&allocator_) HSub(Primitive::kPrimInt, constant1_, k_header), 0); k_header->AddInput(sub); PerformInductionVarAnalysis(); EXPECT_STREQ("periodic((0), (1)):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); EXPECT_STREQ("periodic((1), (0)):PrimInt", GetInductionInfo(sub, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindXorPeriodicInduction) { // Setup: // k = 0; // for (int i = 0; i < 100; i++) { // a[k] = 0; // k = k ^ 1; // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant0_); HInstruction* store = InsertArrayStore(k_header, 0); HInstruction* x = InsertInstruction( new (&allocator_) HXor(Primitive::kPrimInt, k_header, constant1_), 0); k_header->AddInput(x); PerformInductionVarAnalysis(); EXPECT_STREQ("periodic((0), (1)):PrimInt", GetInductionInfo(store->InputAt(1), 0).c_str()); EXPECT_STREQ("periodic((1), (0)):PrimInt", GetInductionInfo(x, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindXorConstantLeftPeriodicInduction) { // Setup: // k = 1; // for (int i = 0; i < 100; i++) { // k = 1 ^ k; // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant1_); HInstruction* x = InsertInstruction( new (&allocator_) HXor(Primitive::kPrimInt, constant1_, k_header), 0); k_header->AddInput(x); PerformInductionVarAnalysis(); EXPECT_STREQ("periodic((1), ((1) ^ (1))):PrimInt", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("periodic(((1) ^ (1)), (1)):PrimInt", GetInductionInfo(x, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindXor100PeriodicInduction) { // Setup: // k = 1; // for (int i = 0; i < 100; i++) { // k = k ^ 100; // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant1_); HInstruction* x = InsertInstruction( new (&allocator_) HXor(Primitive::kPrimInt, k_header, constant100_), 0); k_header->AddInput(x); PerformInductionVarAnalysis(); EXPECT_STREQ("periodic((1), ((1) ^ (100))):PrimInt", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("periodic(((1) ^ (100)), (1)):PrimInt", GetInductionInfo(x, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindBooleanEqPeriodicInduction) { // Setup: // k = 0; // for (int i = 0; i < 100; i++) { // k = (k == 0); // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant0_); HInstruction* x = InsertInstruction(new (&allocator_) HEqual(k_header, constant0_), 0); k_header->AddInput(x); PerformInductionVarAnalysis(); EXPECT_STREQ("periodic((0), (1)):PrimBoolean", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("periodic((1), (0)):PrimBoolean", GetInductionInfo(x, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindBooleanEqConstantLeftPeriodicInduction) { // Setup: // k = 0; // for (int i = 0; i < 100; i++) { // k = (0 == k); // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant0_); HInstruction* x = InsertInstruction(new (&allocator_) HEqual(constant0_, k_header), 0); k_header->AddInput(x); PerformInductionVarAnalysis(); EXPECT_STREQ("periodic((0), (1)):PrimBoolean", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("periodic((1), (0)):PrimBoolean", GetInductionInfo(x, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindBooleanNePeriodicInduction) { // Setup: // k = 0; // for (int i = 0; i < 100; i++) { // k = (k != 1); // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant0_); HInstruction* x = InsertInstruction(new (&allocator_) HNotEqual(k_header, constant1_), 0); k_header->AddInput(x); PerformInductionVarAnalysis(); EXPECT_STREQ("periodic((0), (1)):PrimBoolean", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("periodic((1), (0)):PrimBoolean", GetInductionInfo(x, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindBooleanNeConstantLeftPeriodicInduction) { // Setup: // k = 0; // for (int i = 0; i < 100; i++) { // k = (1 != k); // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant0_); HInstruction* x = InsertInstruction(new (&allocator_) HNotEqual(constant1_, k_header), 0); k_header->AddInput(x); PerformInductionVarAnalysis(); EXPECT_STREQ("periodic((0), (1)):PrimBoolean", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("periodic((1), (0)):PrimBoolean", GetInductionInfo(x, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindDerivedPeriodicInduction) { // Setup: // k = 0; // for (int i = 0; i < 100; i++) { // t = - k; // k = 1 - k; // t = k + 100; // t = k - 100; // t = k * 100; // t = k << 1; // t = - k; // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant0_); HInstruction* neg1 = InsertInstruction( new (&allocator_) HNeg(Primitive::kPrimInt, k_header), 0); HInstruction* idiom = InsertInstruction( new (&allocator_) HSub(Primitive::kPrimInt, constant1_, k_header), 0); HInstruction* add = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, idiom, constant100_), 0); HInstruction* sub = InsertInstruction( new (&allocator_) HSub(Primitive::kPrimInt, idiom, constant100_), 0); HInstruction* mul = InsertInstruction( new (&allocator_) HMul(Primitive::kPrimInt, idiom, constant100_), 0); HInstruction* shl = InsertInstruction( new (&allocator_) HShl(Primitive::kPrimInt, idiom, constant1_), 0); HInstruction* neg2 = InsertInstruction( new (&allocator_) HNeg(Primitive::kPrimInt, idiom), 0); k_header->AddInput(idiom); PerformInductionVarAnalysis(); EXPECT_STREQ("periodic((0), (1)):PrimInt", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("periodic((0), ( - (1))):PrimInt", GetInductionInfo(neg1, 0).c_str()); EXPECT_STREQ("periodic((1), (0)):PrimInt", GetInductionInfo(idiom, 0).c_str()); EXPECT_STREQ("periodic(((1) + (100)), (100)):PrimInt", GetInductionInfo(add, 0).c_str()); EXPECT_STREQ("periodic(((1) - (100)), ((0) - (100))):PrimInt", GetInductionInfo(sub, 0).c_str()); EXPECT_STREQ("periodic((100), (0)):PrimInt", GetInductionInfo(mul, 0).c_str()); EXPECT_STREQ("periodic((2), (0)):PrimInt", GetInductionInfo(shl, 0).c_str()); EXPECT_STREQ("periodic(( - (1)), (0)):PrimInt", GetInductionInfo(neg2, 0).c_str()); } TEST_F(InductionVarAnalysisTest, FindDeepLoopInduction) { // Setup: // k = 0; // for (int i_0 = 0; i_0 < 100; i_0++) { // .. // for (int i_9 = 0; i_9 < 100; i_9++) { // k = 1 + k; // a[k] = 0; // } // .. // } BuildLoopNest(10); HPhi* k_header[10]; for (int d = 0; d < 10; d++) { k_header[d] = InsertLoopPhi(0, d); } HInstruction* inc = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, constant1_, k_header[9]), 9); HInstruction* store = InsertArrayStore(inc, 9); for (int d = 0; d < 10; d++) { k_header[d]->AddInput((d != 0) ? k_header[d - 1] : constant0_); k_header[d]->AddInput((d != 9) ? k_header[d + 1] : inc); } PerformInductionVarAnalysis(); // Avoid exact phi number, since that depends on the SSA building phase. std::regex r("\\(\\(1\\) \\* i \\+ " "\\(\\(1\\) \\+ \\(\\d+:Phi\\)\\)\\):PrimInt"); for (int d = 0; d < 10; d++) { if (d == 9) { EXPECT_TRUE(std::regex_match(GetInductionInfo(store->InputAt(1), d), r)); } else { EXPECT_STREQ("", GetInductionInfo(store->InputAt(1), d).c_str()); } EXPECT_STREQ("((1) * i + (1)):PrimInt", GetInductionInfo(increment_[d], d).c_str()); // Trip-count. EXPECT_STREQ("((100) (TC-loop) ((0) < (100)))", GetTripCount(d).c_str()); } } TEST_F(InductionVarAnalysisTest, ByteInductionIntLoopControl) { // Setup: // for (int i = 0; i < 100; i++) { // k = (byte) i; // a[k] = 0; // a[i] = 0; // } BuildLoopNest(1); HInstruction* conv = InsertInstruction( new (&allocator_) HTypeConversion(Primitive::kPrimByte, basic_[0], kNoDexPc), 0); HInstruction* store1 = InsertArrayStore(conv, 0); HInstruction* store2 = InsertArrayStore(basic_[0], 0); PerformInductionVarAnalysis(); // Regular int induction (i) is transferred over conversion into byte induction (k). EXPECT_STREQ("((1) * i + (0)):PrimByte", GetInductionInfo(store1->InputAt(1), 0).c_str()); EXPECT_STREQ("((1) * i + (0)):PrimInt", GetInductionInfo(store2->InputAt(1), 0).c_str()); EXPECT_STREQ("((1) * i + (1)):PrimInt", GetInductionInfo(increment_[0], 0).c_str()); // Narrowing detected. EXPECT_TRUE(IsNarrowingLinear(store1->InputAt(1))); EXPECT_FALSE(IsNarrowingLinear(store2->InputAt(1))); // Type matters! EXPECT_FALSE(HaveSameInduction(store1->InputAt(1), store2->InputAt(1))); // Trip-count. EXPECT_STREQ("((100) (TC-loop) ((0) < (100)))", GetTripCount(0).c_str()); } TEST_F(InductionVarAnalysisTest, ByteInductionDerivedIntLoopControl) { // Setup: // for (int i = 0; i < 100; i++) { // k = (byte) i; // a[k] = 0; // k = k + 1 // a[k] = 0; // } BuildLoopNest(1); HInstruction* conv = InsertInstruction( new (&allocator_) HTypeConversion(Primitive::kPrimByte, basic_[0], kNoDexPc), 0); HInstruction* store1 = InsertArrayStore(conv, 0); HInstruction* add = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, conv, constant1_), 0); HInstruction* store2 = InsertArrayStore(add, 0); PerformInductionVarAnalysis(); // Byte induction (k) is detected, but it does not transfer over the addition, // since this may yield out-of-type values. EXPECT_STREQ("((1) * i + (0)):PrimByte", GetInductionInfo(store1->InputAt(1), 0).c_str()); EXPECT_STREQ("", GetInductionInfo(store2->InputAt(1), 0).c_str()); // Narrowing detected. EXPECT_TRUE(IsNarrowingLinear(store1->InputAt(1))); EXPECT_FALSE(IsNarrowingLinear(store2->InputAt(1))); // works for null } TEST_F(InductionVarAnalysisTest, ByteInduction) { // Setup: // k = -128; // for (int i = 0; i < 100; i++) { // k = k + 1; // k = (byte) k; // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(graph_->GetIntConstant(-128)); HInstruction* add = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, k_header, constant1_), 0); HInstruction* conv = InsertInstruction( new (&allocator_) HTypeConversion(Primitive::kPrimByte, add, kNoDexPc), 0); k_header->AddInput(conv); PerformInductionVarAnalysis(); // Byte induction (k) is detected, but it does not transfer over the addition, // since this may yield out-of-type values. EXPECT_STREQ("((1) * i + (-128)):PrimByte", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("", GetInductionInfo(add, 0).c_str()); // Narrowing detected. EXPECT_TRUE(IsNarrowingLinear(k_header)); EXPECT_FALSE(IsNarrowingLinear(add)); // works for null } TEST_F(InductionVarAnalysisTest, NoByteInduction1) { // Setup: // k = -129; / does not fit! // for (int i = 0; i < 100; i++) { // k = k + 1; // k = (byte) k; // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(graph_->GetIntConstant(-129)); HInstruction* add = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, k_header, constant1_), 0); HInstruction* conv = InsertInstruction( new (&allocator_) HTypeConversion(Primitive::kPrimByte, add, kNoDexPc), 0); k_header->AddInput(conv); PerformInductionVarAnalysis(); EXPECT_STREQ("", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("", GetInductionInfo(add, 0).c_str()); } TEST_F(InductionVarAnalysisTest, NoByteInduction2) { // Setup: // k = 0; // for (int i = 0; i < 100; i++) { // k = (byte) k; // conversion not done last! // k = k + 1; // } BuildLoopNest(1); HPhi* k_header = InsertLoopPhi(0, 0); k_header->AddInput(constant0_); HInstruction* conv = InsertInstruction( new (&allocator_) HTypeConversion(Primitive::kPrimByte, k_header, kNoDexPc), 0); HInstruction* add = InsertInstruction( new (&allocator_) HAdd(Primitive::kPrimInt, conv, constant1_), 0); k_header->AddInput(add); PerformInductionVarAnalysis(); EXPECT_STREQ("", GetInductionInfo(k_header, 0).c_str()); EXPECT_STREQ("", GetInductionInfo(add, 0).c_str()); } TEST_F(InductionVarAnalysisTest, ByteLoopControl1) { // Setup: // for (byte i = -128; i < 127; i++) { // just fits! // } BuildLoopNest(1); basic_[0]->ReplaceInput(graph_->GetIntConstant(-128), 0); HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); ifs->ReplaceInput(graph_->GetIntConstant(127), 1); HInstruction* conv = new (&allocator_) HTypeConversion(Primitive::kPrimByte, increment_[0], kNoDexPc); loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); basic_[0]->ReplaceInput(conv, 1); PerformInductionVarAnalysis(); // Recorded at the phi, but not transferred to increment. EXPECT_STREQ("((1) * i + (-128)):PrimByte", GetInductionInfo(basic_[0], 0).c_str()); EXPECT_STREQ("", GetInductionInfo(increment_[0], 0).c_str()); // Narrowing detected. EXPECT_TRUE(IsNarrowingLinear(basic_[0])); EXPECT_FALSE(IsNarrowingLinear(increment_[0])); // works for null // Trip-count. EXPECT_STREQ("(((127) - (-128)) (TC-loop) ((-128) < (127)))", GetTripCount(0).c_str()); } TEST_F(InductionVarAnalysisTest, ByteLoopControl2) { // Setup: // for (byte i = -128; i < 128; i++) { // infinite loop! // } BuildLoopNest(1); basic_[0]->ReplaceInput(graph_->GetIntConstant(-128), 0); HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); ifs->ReplaceInput(graph_->GetIntConstant(128), 1); HInstruction* conv = new (&allocator_) HTypeConversion(Primitive::kPrimByte, increment_[0], kNoDexPc); loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); basic_[0]->ReplaceInput(conv, 1); PerformInductionVarAnalysis(); // Recorded at the phi, but not transferred to increment. EXPECT_STREQ("((1) * i + (-128)):PrimByte", GetInductionInfo(basic_[0], 0).c_str()); EXPECT_STREQ("", GetInductionInfo(increment_[0], 0).c_str()); // Narrowing detected. EXPECT_TRUE(IsNarrowingLinear(basic_[0])); EXPECT_FALSE(IsNarrowingLinear(increment_[0])); // works for null // Trip-count undefined. EXPECT_STREQ("", GetTripCount(0).c_str()); } TEST_F(InductionVarAnalysisTest, ShortLoopControl1) { // Setup: // for (short i = -32768; i < 32767; i++) { // just fits! // } BuildLoopNest(1); basic_[0]->ReplaceInput(graph_->GetIntConstant(-32768), 0); HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); ifs->ReplaceInput(graph_->GetIntConstant(32767), 1); HInstruction* conv = new (&allocator_) HTypeConversion(Primitive::kPrimShort, increment_[0], kNoDexPc); loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); basic_[0]->ReplaceInput(conv, 1); PerformInductionVarAnalysis(); // Recorded at the phi, but not transferred to increment. EXPECT_STREQ("((1) * i + (-32768)):PrimShort", GetInductionInfo(basic_[0], 0).c_str()); EXPECT_STREQ("", GetInductionInfo(increment_[0], 0).c_str()); // Narrowing detected. EXPECT_TRUE(IsNarrowingLinear(basic_[0])); EXPECT_FALSE(IsNarrowingLinear(increment_[0])); // works for null // Trip-count. EXPECT_STREQ("(((32767) - (-32768)) (TC-loop) ((-32768) < (32767)))", GetTripCount(0).c_str()); } TEST_F(InductionVarAnalysisTest, ShortLoopControl2) { // Setup: // for (short i = -32768; i < 32768; i++) { // infinite loop! // } BuildLoopNest(1); basic_[0]->ReplaceInput(graph_->GetIntConstant(-32768), 0); HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); ifs->ReplaceInput(graph_->GetIntConstant(32768), 1); HInstruction* conv = new (&allocator_) HTypeConversion(Primitive::kPrimShort, increment_[0], kNoDexPc); loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); basic_[0]->ReplaceInput(conv, 1); PerformInductionVarAnalysis(); // Recorded at the phi, but not transferred to increment. EXPECT_STREQ("((1) * i + (-32768)):PrimShort", GetInductionInfo(basic_[0], 0).c_str()); EXPECT_STREQ("", GetInductionInfo(increment_[0], 0).c_str()); // Narrowing detected. EXPECT_TRUE(IsNarrowingLinear(basic_[0])); EXPECT_FALSE(IsNarrowingLinear(increment_[0])); // works for null // Trip-count undefined. EXPECT_STREQ("", GetTripCount(0).c_str()); } TEST_F(InductionVarAnalysisTest, CharLoopControl1) { // Setup: // for (char i = 0; i < 65535; i++) { // just fits! // } BuildLoopNest(1); HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); ifs->ReplaceInput(graph_->GetIntConstant(65535), 1); HInstruction* conv = new (&allocator_) HTypeConversion(Primitive::kPrimChar, increment_[0], kNoDexPc); loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); basic_[0]->ReplaceInput(conv, 1); PerformInductionVarAnalysis(); // Recorded at the phi, but not transferred to increment. EXPECT_STREQ("((1) * i + (0)):PrimChar", GetInductionInfo(basic_[0], 0).c_str()); EXPECT_STREQ("", GetInductionInfo(increment_[0], 0).c_str()); // Narrowing detected. EXPECT_TRUE(IsNarrowingLinear(basic_[0])); EXPECT_FALSE(IsNarrowingLinear(increment_[0])); // works for null // Trip-count. EXPECT_STREQ("((65535) (TC-loop) ((0) < (65535)))", GetTripCount(0).c_str()); } TEST_F(InductionVarAnalysisTest, CharLoopControl2) { // Setup: // for (char i = 0; i < 65536; i++) { // infinite loop! // } BuildLoopNest(1); HInstruction* ifs = loop_header_[0]->GetLastInstruction()->GetPrevious(); ifs->ReplaceInput(graph_->GetIntConstant(65536), 1); HInstruction* conv = new (&allocator_) HTypeConversion(Primitive::kPrimChar, increment_[0], kNoDexPc); loop_body_[0]->InsertInstructionBefore(conv, increment_[0]->GetNext()); basic_[0]->ReplaceInput(conv, 1); PerformInductionVarAnalysis(); // Recorded at the phi, but not transferred to increment. EXPECT_STREQ("((1) * i + (0)):PrimChar", GetInductionInfo(basic_[0], 0).c_str()); EXPECT_STREQ("", GetInductionInfo(increment_[0], 0).c_str()); // Narrowing detected. EXPECT_TRUE(IsNarrowingLinear(basic_[0])); EXPECT_FALSE(IsNarrowingLinear(increment_[0])); // works for null // Trip-count undefined. EXPECT_STREQ("", GetTripCount(0).c_str()); } } // namespace art