/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "inliner.h" #include "art_method-inl.h" #include "base/enums.h" #include "builder.h" #include "class_linker.h" #include "constant_folding.h" #include "dead_code_elimination.h" #include "dex/inline_method_analyser.h" #include "dex/verified_method.h" #include "dex/verification_results.h" #include "driver/compiler_driver-inl.h" #include "driver/compiler_options.h" #include "driver/dex_compilation_unit.h" #include "instruction_simplifier.h" #include "intrinsics.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "mirror/class_loader.h" #include "mirror/dex_cache.h" #include "nodes.h" #include "optimizing_compiler.h" #include "reference_type_propagation.h" #include "register_allocator_linear_scan.h" #include "sharpening.h" #include "ssa_builder.h" #include "ssa_phi_elimination.h" #include "scoped_thread_state_change-inl.h" #include "thread.h" namespace art { // Instruction limit to control memory. static constexpr size_t kMaximumNumberOfTotalInstructions = 1024; // Maximum number of instructions for considering a method small, // which we will always try to inline if the other non-instruction limits // are not reached. static constexpr size_t kMaximumNumberOfInstructionsForSmallMethod = 3; // Limit the number of dex registers that we accumulate while inlining // to avoid creating large amount of nested environments. static constexpr size_t kMaximumNumberOfCumulatedDexRegisters = 32; // Limit recursive call inlining, which do not benefit from too // much inlining compared to code locality. static constexpr size_t kMaximumNumberOfRecursiveCalls = 4; // Controls the use of inline caches in AOT mode. static constexpr bool kUseAOTInlineCaches = true; // We check for line numbers to make sure the DepthString implementation // aligns the output nicely. #define LOG_INTERNAL(msg) \ static_assert(__LINE__ > 10, "Unhandled line number"); \ static_assert(__LINE__ < 10000, "Unhandled line number"); \ VLOG(compiler) << DepthString(__LINE__) << msg #define LOG_TRY() LOG_INTERNAL("Try inlinining call: ") #define LOG_NOTE() LOG_INTERNAL("Note: ") #define LOG_SUCCESS() LOG_INTERNAL("Success: ") #define LOG_FAIL(stat) MaybeRecordStat(stat); LOG_INTERNAL("Fail: ") #define LOG_FAIL_NO_STAT() LOG_INTERNAL("Fail: ") std::string HInliner::DepthString(int line) const { std::string value; // Indent according to the inlining depth. size_t count = depth_; // Line numbers get printed in the log, so add a space if the log's line is less // than 1000, and two if less than 100. 10 cannot be reached as it's the copyright. if (!kIsTargetBuild) { if (line < 100) { value += " "; } if (line < 1000) { value += " "; } // Safeguard if this file reaches more than 10000 lines. DCHECK_LT(line, 10000); } for (size_t i = 0; i < count; ++i) { value += " "; } return value; } static size_t CountNumberOfInstructions(HGraph* graph) { size_t number_of_instructions = 0; for (HBasicBlock* block : graph->GetReversePostOrderSkipEntryBlock()) { for (HInstructionIterator instr_it(block->GetInstructions()); !instr_it.Done(); instr_it.Advance()) { ++number_of_instructions; } } return number_of_instructions; } void HInliner::UpdateInliningBudget() { if (total_number_of_instructions_ >= kMaximumNumberOfTotalInstructions) { // Always try to inline small methods. inlining_budget_ = kMaximumNumberOfInstructionsForSmallMethod; } else { inlining_budget_ = std::max( kMaximumNumberOfInstructionsForSmallMethod, kMaximumNumberOfTotalInstructions - total_number_of_instructions_); } } void HInliner::Run() { if (graph_->IsDebuggable()) { // For simplicity, we currently never inline when the graph is debuggable. This avoids // doing some logic in the runtime to discover if a method could have been inlined. return; } // Initialize the number of instructions for the method being compiled. Recursive calls // to HInliner::Run have already updated the instruction count. if (outermost_graph_ == graph_) { total_number_of_instructions_ = CountNumberOfInstructions(graph_); } UpdateInliningBudget(); DCHECK_NE(total_number_of_instructions_, 0u); DCHECK_NE(inlining_budget_, 0u); // Keep a copy of all blocks when starting the visit. ArenaVector<HBasicBlock*> blocks = graph_->GetReversePostOrder(); DCHECK(!blocks.empty()); // Because we are changing the graph when inlining, // we just iterate over the blocks of the outer method. // This avoids doing the inlining work again on the inlined blocks. for (HBasicBlock* block : blocks) { for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) { HInstruction* next = instruction->GetNext(); HInvoke* call = instruction->AsInvoke(); // As long as the call is not intrinsified, it is worth trying to inline. if (call != nullptr && call->GetIntrinsic() == Intrinsics::kNone) { if (kIsDebugBuild && IsCompilingWithCoreImage()) { // Debugging case: directives in method names control or assert on inlining. std::string callee_name = outer_compilation_unit_.GetDexFile()->PrettyMethod( call->GetDexMethodIndex(), /* with_signature */ false); // Tests prevent inlining by having $noinline$ in their method names. if (callee_name.find("$noinline$") == std::string::npos) { if (!TryInline(call)) { bool should_have_inlined = (callee_name.find("$inline$") != std::string::npos); CHECK(!should_have_inlined) << "Could not inline " << callee_name; } } } else { // Normal case: try to inline. TryInline(call); } } instruction = next; } } } static bool IsMethodOrDeclaringClassFinal(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { return method->IsFinal() || method->GetDeclaringClass()->IsFinal(); } /** * Given the `resolved_method` looked up in the dex cache, try to find * the actual runtime target of an interface or virtual call. * Return nullptr if the runtime target cannot be proven. */ static ArtMethod* FindVirtualOrInterfaceTarget(HInvoke* invoke, ArtMethod* resolved_method) REQUIRES_SHARED(Locks::mutator_lock_) { if (IsMethodOrDeclaringClassFinal(resolved_method)) { // No need to lookup further, the resolved method will be the target. return resolved_method; } HInstruction* receiver = invoke->InputAt(0); if (receiver->IsNullCheck()) { // Due to multiple levels of inlining within the same pass, it might be that // null check does not have the reference type of the actual receiver. receiver = receiver->InputAt(0); } ReferenceTypeInfo info = receiver->GetReferenceTypeInfo(); DCHECK(info.IsValid()) << "Invalid RTI for " << receiver->DebugName(); if (!info.IsExact()) { // We currently only support inlining with known receivers. // TODO: Remove this check, we should be able to inline final methods // on unknown receivers. return nullptr; } else if (info.GetTypeHandle()->IsInterface()) { // Statically knowing that the receiver has an interface type cannot // help us find what is the target method. return nullptr; } else if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(info.GetTypeHandle().Get())) { // The method that we're trying to call is not in the receiver's class or super classes. return nullptr; } else if (info.GetTypeHandle()->IsErroneous()) { // If the type is erroneous, do not go further, as we are going to query the vtable or // imt table, that we can only safely do on non-erroneous classes. return nullptr; } ClassLinker* cl = Runtime::Current()->GetClassLinker(); PointerSize pointer_size = cl->GetImagePointerSize(); if (invoke->IsInvokeInterface()) { resolved_method = info.GetTypeHandle()->FindVirtualMethodForInterface( resolved_method, pointer_size); } else { DCHECK(invoke->IsInvokeVirtual()); resolved_method = info.GetTypeHandle()->FindVirtualMethodForVirtual( resolved_method, pointer_size); } if (resolved_method == nullptr) { // The information we had on the receiver was not enough to find // the target method. Since we check above the exact type of the receiver, // the only reason this can happen is an IncompatibleClassChangeError. return nullptr; } else if (!resolved_method->IsInvokable()) { // The information we had on the receiver was not enough to find // the target method. Since we check above the exact type of the receiver, // the only reason this can happen is an IncompatibleClassChangeError. return nullptr; } else if (IsMethodOrDeclaringClassFinal(resolved_method)) { // A final method has to be the target method. return resolved_method; } else if (info.IsExact()) { // If we found a method and the receiver's concrete type is statically // known, we know for sure the target. return resolved_method; } else { // Even if we did find a method, the receiver type was not enough to // statically find the runtime target. return nullptr; } } static uint32_t FindMethodIndexIn(ArtMethod* method, const DexFile& dex_file, uint32_t name_and_signature_index) REQUIRES_SHARED(Locks::mutator_lock_) { if (IsSameDexFile(*method->GetDexFile(), dex_file)) { return method->GetDexMethodIndex(); } else { return method->FindDexMethodIndexInOtherDexFile(dex_file, name_and_signature_index); } } static dex::TypeIndex FindClassIndexIn(mirror::Class* cls, const DexCompilationUnit& compilation_unit) REQUIRES_SHARED(Locks::mutator_lock_) { const DexFile& dex_file = *compilation_unit.GetDexFile(); dex::TypeIndex index; if (cls->GetDexCache() == nullptr) { DCHECK(cls->IsArrayClass()) << cls->PrettyClass(); index = cls->FindTypeIndexInOtherDexFile(dex_file); } else if (!cls->GetDexTypeIndex().IsValid()) { DCHECK(cls->IsProxyClass()) << cls->PrettyClass(); // TODO: deal with proxy classes. } else if (IsSameDexFile(cls->GetDexFile(), dex_file)) { DCHECK_EQ(cls->GetDexCache(), compilation_unit.GetDexCache().Get()); index = cls->GetDexTypeIndex(); } else { index = cls->FindTypeIndexInOtherDexFile(dex_file); // We cannot guarantee the entry will resolve to the same class, // as there may be different class loaders. So only return the index if it's // the right class already resolved with the class loader. if (index.IsValid()) { ObjPtr<mirror::Class> resolved = ClassLinker::LookupResolvedType( index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get()); if (resolved != cls) { index = dex::TypeIndex::Invalid(); } } } return index; } class ScopedProfilingInfoInlineUse { public: explicit ScopedProfilingInfoInlineUse(ArtMethod* method, Thread* self) : method_(method), self_(self), // Fetch the profiling info ahead of using it. If it's null when fetching, // we should not call JitCodeCache::DoneInlining. profiling_info_( Runtime::Current()->GetJit()->GetCodeCache()->NotifyCompilerUse(method, self)) { } ~ScopedProfilingInfoInlineUse() { if (profiling_info_ != nullptr) { PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); DCHECK_EQ(profiling_info_, method_->GetProfilingInfo(pointer_size)); Runtime::Current()->GetJit()->GetCodeCache()->DoneCompilerUse(method_, self_); } } ProfilingInfo* GetProfilingInfo() const { return profiling_info_; } private: ArtMethod* const method_; Thread* const self_; ProfilingInfo* const profiling_info_; }; HInliner::InlineCacheType HInliner::GetInlineCacheType( const Handle<mirror::ObjectArray<mirror::Class>>& classes) REQUIRES_SHARED(Locks::mutator_lock_) { uint8_t number_of_types = 0; for (; number_of_types < InlineCache::kIndividualCacheSize; ++number_of_types) { if (classes->Get(number_of_types) == nullptr) { break; } } if (number_of_types == 0) { return kInlineCacheUninitialized; } else if (number_of_types == 1) { return kInlineCacheMonomorphic; } else if (number_of_types == InlineCache::kIndividualCacheSize) { return kInlineCacheMegamorphic; } else { return kInlineCachePolymorphic; } } static mirror::Class* GetMonomorphicType(Handle<mirror::ObjectArray<mirror::Class>> classes) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(classes->Get(0) != nullptr); return classes->Get(0); } ArtMethod* HInliner::TryCHADevirtualization(ArtMethod* resolved_method) { if (!resolved_method->HasSingleImplementation()) { return nullptr; } if (Runtime::Current()->IsAotCompiler()) { // No CHA-based devirtulization for AOT compiler (yet). return nullptr; } if (outermost_graph_->IsCompilingOsr()) { // We do not support HDeoptimize in OSR methods. return nullptr; } PointerSize pointer_size = caller_compilation_unit_.GetClassLinker()->GetImagePointerSize(); ArtMethod* single_impl = resolved_method->GetSingleImplementation(pointer_size); if (single_impl == nullptr) { return nullptr; } if (single_impl->IsProxyMethod()) { // Proxy method is a generic invoker that's not worth // devirtualizing/inlining. It also causes issues when the proxy // method is in another dex file if we try to rewrite invoke-interface to // invoke-virtual because a proxy method doesn't have a real dex file. return nullptr; } if (!single_impl->GetDeclaringClass()->IsResolved()) { // There's a race with the class loading, which updates the CHA info // before setting the class to resolved. So we just bail for this // rare occurence. return nullptr; } return single_impl; } bool HInliner::TryInline(HInvoke* invoke_instruction) { if (invoke_instruction->IsInvokeUnresolved() || invoke_instruction->IsInvokePolymorphic()) { return false; // Don't bother to move further if we know the method is unresolved or an // invoke-polymorphic. } ScopedObjectAccess soa(Thread::Current()); uint32_t method_index = invoke_instruction->GetDexMethodIndex(); const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); LOG_TRY() << caller_dex_file.PrettyMethod(method_index); ArtMethod* resolved_method = invoke_instruction->GetResolvedMethod(); if (resolved_method == nullptr) { DCHECK(invoke_instruction->IsInvokeStaticOrDirect()); DCHECK(invoke_instruction->AsInvokeStaticOrDirect()->IsStringInit()); LOG_FAIL_NO_STAT() << "Not inlining a String.<init> method"; return false; } ArtMethod* actual_method = nullptr; if (invoke_instruction->IsInvokeStaticOrDirect()) { actual_method = resolved_method; } else { // Check if we can statically find the method. actual_method = FindVirtualOrInterfaceTarget(invoke_instruction, resolved_method); } bool cha_devirtualize = false; if (actual_method == nullptr) { ArtMethod* method = TryCHADevirtualization(resolved_method); if (method != nullptr) { cha_devirtualize = true; actual_method = method; LOG_NOTE() << "Try CHA-based inlining of " << actual_method->PrettyMethod(); } } if (actual_method != nullptr) { bool result = TryInlineAndReplace(invoke_instruction, actual_method, ReferenceTypeInfo::CreateInvalid(), /* do_rtp */ true, cha_devirtualize); if (result && !invoke_instruction->IsInvokeStaticOrDirect()) { if (cha_devirtualize) { // Add dependency due to devirtulization. We've assumed resolved_method // has single implementation. outermost_graph_->AddCHASingleImplementationDependency(resolved_method); MaybeRecordStat(kCHAInline); } else { MaybeRecordStat(kInlinedInvokeVirtualOrInterface); } } return result; } DCHECK(!invoke_instruction->IsInvokeStaticOrDirect()); // Try using inline caches. return TryInlineFromInlineCache(caller_dex_file, invoke_instruction, resolved_method); } static Handle<mirror::ObjectArray<mirror::Class>> AllocateInlineCacheHolder( const DexCompilationUnit& compilation_unit, StackHandleScope<1>* hs) REQUIRES_SHARED(Locks::mutator_lock_) { Thread* self = Thread::Current(); ClassLinker* class_linker = compilation_unit.GetClassLinker(); Handle<mirror::ObjectArray<mirror::Class>> inline_cache = hs->NewHandle( mirror::ObjectArray<mirror::Class>::Alloc( self, class_linker->GetClassRoot(ClassLinker::kClassArrayClass), InlineCache::kIndividualCacheSize)); if (inline_cache == nullptr) { // We got an OOME. Just clear the exception, and don't inline. DCHECK(self->IsExceptionPending()); self->ClearException(); VLOG(compiler) << "Out of memory in the compiler when trying to inline"; } return inline_cache; } bool HInliner::UseOnlyPolymorphicInliningWithNoDeopt() { // If we are compiling AOT or OSR, pretend the call using inline caches is polymorphic and // do not generate a deopt. // // For AOT: // Generating a deopt does not ensure that we will actually capture the new types; // and the danger is that we could be stuck in a loop with "forever" deoptimizations. // Take for example the following scenario: // - we capture the inline cache in one run // - the next run, we deoptimize because we miss a type check, but the method // never becomes hot again // In this case, the inline cache will not be updated in the profile and the AOT code // will keep deoptimizing. // Another scenario is if we use profile compilation for a process which is not allowed // to JIT (e.g. system server). If we deoptimize we will run interpreted code for the // rest of the lifetime. // TODO(calin): // This is a compromise because we will most likely never update the inline cache // in the profile (unless there's another reason to deopt). So we might be stuck with // a sub-optimal inline cache. // We could be smarter when capturing inline caches to mitigate this. // (e.g. by having different thresholds for new and old methods). // // For OSR: // We may come from the interpreter and it may have seen different receiver types. return Runtime::Current()->IsAotCompiler() || outermost_graph_->IsCompilingOsr(); } bool HInliner::TryInlineFromInlineCache(const DexFile& caller_dex_file, HInvoke* invoke_instruction, ArtMethod* resolved_method) REQUIRES_SHARED(Locks::mutator_lock_) { if (Runtime::Current()->IsAotCompiler() && !kUseAOTInlineCaches) { return false; } StackHandleScope<1> hs(Thread::Current()); Handle<mirror::ObjectArray<mirror::Class>> inline_cache; InlineCacheType inline_cache_type = Runtime::Current()->IsAotCompiler() ? GetInlineCacheAOT(caller_dex_file, invoke_instruction, &hs, &inline_cache) : GetInlineCacheJIT(invoke_instruction, &hs, &inline_cache); switch (inline_cache_type) { case kInlineCacheNoData: { LOG_FAIL_NO_STAT() << "Interface or virtual call to " << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex()) << " could not be statically determined"; return false; } case kInlineCacheUninitialized: { LOG_FAIL_NO_STAT() << "Interface or virtual call to " << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex()) << " is not hit and not inlined"; return false; } case kInlineCacheMonomorphic: { MaybeRecordStat(kMonomorphicCall); if (UseOnlyPolymorphicInliningWithNoDeopt()) { return TryInlinePolymorphicCall(invoke_instruction, resolved_method, inline_cache); } else { return TryInlineMonomorphicCall(invoke_instruction, resolved_method, inline_cache); } } case kInlineCachePolymorphic: { MaybeRecordStat(kPolymorphicCall); return TryInlinePolymorphicCall(invoke_instruction, resolved_method, inline_cache); } case kInlineCacheMegamorphic: { LOG_FAIL_NO_STAT() << "Interface or virtual call to " << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex()) << " is megamorphic and not inlined"; MaybeRecordStat(kMegamorphicCall); return false; } case kInlineCacheMissingTypes: { LOG_FAIL_NO_STAT() << "Interface or virtual call to " << caller_dex_file.PrettyMethod(invoke_instruction->GetDexMethodIndex()) << " is missing types and not inlined"; return false; } } UNREACHABLE(); } HInliner::InlineCacheType HInliner::GetInlineCacheJIT( HInvoke* invoke_instruction, StackHandleScope<1>* hs, /*out*/Handle<mirror::ObjectArray<mirror::Class>>* inline_cache) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(Runtime::Current()->UseJitCompilation()); ArtMethod* caller = graph_->GetArtMethod(); // Under JIT, we should always know the caller. DCHECK(caller != nullptr); ScopedProfilingInfoInlineUse spiis(caller, Thread::Current()); ProfilingInfo* profiling_info = spiis.GetProfilingInfo(); if (profiling_info == nullptr) { return kInlineCacheNoData; } *inline_cache = AllocateInlineCacheHolder(caller_compilation_unit_, hs); if (inline_cache->Get() == nullptr) { // We can't extract any data if we failed to allocate; return kInlineCacheNoData; } else { Runtime::Current()->GetJit()->GetCodeCache()->CopyInlineCacheInto( *profiling_info->GetInlineCache(invoke_instruction->GetDexPc()), *inline_cache); return GetInlineCacheType(*inline_cache); } } HInliner::InlineCacheType HInliner::GetInlineCacheAOT( const DexFile& caller_dex_file, HInvoke* invoke_instruction, StackHandleScope<1>* hs, /*out*/Handle<mirror::ObjectArray<mirror::Class>>* inline_cache) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(Runtime::Current()->IsAotCompiler()); const ProfileCompilationInfo* pci = compiler_driver_->GetProfileCompilationInfo(); if (pci == nullptr) { return kInlineCacheNoData; } std::unique_ptr<ProfileCompilationInfo::OfflineProfileMethodInfo> offline_profile = pci->GetMethod(caller_dex_file.GetLocation(), caller_dex_file.GetLocationChecksum(), caller_compilation_unit_.GetDexMethodIndex()); if (offline_profile == nullptr) { return kInlineCacheNoData; // no profile information for this invocation. } *inline_cache = AllocateInlineCacheHolder(caller_compilation_unit_, hs); if (inline_cache == nullptr) { // We can't extract any data if we failed to allocate; return kInlineCacheNoData; } else { return ExtractClassesFromOfflineProfile(invoke_instruction, *(offline_profile.get()), *inline_cache); } } HInliner::InlineCacheType HInliner::ExtractClassesFromOfflineProfile( const HInvoke* invoke_instruction, const ProfileCompilationInfo::OfflineProfileMethodInfo& offline_profile, /*out*/Handle<mirror::ObjectArray<mirror::Class>> inline_cache) REQUIRES_SHARED(Locks::mutator_lock_) { const auto it = offline_profile.inline_caches->find(invoke_instruction->GetDexPc()); if (it == offline_profile.inline_caches->end()) { return kInlineCacheUninitialized; } const ProfileCompilationInfo::DexPcData& dex_pc_data = it->second; if (dex_pc_data.is_missing_types) { return kInlineCacheMissingTypes; } if (dex_pc_data.is_megamorphic) { return kInlineCacheMegamorphic; } DCHECK_LE(dex_pc_data.classes.size(), InlineCache::kIndividualCacheSize); Thread* self = Thread::Current(); // We need to resolve the class relative to the containing dex file. // So first, build a mapping from the index of dex file in the profile to // its dex cache. This will avoid repeating the lookup when walking over // the inline cache types. std::vector<ObjPtr<mirror::DexCache>> dex_profile_index_to_dex_cache( offline_profile.dex_references.size()); for (size_t i = 0; i < offline_profile.dex_references.size(); i++) { bool found = false; for (const DexFile* dex_file : compiler_driver_->GetDexFilesForOatFile()) { if (offline_profile.dex_references[i].MatchesDex(dex_file)) { dex_profile_index_to_dex_cache[i] = caller_compilation_unit_.GetClassLinker()->FindDexCache(self, *dex_file); found = true; } } if (!found) { VLOG(compiler) << "Could not find profiled dex file: " << offline_profile.dex_references[i].dex_location; return kInlineCacheMissingTypes; } } // Walk over the classes and resolve them. If we cannot find a type we return // kInlineCacheMissingTypes. int ic_index = 0; for (const ProfileCompilationInfo::ClassReference& class_ref : dex_pc_data.classes) { ObjPtr<mirror::DexCache> dex_cache = dex_profile_index_to_dex_cache[class_ref.dex_profile_index]; DCHECK(dex_cache != nullptr); if (!dex_cache->GetDexFile()->IsTypeIndexValid(class_ref.type_index)) { VLOG(compiler) << "Profile data corrupt: type index " << class_ref.type_index << "is invalid in location" << dex_cache->GetDexFile()->GetLocation(); return kInlineCacheNoData; } ObjPtr<mirror::Class> clazz = ClassLinker::LookupResolvedType( class_ref.type_index, dex_cache, caller_compilation_unit_.GetClassLoader().Get()); if (clazz != nullptr) { inline_cache->Set(ic_index++, clazz); } else { VLOG(compiler) << "Could not resolve class from inline cache in AOT mode " << caller_compilation_unit_.GetDexFile()->PrettyMethod( invoke_instruction->GetDexMethodIndex()) << " : " << caller_compilation_unit_ .GetDexFile()->StringByTypeIdx(class_ref.type_index); return kInlineCacheMissingTypes; } } return GetInlineCacheType(inline_cache); } HInstanceFieldGet* HInliner::BuildGetReceiverClass(ClassLinker* class_linker, HInstruction* receiver, uint32_t dex_pc) const { ArtField* field = class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0); DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_"); HInstanceFieldGet* result = new (graph_->GetArena()) HInstanceFieldGet( receiver, field, Primitive::kPrimNot, field->GetOffset(), field->IsVolatile(), field->GetDexFieldIndex(), field->GetDeclaringClass()->GetDexClassDefIndex(), *field->GetDexFile(), dex_pc); // The class of a field is effectively final, and does not have any memory dependencies. result->SetSideEffects(SideEffects::None()); return result; } static ArtMethod* ResolveMethodFromInlineCache(Handle<mirror::Class> klass, ArtMethod* resolved_method, HInstruction* invoke_instruction, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_) { if (Runtime::Current()->IsAotCompiler()) { // We can get unrelated types when working with profiles (corruption, // systme updates, or anyone can write to it). So first check if the class // actually implements the declaring class of the method that is being // called in bytecode. // Note: the lookup methods used below require to have assignable types. if (!resolved_method->GetDeclaringClass()->IsAssignableFrom(klass.Get())) { return nullptr; } } if (invoke_instruction->IsInvokeInterface()) { resolved_method = klass->FindVirtualMethodForInterface(resolved_method, pointer_size); } else { DCHECK(invoke_instruction->IsInvokeVirtual()); resolved_method = klass->FindVirtualMethodForVirtual(resolved_method, pointer_size); } DCHECK(resolved_method != nullptr); return resolved_method; } bool HInliner::TryInlineMonomorphicCall(HInvoke* invoke_instruction, ArtMethod* resolved_method, Handle<mirror::ObjectArray<mirror::Class>> classes) { DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface()) << invoke_instruction->DebugName(); dex::TypeIndex class_index = FindClassIndexIn( GetMonomorphicType(classes), caller_compilation_unit_); if (!class_index.IsValid()) { LOG_FAIL(kNotInlinedDexCache) << "Call to " << ArtMethod::PrettyMethod(resolved_method) << " from inline cache is not inlined because its class is not" << " accessible to the caller"; return false; } ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); PointerSize pointer_size = class_linker->GetImagePointerSize(); Handle<mirror::Class> monomorphic_type = handles_->NewHandle(GetMonomorphicType(classes)); resolved_method = ResolveMethodFromInlineCache( monomorphic_type, resolved_method, invoke_instruction, pointer_size); LOG_NOTE() << "Try inline monomorphic call to " << resolved_method->PrettyMethod(); if (resolved_method == nullptr) { // Bogus AOT profile, bail. DCHECK(Runtime::Current()->IsAotCompiler()); return false; } HInstruction* receiver = invoke_instruction->InputAt(0); HInstruction* cursor = invoke_instruction->GetPrevious(); HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); if (!TryInlineAndReplace(invoke_instruction, resolved_method, ReferenceTypeInfo::Create(monomorphic_type, /* is_exact */ true), /* do_rtp */ false, /* cha_devirtualize */ false)) { return false; } // We successfully inlined, now add a guard. AddTypeGuard(receiver, cursor, bb_cursor, class_index, monomorphic_type, invoke_instruction, /* with_deoptimization */ true); // Run type propagation to get the guard typed, and eventually propagate the // type of the receiver. ReferenceTypePropagation rtp_fixup(graph_, outer_compilation_unit_.GetClassLoader(), outer_compilation_unit_.GetDexCache(), handles_, /* is_first_run */ false); rtp_fixup.Run(); MaybeRecordStat(kInlinedMonomorphicCall); return true; } void HInliner::AddCHAGuard(HInstruction* invoke_instruction, uint32_t dex_pc, HInstruction* cursor, HBasicBlock* bb_cursor) { HShouldDeoptimizeFlag* deopt_flag = new (graph_->GetArena()) HShouldDeoptimizeFlag(graph_->GetArena(), dex_pc); HInstruction* compare = new (graph_->GetArena()) HNotEqual( deopt_flag, graph_->GetIntConstant(0, dex_pc)); HInstruction* deopt = new (graph_->GetArena()) HDeoptimize( graph_->GetArena(), compare, DeoptimizationKind::kCHA, dex_pc); if (cursor != nullptr) { bb_cursor->InsertInstructionAfter(deopt_flag, cursor); } else { bb_cursor->InsertInstructionBefore(deopt_flag, bb_cursor->GetFirstInstruction()); } bb_cursor->InsertInstructionAfter(compare, deopt_flag); bb_cursor->InsertInstructionAfter(deopt, compare); // Add receiver as input to aid CHA guard optimization later. deopt_flag->AddInput(invoke_instruction->InputAt(0)); DCHECK_EQ(deopt_flag->InputCount(), 1u); deopt->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); outermost_graph_->IncrementNumberOfCHAGuards(); } HInstruction* HInliner::AddTypeGuard(HInstruction* receiver, HInstruction* cursor, HBasicBlock* bb_cursor, dex::TypeIndex class_index, Handle<mirror::Class> klass, HInstruction* invoke_instruction, bool with_deoptimization) { ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); HInstanceFieldGet* receiver_class = BuildGetReceiverClass( class_linker, receiver, invoke_instruction->GetDexPc()); if (cursor != nullptr) { bb_cursor->InsertInstructionAfter(receiver_class, cursor); } else { bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction()); } const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); bool is_referrer; ArtMethod* outermost_art_method = outermost_graph_->GetArtMethod(); if (outermost_art_method == nullptr) { DCHECK(Runtime::Current()->IsAotCompiler()); // We are in AOT mode and we don't have an ART method to determine // if the inlined method belongs to the referrer. Assume it doesn't. is_referrer = false; } else { is_referrer = klass.Get() == outermost_art_method->GetDeclaringClass(); } // Note that we will just compare the classes, so we don't need Java semantics access checks. // Note that the type index and the dex file are relative to the method this type guard is // inlined into. HLoadClass* load_class = new (graph_->GetArena()) HLoadClass(graph_->GetCurrentMethod(), class_index, caller_dex_file, klass, is_referrer, invoke_instruction->GetDexPc(), /* needs_access_check */ false); HLoadClass::LoadKind kind = HSharpening::ComputeLoadClassKind( load_class, codegen_, compiler_driver_, caller_compilation_unit_); DCHECK(kind != HLoadClass::LoadKind::kInvalid) << "We should always be able to reference a class for inline caches"; // Insert before setting the kind, as setting the kind affects the inputs. bb_cursor->InsertInstructionAfter(load_class, receiver_class); load_class->SetLoadKind(kind); // In AOT mode, we will most likely load the class from BSS, which will involve a call // to the runtime. In this case, the load instruction will need an environment so copy // it from the invoke instruction. if (load_class->NeedsEnvironment()) { DCHECK(Runtime::Current()->IsAotCompiler()); load_class->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); } HNotEqual* compare = new (graph_->GetArena()) HNotEqual(load_class, receiver_class); bb_cursor->InsertInstructionAfter(compare, load_class); if (with_deoptimization) { HDeoptimize* deoptimize = new (graph_->GetArena()) HDeoptimize( graph_->GetArena(), compare, receiver, Runtime::Current()->IsAotCompiler() ? DeoptimizationKind::kAotInlineCache : DeoptimizationKind::kJitInlineCache, invoke_instruction->GetDexPc()); bb_cursor->InsertInstructionAfter(deoptimize, compare); deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); DCHECK_EQ(invoke_instruction->InputAt(0), receiver); receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize); deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo()); } return compare; } bool HInliner::TryInlinePolymorphicCall(HInvoke* invoke_instruction, ArtMethod* resolved_method, Handle<mirror::ObjectArray<mirror::Class>> classes) { DCHECK(invoke_instruction->IsInvokeVirtual() || invoke_instruction->IsInvokeInterface()) << invoke_instruction->DebugName(); if (TryInlinePolymorphicCallToSameTarget(invoke_instruction, resolved_method, classes)) { return true; } ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); PointerSize pointer_size = class_linker->GetImagePointerSize(); bool all_targets_inlined = true; bool one_target_inlined = false; for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) { if (classes->Get(i) == nullptr) { break; } ArtMethod* method = nullptr; Handle<mirror::Class> handle = handles_->NewHandle(classes->Get(i)); method = ResolveMethodFromInlineCache( handle, resolved_method, invoke_instruction, pointer_size); if (method == nullptr) { DCHECK(Runtime::Current()->IsAotCompiler()); // AOT profile is bogus. This loop expects to iterate over all entries, // so just just continue. all_targets_inlined = false; continue; } HInstruction* receiver = invoke_instruction->InputAt(0); HInstruction* cursor = invoke_instruction->GetPrevious(); HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); dex::TypeIndex class_index = FindClassIndexIn(handle.Get(), caller_compilation_unit_); HInstruction* return_replacement = nullptr; LOG_NOTE() << "Try inline polymorphic call to " << method->PrettyMethod(); if (!class_index.IsValid() || !TryBuildAndInline(invoke_instruction, method, ReferenceTypeInfo::Create(handle, /* is_exact */ true), &return_replacement)) { all_targets_inlined = false; } else { one_target_inlined = true; LOG_SUCCESS() << "Polymorphic call to " << ArtMethod::PrettyMethod(resolved_method) << " has inlined " << ArtMethod::PrettyMethod(method); // If we have inlined all targets before, and this receiver is the last seen, // we deoptimize instead of keeping the original invoke instruction. bool deoptimize = !UseOnlyPolymorphicInliningWithNoDeopt() && all_targets_inlined && (i != InlineCache::kIndividualCacheSize - 1) && (classes->Get(i + 1) == nullptr); HInstruction* compare = AddTypeGuard(receiver, cursor, bb_cursor, class_index, handle, invoke_instruction, deoptimize); if (deoptimize) { if (return_replacement != nullptr) { invoke_instruction->ReplaceWith(return_replacement); } invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction); // Because the inline cache data can be populated concurrently, we force the end of the // iteration. Otherwise, we could see a new receiver type. break; } else { CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction); } } } if (!one_target_inlined) { LOG_FAIL_NO_STAT() << "Call to " << ArtMethod::PrettyMethod(resolved_method) << " from inline cache is not inlined because none" << " of its targets could be inlined"; return false; } MaybeRecordStat(kInlinedPolymorphicCall); // Run type propagation to get the guards typed. ReferenceTypePropagation rtp_fixup(graph_, outer_compilation_unit_.GetClassLoader(), outer_compilation_unit_.GetDexCache(), handles_, /* is_first_run */ false); rtp_fixup.Run(); return true; } void HInliner::CreateDiamondPatternForPolymorphicInline(HInstruction* compare, HInstruction* return_replacement, HInstruction* invoke_instruction) { uint32_t dex_pc = invoke_instruction->GetDexPc(); HBasicBlock* cursor_block = compare->GetBlock(); HBasicBlock* original_invoke_block = invoke_instruction->GetBlock(); ArenaAllocator* allocator = graph_->GetArena(); // Spit the block after the compare: `cursor_block` will now be the start of the diamond, // and the returned block is the start of the then branch (that could contain multiple blocks). HBasicBlock* then = cursor_block->SplitAfterForInlining(compare); // Split the block containing the invoke before and after the invoke. The returned block // of the split before will contain the invoke and will be the otherwise branch of // the diamond. The returned block of the split after will be the merge block // of the diamond. HBasicBlock* end_then = invoke_instruction->GetBlock(); HBasicBlock* otherwise = end_then->SplitBeforeForInlining(invoke_instruction); HBasicBlock* merge = otherwise->SplitAfterForInlining(invoke_instruction); // If the methods we are inlining return a value, we create a phi in the merge block // that will have the `invoke_instruction and the `return_replacement` as inputs. if (return_replacement != nullptr) { HPhi* phi = new (allocator) HPhi( allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke_instruction->GetType()), dex_pc); merge->AddPhi(phi); invoke_instruction->ReplaceWith(phi); phi->AddInput(return_replacement); phi->AddInput(invoke_instruction); } // Add the control flow instructions. otherwise->AddInstruction(new (allocator) HGoto(dex_pc)); end_then->AddInstruction(new (allocator) HGoto(dex_pc)); cursor_block->AddInstruction(new (allocator) HIf(compare, dex_pc)); // Add the newly created blocks to the graph. graph_->AddBlock(then); graph_->AddBlock(otherwise); graph_->AddBlock(merge); // Set up successor (and implictly predecessor) relations. cursor_block->AddSuccessor(otherwise); cursor_block->AddSuccessor(then); end_then->AddSuccessor(merge); otherwise->AddSuccessor(merge); // Set up dominance information. then->SetDominator(cursor_block); cursor_block->AddDominatedBlock(then); otherwise->SetDominator(cursor_block); cursor_block->AddDominatedBlock(otherwise); merge->SetDominator(cursor_block); cursor_block->AddDominatedBlock(merge); // Update the revert post order. size_t index = IndexOfElement(graph_->reverse_post_order_, cursor_block); MakeRoomFor(&graph_->reverse_post_order_, 1, index); graph_->reverse_post_order_[++index] = then; index = IndexOfElement(graph_->reverse_post_order_, end_then); MakeRoomFor(&graph_->reverse_post_order_, 2, index); graph_->reverse_post_order_[++index] = otherwise; graph_->reverse_post_order_[++index] = merge; graph_->UpdateLoopAndTryInformationOfNewBlock( then, original_invoke_block, /* replace_if_back_edge */ false); graph_->UpdateLoopAndTryInformationOfNewBlock( otherwise, original_invoke_block, /* replace_if_back_edge */ false); // In case the original invoke location was a back edge, we need to update // the loop to now have the merge block as a back edge. graph_->UpdateLoopAndTryInformationOfNewBlock( merge, original_invoke_block, /* replace_if_back_edge */ true); } bool HInliner::TryInlinePolymorphicCallToSameTarget( HInvoke* invoke_instruction, ArtMethod* resolved_method, Handle<mirror::ObjectArray<mirror::Class>> classes) { // This optimization only works under JIT for now. if (!Runtime::Current()->UseJitCompilation()) { return false; } ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); PointerSize pointer_size = class_linker->GetImagePointerSize(); DCHECK(resolved_method != nullptr); ArtMethod* actual_method = nullptr; size_t method_index = invoke_instruction->IsInvokeVirtual() ? invoke_instruction->AsInvokeVirtual()->GetVTableIndex() : invoke_instruction->AsInvokeInterface()->GetImtIndex(); // Check whether we are actually calling the same method among // the different types seen. for (size_t i = 0; i < InlineCache::kIndividualCacheSize; ++i) { if (classes->Get(i) == nullptr) { break; } ArtMethod* new_method = nullptr; if (invoke_instruction->IsInvokeInterface()) { new_method = classes->Get(i)->GetImt(pointer_size)->Get( method_index, pointer_size); if (new_method->IsRuntimeMethod()) { // Bail out as soon as we see a conflict trampoline in one of the target's // interface table. return false; } } else { DCHECK(invoke_instruction->IsInvokeVirtual()); new_method = classes->Get(i)->GetEmbeddedVTableEntry(method_index, pointer_size); } DCHECK(new_method != nullptr); if (actual_method == nullptr) { actual_method = new_method; } else if (actual_method != new_method) { // Different methods, bailout. return false; } } HInstruction* receiver = invoke_instruction->InputAt(0); HInstruction* cursor = invoke_instruction->GetPrevious(); HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); HInstruction* return_replacement = nullptr; if (!TryBuildAndInline(invoke_instruction, actual_method, ReferenceTypeInfo::CreateInvalid(), &return_replacement)) { return false; } // We successfully inlined, now add a guard. HInstanceFieldGet* receiver_class = BuildGetReceiverClass( class_linker, receiver, invoke_instruction->GetDexPc()); Primitive::Type type = Is64BitInstructionSet(graph_->GetInstructionSet()) ? Primitive::kPrimLong : Primitive::kPrimInt; HClassTableGet* class_table_get = new (graph_->GetArena()) HClassTableGet( receiver_class, type, invoke_instruction->IsInvokeVirtual() ? HClassTableGet::TableKind::kVTable : HClassTableGet::TableKind::kIMTable, method_index, invoke_instruction->GetDexPc()); HConstant* constant; if (type == Primitive::kPrimLong) { constant = graph_->GetLongConstant( reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc()); } else { constant = graph_->GetIntConstant( reinterpret_cast<intptr_t>(actual_method), invoke_instruction->GetDexPc()); } HNotEqual* compare = new (graph_->GetArena()) HNotEqual(class_table_get, constant); if (cursor != nullptr) { bb_cursor->InsertInstructionAfter(receiver_class, cursor); } else { bb_cursor->InsertInstructionBefore(receiver_class, bb_cursor->GetFirstInstruction()); } bb_cursor->InsertInstructionAfter(class_table_get, receiver_class); bb_cursor->InsertInstructionAfter(compare, class_table_get); if (outermost_graph_->IsCompilingOsr()) { CreateDiamondPatternForPolymorphicInline(compare, return_replacement, invoke_instruction); } else { HDeoptimize* deoptimize = new (graph_->GetArena()) HDeoptimize( graph_->GetArena(), compare, receiver, DeoptimizationKind::kJitSameTarget, invoke_instruction->GetDexPc()); bb_cursor->InsertInstructionAfter(deoptimize, compare); deoptimize->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); if (return_replacement != nullptr) { invoke_instruction->ReplaceWith(return_replacement); } receiver->ReplaceUsesDominatedBy(deoptimize, deoptimize); invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction); deoptimize->SetReferenceTypeInfo(receiver->GetReferenceTypeInfo()); } // Run type propagation to get the guard typed. ReferenceTypePropagation rtp_fixup(graph_, outer_compilation_unit_.GetClassLoader(), outer_compilation_unit_.GetDexCache(), handles_, /* is_first_run */ false); rtp_fixup.Run(); MaybeRecordStat(kInlinedPolymorphicCall); LOG_SUCCESS() << "Inlined same polymorphic target " << actual_method->PrettyMethod(); return true; } bool HInliner::TryInlineAndReplace(HInvoke* invoke_instruction, ArtMethod* method, ReferenceTypeInfo receiver_type, bool do_rtp, bool cha_devirtualize) { HInstruction* return_replacement = nullptr; uint32_t dex_pc = invoke_instruction->GetDexPc(); HInstruction* cursor = invoke_instruction->GetPrevious(); HBasicBlock* bb_cursor = invoke_instruction->GetBlock(); if (!TryBuildAndInline(invoke_instruction, method, receiver_type, &return_replacement)) { if (invoke_instruction->IsInvokeInterface()) { DCHECK(!method->IsProxyMethod()); // Turn an invoke-interface into an invoke-virtual. An invoke-virtual is always // better than an invoke-interface because: // 1) In the best case, the interface call has one more indirection (to fetch the IMT). // 2) We will not go to the conflict trampoline with an invoke-virtual. // TODO: Consider sharpening once it is not dependent on the compiler driver. if (method->IsDefault() && !method->IsCopied()) { // Changing to invoke-virtual cannot be done on an original default method // since it's not in any vtable. Devirtualization by exact type/inline-cache // always uses a method in the iftable which is never an original default // method. // On the other hand, inlining an original default method by CHA is fine. DCHECK(cha_devirtualize); return false; } const DexFile& caller_dex_file = *caller_compilation_unit_.GetDexFile(); uint32_t dex_method_index = FindMethodIndexIn( method, caller_dex_file, invoke_instruction->GetDexMethodIndex()); if (dex_method_index == DexFile::kDexNoIndex) { return false; } HInvokeVirtual* new_invoke = new (graph_->GetArena()) HInvokeVirtual( graph_->GetArena(), invoke_instruction->GetNumberOfArguments(), invoke_instruction->GetType(), invoke_instruction->GetDexPc(), dex_method_index, method, method->GetMethodIndex()); HInputsRef inputs = invoke_instruction->GetInputs(); for (size_t index = 0; index != inputs.size(); ++index) { new_invoke->SetArgumentAt(index, inputs[index]); } invoke_instruction->GetBlock()->InsertInstructionBefore(new_invoke, invoke_instruction); new_invoke->CopyEnvironmentFrom(invoke_instruction->GetEnvironment()); if (invoke_instruction->GetType() == Primitive::kPrimNot) { new_invoke->SetReferenceTypeInfo(invoke_instruction->GetReferenceTypeInfo()); } return_replacement = new_invoke; } else { // TODO: Consider sharpening an invoke virtual once it is not dependent on the // compiler driver. return false; } } if (cha_devirtualize) { AddCHAGuard(invoke_instruction, dex_pc, cursor, bb_cursor); } if (return_replacement != nullptr) { invoke_instruction->ReplaceWith(return_replacement); } invoke_instruction->GetBlock()->RemoveInstruction(invoke_instruction); FixUpReturnReferenceType(method, return_replacement); if (do_rtp && ReturnTypeMoreSpecific(invoke_instruction, return_replacement)) { // Actual return value has a more specific type than the method's declared // return type. Run RTP again on the outer graph to propagate it. ReferenceTypePropagation(graph_, outer_compilation_unit_.GetClassLoader(), outer_compilation_unit_.GetDexCache(), handles_, /* is_first_run */ false).Run(); } return true; } size_t HInliner::CountRecursiveCallsOf(ArtMethod* method) const { const HInliner* current = this; size_t count = 0; do { if (current->graph_->GetArtMethod() == method) { ++count; } current = current->parent_; } while (current != nullptr); return count; } bool HInliner::TryBuildAndInline(HInvoke* invoke_instruction, ArtMethod* method, ReferenceTypeInfo receiver_type, HInstruction** return_replacement) { if (method->IsProxyMethod()) { LOG_FAIL(kNotInlinedProxy) << "Method " << method->PrettyMethod() << " is not inlined because of unimplemented inline support for proxy methods."; return false; } if (CountRecursiveCallsOf(method) > kMaximumNumberOfRecursiveCalls) { LOG_FAIL(kNotInlinedRecursiveBudget) << "Method " << method->PrettyMethod() << " is not inlined because it has reached its recursive call budget."; return false; } // Check whether we're allowed to inline. The outermost compilation unit is the relevant // dex file here (though the transitivity of an inline chain would allow checking the calller). if (!compiler_driver_->MayInline(method->GetDexFile(), outer_compilation_unit_.GetDexFile())) { if (TryPatternSubstitution(invoke_instruction, method, return_replacement)) { LOG_SUCCESS() << "Successfully replaced pattern of invoke " << method->PrettyMethod(); MaybeRecordStat(kReplacedInvokeWithSimplePattern); return true; } LOG_FAIL(kNotInlinedWont) << "Won't inline " << method->PrettyMethod() << " in " << outer_compilation_unit_.GetDexFile()->GetLocation() << " (" << caller_compilation_unit_.GetDexFile()->GetLocation() << ") from " << method->GetDexFile()->GetLocation(); return false; } bool same_dex_file = IsSameDexFile(*outer_compilation_unit_.GetDexFile(), *method->GetDexFile()); const DexFile::CodeItem* code_item = method->GetCodeItem(); if (code_item == nullptr) { LOG_FAIL_NO_STAT() << "Method " << method->PrettyMethod() << " is not inlined because it is native"; return false; } size_t inline_max_code_units = compiler_driver_->GetCompilerOptions().GetInlineMaxCodeUnits(); if (code_item->insns_size_in_code_units_ > inline_max_code_units) { LOG_FAIL(kNotInlinedCodeItem) << "Method " << method->PrettyMethod() << " is not inlined because its code item is too big: " << code_item->insns_size_in_code_units_ << " > " << inline_max_code_units; return false; } if (code_item->tries_size_ != 0) { LOG_FAIL(kNotInlinedTryCatch) << "Method " << method->PrettyMethod() << " is not inlined because of try block"; return false; } if (!method->IsCompilable()) { LOG_FAIL(kNotInlinedNotVerified) << "Method " << method->PrettyMethod() << " has soft failures un-handled by the compiler, so it cannot be inlined"; } if (!method->GetDeclaringClass()->IsVerified()) { uint16_t class_def_idx = method->GetDeclaringClass()->GetDexClassDefIndex(); if (Runtime::Current()->UseJitCompilation() || !compiler_driver_->IsMethodVerifiedWithoutFailures( method->GetDexMethodIndex(), class_def_idx, *method->GetDexFile())) { LOG_FAIL(kNotInlinedNotVerified) << "Method " << method->PrettyMethod() << " couldn't be verified, so it cannot be inlined"; return false; } } if (invoke_instruction->IsInvokeStaticOrDirect() && invoke_instruction->AsInvokeStaticOrDirect()->IsStaticWithImplicitClinitCheck()) { // Case of a static method that cannot be inlined because it implicitly // requires an initialization check of its declaring class. LOG_FAIL(kNotInlinedDexCache) << "Method " << method->PrettyMethod() << " is not inlined because it is static and requires a clinit" << " check that cannot be emitted due to Dex cache limitations"; return false; } if (!TryBuildAndInlineHelper( invoke_instruction, method, receiver_type, same_dex_file, return_replacement)) { return false; } LOG_SUCCESS() << method->PrettyMethod(); MaybeRecordStat(kInlinedInvoke); return true; } static HInstruction* GetInvokeInputForArgVRegIndex(HInvoke* invoke_instruction, size_t arg_vreg_index) REQUIRES_SHARED(Locks::mutator_lock_) { size_t input_index = 0; for (size_t i = 0; i < arg_vreg_index; ++i, ++input_index) { DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments()); if (Primitive::Is64BitType(invoke_instruction->InputAt(input_index)->GetType())) { ++i; DCHECK_NE(i, arg_vreg_index); } } DCHECK_LT(input_index, invoke_instruction->GetNumberOfArguments()); return invoke_instruction->InputAt(input_index); } // Try to recognize known simple patterns and replace invoke call with appropriate instructions. bool HInliner::TryPatternSubstitution(HInvoke* invoke_instruction, ArtMethod* resolved_method, HInstruction** return_replacement) { InlineMethod inline_method; if (!InlineMethodAnalyser::AnalyseMethodCode(resolved_method, &inline_method)) { return false; } switch (inline_method.opcode) { case kInlineOpNop: DCHECK_EQ(invoke_instruction->GetType(), Primitive::kPrimVoid); *return_replacement = nullptr; break; case kInlineOpReturnArg: *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, inline_method.d.return_data.arg); break; case kInlineOpNonWideConst: if (resolved_method->GetShorty()[0] == 'L') { DCHECK_EQ(inline_method.d.data, 0u); *return_replacement = graph_->GetNullConstant(); } else { *return_replacement = graph_->GetIntConstant(static_cast<int32_t>(inline_method.d.data)); } break; case kInlineOpIGet: { const InlineIGetIPutData& data = inline_method.d.ifield_data; if (data.method_is_static || data.object_arg != 0u) { // TODO: Needs null check. return false; } HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg); HInstanceFieldGet* iget = CreateInstanceFieldGet(data.field_idx, resolved_method, obj); DCHECK_EQ(iget->GetFieldOffset().Uint32Value(), data.field_offset); DCHECK_EQ(iget->IsVolatile() ? 1u : 0u, data.is_volatile); invoke_instruction->GetBlock()->InsertInstructionBefore(iget, invoke_instruction); *return_replacement = iget; break; } case kInlineOpIPut: { const InlineIGetIPutData& data = inline_method.d.ifield_data; if (data.method_is_static || data.object_arg != 0u) { // TODO: Needs null check. return false; } HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, data.object_arg); HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, data.src_arg); HInstanceFieldSet* iput = CreateInstanceFieldSet(data.field_idx, resolved_method, obj, value); DCHECK_EQ(iput->GetFieldOffset().Uint32Value(), data.field_offset); DCHECK_EQ(iput->IsVolatile() ? 1u : 0u, data.is_volatile); invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction); if (data.return_arg_plus1 != 0u) { size_t return_arg = data.return_arg_plus1 - 1u; *return_replacement = GetInvokeInputForArgVRegIndex(invoke_instruction, return_arg); } break; } case kInlineOpConstructor: { const InlineConstructorData& data = inline_method.d.constructor_data; // Get the indexes to arrays for easier processing. uint16_t iput_field_indexes[] = { data.iput0_field_index, data.iput1_field_index, data.iput2_field_index }; uint16_t iput_args[] = { data.iput0_arg, data.iput1_arg, data.iput2_arg }; static_assert(arraysize(iput_args) == arraysize(iput_field_indexes), "Size mismatch"); // Count valid field indexes. size_t number_of_iputs = 0u; while (number_of_iputs != arraysize(iput_field_indexes) && iput_field_indexes[number_of_iputs] != DexFile::kDexNoIndex16) { // Check that there are no duplicate valid field indexes. DCHECK_EQ(0, std::count(iput_field_indexes + number_of_iputs + 1, iput_field_indexes + arraysize(iput_field_indexes), iput_field_indexes[number_of_iputs])); ++number_of_iputs; } // Check that there are no valid field indexes in the rest of the array. DCHECK_EQ(0, std::count_if(iput_field_indexes + number_of_iputs, iput_field_indexes + arraysize(iput_field_indexes), [](uint16_t index) { return index != DexFile::kDexNoIndex16; })); // Create HInstanceFieldSet for each IPUT that stores non-zero data. HInstruction* obj = GetInvokeInputForArgVRegIndex(invoke_instruction, /* this */ 0u); bool needs_constructor_barrier = false; for (size_t i = 0; i != number_of_iputs; ++i) { HInstruction* value = GetInvokeInputForArgVRegIndex(invoke_instruction, iput_args[i]); if (!value->IsConstant() || !value->AsConstant()->IsZeroBitPattern()) { uint16_t field_index = iput_field_indexes[i]; bool is_final; HInstanceFieldSet* iput = CreateInstanceFieldSet(field_index, resolved_method, obj, value, &is_final); invoke_instruction->GetBlock()->InsertInstructionBefore(iput, invoke_instruction); // Check whether the field is final. If it is, we need to add a barrier. if (is_final) { needs_constructor_barrier = true; } } } if (needs_constructor_barrier) { HMemoryBarrier* barrier = new (graph_->GetArena()) HMemoryBarrier(kStoreStore, kNoDexPc); invoke_instruction->GetBlock()->InsertInstructionBefore(barrier, invoke_instruction); } *return_replacement = nullptr; break; } default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } return true; } HInstanceFieldGet* HInliner::CreateInstanceFieldGet(uint32_t field_index, ArtMethod* referrer, HInstruction* obj) REQUIRES_SHARED(Locks::mutator_lock_) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ArtField* resolved_field = class_linker->LookupResolvedField(field_index, referrer, /* is_static */ false); DCHECK(resolved_field != nullptr); HInstanceFieldGet* iget = new (graph_->GetArena()) HInstanceFieldGet( obj, resolved_field, resolved_field->GetTypeAsPrimitiveType(), resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, resolved_field->GetDeclaringClass()->GetDexClassDefIndex(), *referrer->GetDexFile(), // Read barrier generates a runtime call in slow path and we need a valid // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537. /* dex_pc */ 0); if (iget->GetType() == Primitive::kPrimNot) { // Use the same dex_cache that we used for field lookup as the hint_dex_cache. Handle<mirror::DexCache> dex_cache = handles_->NewHandle(referrer->GetDexCache()); ReferenceTypePropagation rtp(graph_, outer_compilation_unit_.GetClassLoader(), dex_cache, handles_, /* is_first_run */ false); rtp.Visit(iget); } return iget; } HInstanceFieldSet* HInliner::CreateInstanceFieldSet(uint32_t field_index, ArtMethod* referrer, HInstruction* obj, HInstruction* value, bool* is_final) REQUIRES_SHARED(Locks::mutator_lock_) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); ArtField* resolved_field = class_linker->LookupResolvedField(field_index, referrer, /* is_static */ false); DCHECK(resolved_field != nullptr); if (is_final != nullptr) { // This information is needed only for constructors. DCHECK(referrer->IsConstructor()); *is_final = resolved_field->IsFinal(); } HInstanceFieldSet* iput = new (graph_->GetArena()) HInstanceFieldSet( obj, value, resolved_field, resolved_field->GetTypeAsPrimitiveType(), resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, resolved_field->GetDeclaringClass()->GetDexClassDefIndex(), *referrer->GetDexFile(), // Read barrier generates a runtime call in slow path and we need a valid // dex pc for the associated stack map. 0 is bogus but valid. Bug: 26854537. /* dex_pc */ 0); return iput; } template <typename T> static inline Handle<T> NewHandleIfDifferent(T* object, Handle<T> hint, VariableSizedHandleScope* handles) REQUIRES_SHARED(Locks::mutator_lock_) { return (object != hint.Get()) ? handles->NewHandle(object) : hint; } bool HInliner::TryBuildAndInlineHelper(HInvoke* invoke_instruction, ArtMethod* resolved_method, ReferenceTypeInfo receiver_type, bool same_dex_file, HInstruction** return_replacement) { DCHECK(!(resolved_method->IsStatic() && receiver_type.IsValid())); ScopedObjectAccess soa(Thread::Current()); const DexFile::CodeItem* code_item = resolved_method->GetCodeItem(); const DexFile& callee_dex_file = *resolved_method->GetDexFile(); uint32_t method_index = resolved_method->GetDexMethodIndex(); ClassLinker* class_linker = caller_compilation_unit_.GetClassLinker(); Handle<mirror::DexCache> dex_cache = NewHandleIfDifferent(resolved_method->GetDexCache(), caller_compilation_unit_.GetDexCache(), handles_); Handle<mirror::ClassLoader> class_loader = NewHandleIfDifferent(resolved_method->GetDeclaringClass()->GetClassLoader(), caller_compilation_unit_.GetClassLoader(), handles_); DexCompilationUnit dex_compilation_unit( class_loader, class_linker, callee_dex_file, code_item, resolved_method->GetDeclaringClass()->GetDexClassDefIndex(), method_index, resolved_method->GetAccessFlags(), /* verified_method */ nullptr, dex_cache); InvokeType invoke_type = invoke_instruction->GetInvokeType(); if (invoke_type == kInterface) { // We have statically resolved the dispatch. To please the class linker // at runtime, we change this call as if it was a virtual call. invoke_type = kVirtual; } const int32_t caller_instruction_counter = graph_->GetCurrentInstructionId(); HGraph* callee_graph = new (graph_->GetArena()) HGraph( graph_->GetArena(), callee_dex_file, method_index, compiler_driver_->GetInstructionSet(), invoke_type, graph_->IsDebuggable(), /* osr */ false, caller_instruction_counter); callee_graph->SetArtMethod(resolved_method); // When they are needed, allocate `inline_stats_` on the Arena instead // of on the stack, as Clang might produce a stack frame too large // for this function, that would not fit the requirements of the // `-Wframe-larger-than` option. if (stats_ != nullptr) { // Reuse one object for all inline attempts from this caller to keep Arena memory usage low. if (inline_stats_ == nullptr) { void* storage = graph_->GetArena()->Alloc<OptimizingCompilerStats>(kArenaAllocMisc); inline_stats_ = new (storage) OptimizingCompilerStats; } else { inline_stats_->Reset(); } } HGraphBuilder builder(callee_graph, &dex_compilation_unit, &outer_compilation_unit_, resolved_method->GetDexFile(), *code_item, compiler_driver_, codegen_, inline_stats_, resolved_method->GetQuickenedInfo(class_linker->GetImagePointerSize()), dex_cache, handles_); if (builder.BuildGraph() != kAnalysisSuccess) { LOG_FAIL(kNotInlinedCannotBuild) << "Method " << callee_dex_file.PrettyMethod(method_index) << " could not be built, so cannot be inlined"; return false; } if (!RegisterAllocator::CanAllocateRegistersFor(*callee_graph, compiler_driver_->GetInstructionSet())) { LOG_FAIL(kNotInlinedRegisterAllocator) << "Method " << callee_dex_file.PrettyMethod(method_index) << " cannot be inlined because of the register allocator"; return false; } size_t parameter_index = 0; bool run_rtp = false; for (HInstructionIterator instructions(callee_graph->GetEntryBlock()->GetInstructions()); !instructions.Done(); instructions.Advance()) { HInstruction* current = instructions.Current(); if (current->IsParameterValue()) { HInstruction* argument = invoke_instruction->InputAt(parameter_index); if (argument->IsNullConstant()) { current->ReplaceWith(callee_graph->GetNullConstant()); } else if (argument->IsIntConstant()) { current->ReplaceWith(callee_graph->GetIntConstant(argument->AsIntConstant()->GetValue())); } else if (argument->IsLongConstant()) { current->ReplaceWith(callee_graph->GetLongConstant(argument->AsLongConstant()->GetValue())); } else if (argument->IsFloatConstant()) { current->ReplaceWith( callee_graph->GetFloatConstant(argument->AsFloatConstant()->GetValue())); } else if (argument->IsDoubleConstant()) { current->ReplaceWith( callee_graph->GetDoubleConstant(argument->AsDoubleConstant()->GetValue())); } else if (argument->GetType() == Primitive::kPrimNot) { if (!resolved_method->IsStatic() && parameter_index == 0 && receiver_type.IsValid()) { run_rtp = true; current->SetReferenceTypeInfo(receiver_type); } else { current->SetReferenceTypeInfo(argument->GetReferenceTypeInfo()); } current->AsParameterValue()->SetCanBeNull(argument->CanBeNull()); } ++parameter_index; } } // We have replaced formal arguments with actual arguments. If actual types // are more specific than the declared ones, run RTP again on the inner graph. if (run_rtp || ArgumentTypesMoreSpecific(invoke_instruction, resolved_method)) { ReferenceTypePropagation(callee_graph, outer_compilation_unit_.GetClassLoader(), dex_compilation_unit.GetDexCache(), handles_, /* is_first_run */ false).Run(); } RunOptimizations(callee_graph, code_item, dex_compilation_unit); HBasicBlock* exit_block = callee_graph->GetExitBlock(); if (exit_block == nullptr) { LOG_FAIL(kNotInlinedInfiniteLoop) << "Method " << callee_dex_file.PrettyMethod(method_index) << " could not be inlined because it has an infinite loop"; return false; } bool has_one_return = false; for (HBasicBlock* predecessor : exit_block->GetPredecessors()) { if (predecessor->GetLastInstruction()->IsThrow()) { if (invoke_instruction->GetBlock()->IsTryBlock()) { // TODO(ngeoffray): Support adding HTryBoundary in Hgraph::InlineInto. LOG_FAIL(kNotInlinedTryCatch) << "Method " << callee_dex_file.PrettyMethod(method_index) << " could not be inlined because one branch always throws and" << " caller is in a try/catch block"; return false; } else if (graph_->GetExitBlock() == nullptr) { // TODO(ngeoffray): Support adding HExit in the caller graph. LOG_FAIL(kNotInlinedInfiniteLoop) << "Method " << callee_dex_file.PrettyMethod(method_index) << " could not be inlined because one branch always throws and" << " caller does not have an exit block"; return false; } else if (graph_->HasIrreducibleLoops()) { // TODO(ngeoffray): Support re-computing loop information to graphs with // irreducible loops? VLOG(compiler) << "Method " << callee_dex_file.PrettyMethod(method_index) << " could not be inlined because one branch always throws and" << " caller has irreducible loops"; return false; } } else { has_one_return = true; } } if (!has_one_return) { LOG_FAIL(kNotInlinedAlwaysThrows) << "Method " << callee_dex_file.PrettyMethod(method_index) << " could not be inlined because it always throws"; return false; } size_t number_of_instructions = 0; // Skip the entry block, it does not contain instructions that prevent inlining. for (HBasicBlock* block : callee_graph->GetReversePostOrderSkipEntryBlock()) { if (block->IsLoopHeader()) { if (block->GetLoopInformation()->IsIrreducible()) { // Don't inline methods with irreducible loops, they could prevent some // optimizations to run. LOG_FAIL(kNotInlinedIrreducibleLoop) << "Method " << callee_dex_file.PrettyMethod(method_index) << " could not be inlined because it contains an irreducible loop"; return false; } if (!block->GetLoopInformation()->HasExitEdge()) { // Don't inline methods with loops without exit, since they cause the // loop information to be computed incorrectly when updating after // inlining. LOG_FAIL(kNotInlinedLoopWithoutExit) << "Method " << callee_dex_file.PrettyMethod(method_index) << " could not be inlined because it contains a loop with no exit"; return false; } } for (HInstructionIterator instr_it(block->GetInstructions()); !instr_it.Done(); instr_it.Advance()) { if (++number_of_instructions >= inlining_budget_) { LOG_FAIL(kNotInlinedInstructionBudget) << "Method " << callee_dex_file.PrettyMethod(method_index) << " is not inlined because the outer method has reached" << " its instruction budget limit."; return false; } HInstruction* current = instr_it.Current(); if (current->NeedsEnvironment() && (total_number_of_dex_registers_ >= kMaximumNumberOfCumulatedDexRegisters)) { LOG_FAIL(kNotInlinedEnvironmentBudget) << "Method " << callee_dex_file.PrettyMethod(method_index) << " is not inlined because its caller has reached" << " its environment budget limit."; return false; } if (current->NeedsEnvironment() && !CanEncodeInlinedMethodInStackMap(*caller_compilation_unit_.GetDexFile(), resolved_method)) { LOG_FAIL(kNotInlinedStackMaps) << "Method " << callee_dex_file.PrettyMethod(method_index) << " could not be inlined because " << current->DebugName() << " needs an environment, is in a different dex file" << ", and cannot be encoded in the stack maps."; return false; } if (!same_dex_file && current->NeedsDexCacheOfDeclaringClass()) { LOG_FAIL(kNotInlinedDexCache) << "Method " << callee_dex_file.PrettyMethod(method_index) << " could not be inlined because " << current->DebugName() << " it is in a different dex file and requires access to the dex cache"; return false; } if (current->IsUnresolvedStaticFieldGet() || current->IsUnresolvedInstanceFieldGet() || current->IsUnresolvedStaticFieldSet() || current->IsUnresolvedInstanceFieldSet()) { // Entrypoint for unresolved fields does not handle inlined frames. LOG_FAIL(kNotInlinedUnresolvedEntrypoint) << "Method " << callee_dex_file.PrettyMethod(method_index) << " could not be inlined because it is using an unresolved" << " entrypoint"; return false; } } } DCHECK_EQ(caller_instruction_counter, graph_->GetCurrentInstructionId()) << "No instructions can be added to the outer graph while inner graph is being built"; // Inline the callee graph inside the caller graph. const int32_t callee_instruction_counter = callee_graph->GetCurrentInstructionId(); graph_->SetCurrentInstructionId(callee_instruction_counter); *return_replacement = callee_graph->InlineInto(graph_, invoke_instruction); // Update our budget for other inlining attempts in `caller_graph`. total_number_of_instructions_ += number_of_instructions; UpdateInliningBudget(); DCHECK_EQ(callee_instruction_counter, callee_graph->GetCurrentInstructionId()) << "No instructions can be added to the inner graph during inlining into the outer graph"; if (stats_ != nullptr) { DCHECK(inline_stats_ != nullptr); inline_stats_->AddTo(stats_); } return true; } void HInliner::RunOptimizations(HGraph* callee_graph, const DexFile::CodeItem* code_item, const DexCompilationUnit& dex_compilation_unit) { // Note: if the outermost_graph_ is being compiled OSR, we should not run any // optimization that could lead to a HDeoptimize. The following optimizations do not. HDeadCodeElimination dce(callee_graph, inline_stats_, "dead_code_elimination$inliner"); HConstantFolding fold(callee_graph, "constant_folding$inliner"); HSharpening sharpening(callee_graph, codegen_, dex_compilation_unit, compiler_driver_, handles_); InstructionSimplifier simplify(callee_graph, codegen_, inline_stats_); IntrinsicsRecognizer intrinsics(callee_graph, inline_stats_); HOptimization* optimizations[] = { &intrinsics, &sharpening, &simplify, &fold, &dce, }; for (size_t i = 0; i < arraysize(optimizations); ++i) { HOptimization* optimization = optimizations[i]; optimization->Run(); } // Bail early for pathological cases on the environment (for example recursive calls, // or too large environment). if (total_number_of_dex_registers_ >= kMaximumNumberOfCumulatedDexRegisters) { LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod() << " will not be inlined because the outer method has reached" << " its environment budget limit."; return; } // Bail early if we know we already are over the limit. size_t number_of_instructions = CountNumberOfInstructions(callee_graph); if (number_of_instructions > inlining_budget_) { LOG_NOTE() << "Calls in " << callee_graph->GetArtMethod()->PrettyMethod() << " will not be inlined because the outer method has reached" << " its instruction budget limit. " << number_of_instructions; return; } HInliner inliner(callee_graph, outermost_graph_, codegen_, outer_compilation_unit_, dex_compilation_unit, compiler_driver_, handles_, inline_stats_, total_number_of_dex_registers_ + code_item->registers_size_, total_number_of_instructions_ + number_of_instructions, this, depth_ + 1); inliner.Run(); } static bool IsReferenceTypeRefinement(ReferenceTypeInfo declared_rti, bool declared_can_be_null, HInstruction* actual_obj) REQUIRES_SHARED(Locks::mutator_lock_) { if (declared_can_be_null && !actual_obj->CanBeNull()) { return true; } ReferenceTypeInfo actual_rti = actual_obj->GetReferenceTypeInfo(); return (actual_rti.IsExact() && !declared_rti.IsExact()) || declared_rti.IsStrictSupertypeOf(actual_rti); } ReferenceTypeInfo HInliner::GetClassRTI(mirror::Class* klass) { return ReferenceTypePropagation::IsAdmissible(klass) ? ReferenceTypeInfo::Create(handles_->NewHandle(klass)) : graph_->GetInexactObjectRti(); } bool HInliner::ArgumentTypesMoreSpecific(HInvoke* invoke_instruction, ArtMethod* resolved_method) { // If this is an instance call, test whether the type of the `this` argument // is more specific than the class which declares the method. if (!resolved_method->IsStatic()) { if (IsReferenceTypeRefinement(GetClassRTI(resolved_method->GetDeclaringClass()), /* declared_can_be_null */ false, invoke_instruction->InputAt(0u))) { return true; } } // Iterate over the list of parameter types and test whether any of the // actual inputs has a more specific reference type than the type declared in // the signature. const DexFile::TypeList* param_list = resolved_method->GetParameterTypeList(); for (size_t param_idx = 0, input_idx = resolved_method->IsStatic() ? 0 : 1, e = (param_list == nullptr ? 0 : param_list->Size()); param_idx < e; ++param_idx, ++input_idx) { HInstruction* input = invoke_instruction->InputAt(input_idx); if (input->GetType() == Primitive::kPrimNot) { mirror::Class* param_cls = resolved_method->GetClassFromTypeIndex( param_list->GetTypeItem(param_idx).type_idx_, /* resolve */ false); if (IsReferenceTypeRefinement(GetClassRTI(param_cls), /* declared_can_be_null */ true, input)) { return true; } } } return false; } bool HInliner::ReturnTypeMoreSpecific(HInvoke* invoke_instruction, HInstruction* return_replacement) { // Check the integrity of reference types and run another type propagation if needed. if (return_replacement != nullptr) { if (return_replacement->GetType() == Primitive::kPrimNot) { // Test if the return type is a refinement of the declared return type. if (IsReferenceTypeRefinement(invoke_instruction->GetReferenceTypeInfo(), /* declared_can_be_null */ true, return_replacement)) { return true; } else if (return_replacement->IsInstanceFieldGet()) { HInstanceFieldGet* field_get = return_replacement->AsInstanceFieldGet(); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); if (field_get->GetFieldInfo().GetField() == class_linker->GetClassRoot(ClassLinker::kJavaLangObject)->GetInstanceField(0)) { return true; } } } else if (return_replacement->IsInstanceOf()) { // Inlining InstanceOf into an If may put a tighter bound on reference types. return true; } } return false; } void HInliner::FixUpReturnReferenceType(ArtMethod* resolved_method, HInstruction* return_replacement) { if (return_replacement != nullptr) { if (return_replacement->GetType() == Primitive::kPrimNot) { if (!return_replacement->GetReferenceTypeInfo().IsValid()) { // Make sure that we have a valid type for the return. We may get an invalid one when // we inline invokes with multiple branches and create a Phi for the result. // TODO: we could be more precise by merging the phi inputs but that requires // some functionality from the reference type propagation. DCHECK(return_replacement->IsPhi()); mirror::Class* cls = resolved_method->GetReturnType(false /* resolve */); return_replacement->SetReferenceTypeInfo(GetClassRTI(cls)); } } } } } // namespace art