/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "instruction_builder.h" #include "art_method-inl.h" #include "bytecode_utils.h" #include "class_linker.h" #include "dex_instruction-inl.h" #include "driver/compiler_options.h" #include "imtable-inl.h" #include "sharpening.h" #include "scoped_thread_state_change-inl.h" namespace art { void HInstructionBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) { if (compilation_stats_ != nullptr) { compilation_stats_->RecordStat(compilation_stat); } } HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const { return block_builder_->GetBlockAt(dex_pc); } inline ArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) { ArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()]; const size_t vregs = graph_->GetNumberOfVRegs(); if (locals->size() == vregs) { return locals; } return GetLocalsForWithAllocation(block, locals, vregs); } ArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsForWithAllocation( HBasicBlock* block, ArenaVector<HInstruction*>* locals, const size_t vregs) { DCHECK_NE(locals->size(), vregs); locals->resize(vregs, nullptr); if (block->IsCatchBlock()) { // We record incoming inputs of catch phis at throwing instructions and // must therefore eagerly create the phis. Phis for undefined vregs will // be deleted when the first throwing instruction with the vreg undefined // is encountered. Unused phis will be removed by dead phi analysis. for (size_t i = 0; i < vregs; ++i) { // No point in creating the catch phi if it is already undefined at // the first throwing instruction. HInstruction* current_local_value = (*current_locals_)[i]; if (current_local_value != nullptr) { HPhi* phi = new (arena_) HPhi( arena_, i, 0, current_local_value->GetType()); block->AddPhi(phi); (*locals)[i] = phi; } } } return locals; } inline HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) { ArenaVector<HInstruction*>* locals = GetLocalsFor(block); return (*locals)[local]; } void HInstructionBuilder::InitializeBlockLocals() { current_locals_ = GetLocalsFor(current_block_); if (current_block_->IsCatchBlock()) { // Catch phis were already created and inputs collected from throwing sites. if (kIsDebugBuild) { // Make sure there was at least one throwing instruction which initialized // locals (guaranteed by HGraphBuilder) and that all try blocks have been // visited already (from HTryBoundary scoping and reverse post order). bool catch_block_visited = false; for (HBasicBlock* current : graph_->GetReversePostOrder()) { if (current == current_block_) { catch_block_visited = true; } else if (current->IsTryBlock()) { const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry(); if (try_entry.HasExceptionHandler(*current_block_)) { DCHECK(!catch_block_visited) << "Catch block visited before its try block."; } } } DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs()) << "No instructions throwing into a live catch block."; } } else if (current_block_->IsLoopHeader()) { // If the block is a loop header, we know we only have visited the pre header // because we are visiting in reverse post order. We create phis for all initialized // locals from the pre header. Their inputs will be populated at the end of // the analysis. for (size_t local = 0; local < current_locals_->size(); ++local) { HInstruction* incoming = ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local); if (incoming != nullptr) { HPhi* phi = new (arena_) HPhi( arena_, local, 0, incoming->GetType()); current_block_->AddPhi(phi); (*current_locals_)[local] = phi; } } // Save the loop header so that the last phase of the analysis knows which // blocks need to be updated. loop_headers_.push_back(current_block_); } else if (current_block_->GetPredecessors().size() > 0) { // All predecessors have already been visited because we are visiting in reverse post order. // We merge the values of all locals, creating phis if those values differ. for (size_t local = 0; local < current_locals_->size(); ++local) { bool one_predecessor_has_no_value = false; bool is_different = false; HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local); for (HBasicBlock* predecessor : current_block_->GetPredecessors()) { HInstruction* current = ValueOfLocalAt(predecessor, local); if (current == nullptr) { one_predecessor_has_no_value = true; break; } else if (current != value) { is_different = true; } } if (one_predecessor_has_no_value) { // If one predecessor has no value for this local, we trust the verifier has // successfully checked that there is a store dominating any read after this block. continue; } if (is_different) { HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local); HPhi* phi = new (arena_) HPhi( arena_, local, current_block_->GetPredecessors().size(), first_input->GetType()); for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) { HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local); phi->SetRawInputAt(i, pred_value); } current_block_->AddPhi(phi); value = phi; } (*current_locals_)[local] = value; } } } void HInstructionBuilder::PropagateLocalsToCatchBlocks() { const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry(); for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) { ArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block); DCHECK_EQ(handler_locals->size(), current_locals_->size()); for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { HInstruction* handler_value = (*handler_locals)[vreg]; if (handler_value == nullptr) { // Vreg was undefined at a previously encountered throwing instruction // and the catch phi was deleted. Do not record the local value. continue; } DCHECK(handler_value->IsPhi()); HInstruction* local_value = (*current_locals_)[vreg]; if (local_value == nullptr) { // This is the first instruction throwing into `catch_block` where // `vreg` is undefined. Delete the catch phi. catch_block->RemovePhi(handler_value->AsPhi()); (*handler_locals)[vreg] = nullptr; } else { // Vreg has been defined at all instructions throwing into `catch_block` // encountered so far. Record the local value in the catch phi. handler_value->AsPhi()->AddInput(local_value); } } } } void HInstructionBuilder::AppendInstruction(HInstruction* instruction) { current_block_->AddInstruction(instruction); InitializeInstruction(instruction); } void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) { if (current_block_->GetInstructions().IsEmpty()) { current_block_->AddInstruction(instruction); } else { current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction()); } InitializeInstruction(instruction); } void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) { if (instruction->NeedsEnvironment()) { HEnvironment* environment = new (arena_) HEnvironment( arena_, current_locals_->size(), graph_->GetArtMethod(), instruction->GetDexPc(), instruction); environment->CopyFrom(*current_locals_); instruction->SetRawEnvironment(environment); } } HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) { HInstruction* ref = LoadLocal(register_index, Primitive::kPrimNot); if (!ref->CanBeNull()) { return ref; } HNullCheck* null_check = new (arena_) HNullCheck(ref, dex_pc); AppendInstruction(null_check); return null_check; } void HInstructionBuilder::SetLoopHeaderPhiInputs() { for (size_t i = loop_headers_.size(); i > 0; --i) { HBasicBlock* block = loop_headers_[i - 1]; for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { HPhi* phi = it.Current()->AsPhi(); size_t vreg = phi->GetRegNumber(); for (HBasicBlock* predecessor : block->GetPredecessors()) { HInstruction* value = ValueOfLocalAt(predecessor, vreg); if (value == nullptr) { // Vreg is undefined at this predecessor. Mark it dead and leave with // fewer inputs than predecessors. SsaChecker will fail if not removed. phi->SetDead(); break; } else { phi->AddInput(value); } } } } } static bool IsBlockPopulated(HBasicBlock* block) { if (block->IsLoopHeader()) { // Suspend checks were inserted into loop headers during building of dominator tree. DCHECK(block->GetFirstInstruction()->IsSuspendCheck()); return block->GetFirstInstruction() != block->GetLastInstruction(); } else { return !block->GetInstructions().IsEmpty(); } } bool HInstructionBuilder::Build() { locals_for_.resize(graph_->GetBlocks().size(), ArenaVector<HInstruction*>(arena_->Adapter(kArenaAllocGraphBuilder))); // Find locations where we want to generate extra stackmaps for native debugging. // This allows us to generate the info only at interesting points (for example, // at start of java statement) rather than before every dex instruction. const bool native_debuggable = compiler_driver_ != nullptr && compiler_driver_->GetCompilerOptions().GetNativeDebuggable(); ArenaBitVector* native_debug_info_locations = nullptr; if (native_debuggable) { const uint32_t num_instructions = code_item_.insns_size_in_code_units_; native_debug_info_locations = new (arena_) ArenaBitVector (arena_, num_instructions, false); FindNativeDebugInfoLocations(native_debug_info_locations); } for (HBasicBlock* block : graph_->GetReversePostOrder()) { current_block_ = block; uint32_t block_dex_pc = current_block_->GetDexPc(); InitializeBlockLocals(); if (current_block_->IsEntryBlock()) { InitializeParameters(); AppendInstruction(new (arena_) HSuspendCheck(0u)); AppendInstruction(new (arena_) HGoto(0u)); continue; } else if (current_block_->IsExitBlock()) { AppendInstruction(new (arena_) HExit()); continue; } else if (current_block_->IsLoopHeader()) { HSuspendCheck* suspend_check = new (arena_) HSuspendCheck(current_block_->GetDexPc()); current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check); // This is slightly odd because the loop header might not be empty (TryBoundary). // But we're still creating the environment with locals from the top of the block. InsertInstructionAtTop(suspend_check); } if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) { // Synthetic block that does not need to be populated. DCHECK(IsBlockPopulated(current_block_)); continue; } DCHECK(!IsBlockPopulated(current_block_)); for (CodeItemIterator it(code_item_, block_dex_pc); !it.Done(); it.Advance()) { if (current_block_ == nullptr) { // The previous instruction ended this block. break; } uint32_t dex_pc = it.CurrentDexPc(); if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) { // This dex_pc starts a new basic block. break; } if (current_block_->IsTryBlock() && IsThrowingDexInstruction(it.CurrentInstruction())) { PropagateLocalsToCatchBlocks(); } if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) { AppendInstruction(new (arena_) HNativeDebugInfo(dex_pc)); } if (!ProcessDexInstruction(it.CurrentInstruction(), dex_pc)) { return false; } } if (current_block_ != nullptr) { // Branching instructions clear current_block, so we know the last // instruction of the current block is not a branching instruction. // We add an unconditional Goto to the next block. DCHECK_EQ(current_block_->GetSuccessors().size(), 1u); AppendInstruction(new (arena_) HGoto()); } } SetLoopHeaderPhiInputs(); return true; } void HInstructionBuilder::FindNativeDebugInfoLocations(ArenaBitVector* locations) { // The callback gets called when the line number changes. // In other words, it marks the start of new java statement. struct Callback { static bool Position(void* ctx, const DexFile::PositionInfo& entry) { static_cast<ArenaBitVector*>(ctx)->SetBit(entry.address_); return false; } }; dex_file_->DecodeDebugPositionInfo(&code_item_, Callback::Position, locations); // Instruction-specific tweaks. const Instruction* const begin = Instruction::At(code_item_.insns_); const Instruction* const end = begin->RelativeAt(code_item_.insns_size_in_code_units_); for (const Instruction* inst = begin; inst < end; inst = inst->Next()) { switch (inst->Opcode()) { case Instruction::MOVE_EXCEPTION: { // Stop in native debugger after the exception has been moved. // The compiler also expects the move at the start of basic block so // we do not want to interfere by inserting native-debug-info before it. locations->ClearBit(inst->GetDexPc(code_item_.insns_)); const Instruction* next = inst->Next(); if (next < end) { locations->SetBit(next->GetDexPc(code_item_.insns_)); } break; } default: break; } } } HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, Primitive::Type type) const { HInstruction* value = (*current_locals_)[reg_number]; DCHECK(value != nullptr); // If the operation requests a specific type, we make sure its input is of that type. if (type != value->GetType()) { if (Primitive::IsFloatingPointType(type)) { value = ssa_builder_->GetFloatOrDoubleEquivalent(value, type); } else if (type == Primitive::kPrimNot) { value = ssa_builder_->GetReferenceTypeEquivalent(value); } DCHECK(value != nullptr); } return value; } void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) { Primitive::Type stored_type = stored_value->GetType(); DCHECK_NE(stored_type, Primitive::kPrimVoid); // Storing into vreg `reg_number` may implicitly invalidate the surrounding // registers. Consider the following cases: // (1) Storing a wide value must overwrite previous values in both `reg_number` // and `reg_number+1`. We store `nullptr` in `reg_number+1`. // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number` // must invalidate it. We store `nullptr` in `reg_number-1`. // Consequently, storing a wide value into the high vreg of another wide value // will invalidate both `reg_number-1` and `reg_number+1`. if (reg_number != 0) { HInstruction* local_low = (*current_locals_)[reg_number - 1]; if (local_low != nullptr && Primitive::Is64BitType(local_low->GetType())) { // The vreg we are storing into was previously the high vreg of a pair. // We need to invalidate its low vreg. DCHECK((*current_locals_)[reg_number] == nullptr); (*current_locals_)[reg_number - 1] = nullptr; } } (*current_locals_)[reg_number] = stored_value; if (Primitive::Is64BitType(stored_type)) { // We are storing a pair. Invalidate the instruction in the high vreg. (*current_locals_)[reg_number + 1] = nullptr; } } void HInstructionBuilder::InitializeParameters() { DCHECK(current_block_->IsEntryBlock()); // dex_compilation_unit_ is null only when unit testing. if (dex_compilation_unit_ == nullptr) { return; } const char* shorty = dex_compilation_unit_->GetShorty(); uint16_t number_of_parameters = graph_->GetNumberOfInVRegs(); uint16_t locals_index = graph_->GetNumberOfLocalVRegs(); uint16_t parameter_index = 0; const DexFile::MethodId& referrer_method_id = dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex()); if (!dex_compilation_unit_->IsStatic()) { // Add the implicit 'this' argument, not expressed in the signature. HParameterValue* parameter = new (arena_) HParameterValue(*dex_file_, referrer_method_id.class_idx_, parameter_index++, Primitive::kPrimNot, true); AppendInstruction(parameter); UpdateLocal(locals_index++, parameter); number_of_parameters--; } const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id); const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto); for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) { HParameterValue* parameter = new (arena_) HParameterValue( *dex_file_, arg_types->GetTypeItem(shorty_pos - 1).type_idx_, parameter_index++, Primitive::GetType(shorty[shorty_pos]), false); ++shorty_pos; AppendInstruction(parameter); // Store the parameter value in the local that the dex code will use // to reference that parameter. UpdateLocal(locals_index++, parameter); if (Primitive::Is64BitType(parameter->GetType())) { i++; locals_index++; parameter_index++; } } } template<typename T> void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); T* comparison = new (arena_) T(first, second, dex_pc); AppendInstruction(comparison); AppendInstruction(new (arena_) HIf(comparison, dex_pc)); current_block_ = nullptr; } template<typename T> void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) { HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); T* comparison = new (arena_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc); AppendInstruction(comparison); AppendInstruction(new (arena_) HIf(comparison, dex_pc)); current_block_ = nullptr; } template<typename T> void HInstructionBuilder::Unop_12x(const Instruction& instruction, Primitive::Type type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), type); AppendInstruction(new (arena_) T(type, first, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } void HInstructionBuilder::Conversion_12x(const Instruction& instruction, Primitive::Type input_type, Primitive::Type result_type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), input_type); AppendInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } template<typename T> void HInstructionBuilder::Binop_23x(const Instruction& instruction, Primitive::Type type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), type); HInstruction* second = LoadLocal(instruction.VRegC(), type); AppendInstruction(new (arena_) T(type, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } template<typename T> void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction, Primitive::Type type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), type); HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt); AppendInstruction(new (arena_) T(type, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction, Primitive::Type type, ComparisonBias bias, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), type); HInstruction* second = LoadLocal(instruction.VRegC(), type); AppendInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } template<typename T> void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction, Primitive::Type type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegA(), type); HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); AppendInstruction(new (arena_) T(type, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } template<typename T> void HInstructionBuilder::Binop_12x(const Instruction& instruction, Primitive::Type type, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegA(), type); HInstruction* second = LoadLocal(instruction.VRegB(), type); AppendInstruction(new (arena_) T(type, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } template<typename T> void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc); if (reverse) { std::swap(first, second); } AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } template<typename T> void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) { HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc); if (reverse) { std::swap(first, second); } AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, CompilerDriver* driver) { // Can be null in unit tests only. if (UNLIKELY(cu == nullptr)) { return false; } Thread* self = Thread::Current(); return cu->IsConstructor() && driver->RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex()); } // Returns true if `block` has only one successor which starts at the next // dex_pc after `instruction` at `dex_pc`. static bool IsFallthroughInstruction(const Instruction& instruction, uint32_t dex_pc, HBasicBlock* block) { uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits(); return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc; } void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) { HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); DexSwitchTable table(instruction, dex_pc); if (table.GetNumEntries() == 0) { // Empty Switch. Code falls through to the next block. DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_)); AppendInstruction(new (arena_) HGoto(dex_pc)); } else if (table.ShouldBuildDecisionTree()) { for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) { HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc); HEqual* comparison = new (arena_) HEqual(value, case_value, dex_pc); AppendInstruction(comparison); AppendInstruction(new (arena_) HIf(comparison, dex_pc)); if (!it.IsLast()) { current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex()); } } } else { AppendInstruction( new (arena_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc)); } current_block_ = nullptr; } void HInstructionBuilder::BuildReturn(const Instruction& instruction, Primitive::Type type, uint32_t dex_pc) { if (type == Primitive::kPrimVoid) { // This may insert additional redundant constructor fences from the super constructors. // TODO: remove redundant constructor fences (b/36656456). if (RequiresConstructorBarrier(dex_compilation_unit_, compiler_driver_)) { AppendInstruction(new (arena_) HMemoryBarrier(kStoreStore, dex_pc)); } AppendInstruction(new (arena_) HReturnVoid(dex_pc)); } else { HInstruction* value = LoadLocal(instruction.VRegA(), type); AppendInstruction(new (arena_) HReturn(value, dex_pc)); } current_block_ = nullptr; } static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) { switch (opcode) { case Instruction::INVOKE_STATIC: case Instruction::INVOKE_STATIC_RANGE: return kStatic; case Instruction::INVOKE_DIRECT: case Instruction::INVOKE_DIRECT_RANGE: return kDirect; case Instruction::INVOKE_VIRTUAL: case Instruction::INVOKE_VIRTUAL_QUICK: case Instruction::INVOKE_VIRTUAL_RANGE: case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: return kVirtual; case Instruction::INVOKE_INTERFACE: case Instruction::INVOKE_INTERFACE_RANGE: return kInterface; case Instruction::INVOKE_SUPER_RANGE: case Instruction::INVOKE_SUPER: return kSuper; default: LOG(FATAL) << "Unexpected invoke opcode: " << opcode; UNREACHABLE(); } } ArtMethod* HInstructionBuilder::ResolveMethod(uint16_t method_idx, InvokeType invoke_type) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<2> hs(soa.Self()); ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker(); Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader(); Handle<mirror::Class> compiling_class(hs.NewHandle(GetCompilingClass())); // We fetch the referenced class eagerly (that is, the class pointed by in the MethodId // at method_idx), as `CanAccessResolvedMethod` expects it be be in the dex cache. Handle<mirror::Class> methods_class(hs.NewHandle(class_linker->ResolveReferencedClassOfMethod( method_idx, dex_compilation_unit_->GetDexCache(), class_loader))); if (UNLIKELY(methods_class == nullptr)) { // Clean up any exception left by type resolution. soa.Self()->ClearException(); return nullptr; } ArtMethod* resolved_method = class_linker->ResolveMethod<ClassLinker::kForceICCECheck>( *dex_compilation_unit_->GetDexFile(), method_idx, dex_compilation_unit_->GetDexCache(), class_loader, /* referrer */ nullptr, invoke_type); if (UNLIKELY(resolved_method == nullptr)) { // Clean up any exception left by type resolution. soa.Self()->ClearException(); return nullptr; } // Check access. The class linker has a fast path for looking into the dex cache // and does not check the access if it hits it. if (compiling_class == nullptr) { if (!resolved_method->IsPublic()) { return nullptr; } } else if (!compiling_class->CanAccessResolvedMethod(resolved_method->GetDeclaringClass(), resolved_method, dex_compilation_unit_->GetDexCache().Get(), method_idx)) { return nullptr; } // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not. // We need to look at the referrer's super class vtable. We need to do this to know if we need to // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of // which require runtime handling. if (invoke_type == kSuper) { if (compiling_class == nullptr) { // We could not determine the method's class we need to wait until runtime. DCHECK(Runtime::Current()->IsAotCompiler()); return nullptr; } if (!methods_class->IsAssignableFrom(compiling_class.Get())) { // We cannot statically determine the target method. The runtime will throw a // NoSuchMethodError on this one. return nullptr; } ArtMethod* actual_method; if (methods_class->IsInterface()) { actual_method = methods_class->FindVirtualMethodForInterfaceSuper( resolved_method, class_linker->GetImagePointerSize()); } else { uint16_t vtable_index = resolved_method->GetMethodIndex(); actual_method = compiling_class->GetSuperClass()->GetVTableEntry( vtable_index, class_linker->GetImagePointerSize()); } if (actual_method != resolved_method && !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) { // The back-end code generator relies on this check in order to ensure that it will not // attempt to read the dex_cache with a dex_method_index that is not from the correct // dex_file. If we didn't do this check then the dex_method_index will not be updated in the // builder, which means that the code-generator (and compiler driver during sharpening and // inliner, maybe) might invoke an incorrect method. // TODO: The actual method could still be referenced in the current dex file, so we // could try locating it. // TODO: Remove the dex_file restriction. return nullptr; } if (!actual_method->IsInvokable()) { // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub // could resolve the callee to the wrong method. return nullptr; } resolved_method = actual_method; } // Check for incompatible class changes. The class linker has a fast path for // looking into the dex cache and does not check incompatible class changes if it hits it. if (resolved_method->CheckIncompatibleClassChange(invoke_type)) { return nullptr; } return resolved_method; } static bool IsStringConstructor(ArtMethod* method) { ScopedObjectAccess soa(Thread::Current()); return method->GetDeclaringClass()->IsStringClass() && method->IsConstructor(); } bool HInstructionBuilder::BuildInvoke(const Instruction& instruction, uint32_t dex_pc, uint32_t method_idx, uint32_t number_of_vreg_arguments, bool is_range, uint32_t* args, uint32_t register_index) { InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode()); const char* descriptor = dex_file_->GetMethodShorty(method_idx); Primitive::Type return_type = Primitive::GetType(descriptor[0]); // Remove the return type from the 'proto'. size_t number_of_arguments = strlen(descriptor) - 1; if (invoke_type != kStatic) { // instance call // One extra argument for 'this'. number_of_arguments++; } ArtMethod* resolved_method = ResolveMethod(method_idx, invoke_type); if (UNLIKELY(resolved_method == nullptr)) { MaybeRecordStat(MethodCompilationStat::kUnresolvedMethod); HInvoke* invoke = new (arena_) HInvokeUnresolved(arena_, number_of_arguments, return_type, dex_pc, method_idx, invoke_type); return HandleInvoke(invoke, number_of_vreg_arguments, args, register_index, is_range, descriptor, nullptr, /* clinit_check */ true /* is_unresolved */); } // Replace calls to String.<init> with StringFactory. if (IsStringConstructor(resolved_method)) { uint32_t string_init_entry_point = WellKnownClasses::StringInitToEntryPoint(resolved_method); HInvokeStaticOrDirect::DispatchInfo dispatch_info = { HInvokeStaticOrDirect::MethodLoadKind::kStringInit, HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, dchecked_integral_cast<uint64_t>(string_init_entry_point) }; MethodReference target_method(dex_file_, method_idx); HInvoke* invoke = new (arena_) HInvokeStaticOrDirect( arena_, number_of_arguments - 1, Primitive::kPrimNot /*return_type */, dex_pc, method_idx, nullptr, dispatch_info, invoke_type, target_method, HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit); return HandleStringInit(invoke, number_of_vreg_arguments, args, register_index, is_range, descriptor); } // Potential class initialization check, in the case of a static method call. HClinitCheck* clinit_check = nullptr; HInvoke* invoke = nullptr; if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) { // By default, consider that the called method implicitly requires // an initialization check of its declaring method. HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit; ScopedObjectAccess soa(Thread::Current()); if (invoke_type == kStatic) { clinit_check = ProcessClinitCheckForInvoke( dex_pc, resolved_method, &clinit_check_requirement); } else if (invoke_type == kSuper) { if (IsSameDexFile(*resolved_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) { // Update the method index to the one resolved. Note that this may be a no-op if // we resolved to the method referenced by the instruction. method_idx = resolved_method->GetDexMethodIndex(); } } HInvokeStaticOrDirect::DispatchInfo dispatch_info = { HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod, HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod, 0u }; MethodReference target_method(resolved_method->GetDexFile(), resolved_method->GetDexMethodIndex()); invoke = new (arena_) HInvokeStaticOrDirect(arena_, number_of_arguments, return_type, dex_pc, method_idx, resolved_method, dispatch_info, invoke_type, target_method, clinit_check_requirement); } else if (invoke_type == kVirtual) { ScopedObjectAccess soa(Thread::Current()); // Needed for the method index invoke = new (arena_) HInvokeVirtual(arena_, number_of_arguments, return_type, dex_pc, method_idx, resolved_method, resolved_method->GetMethodIndex()); } else { DCHECK_EQ(invoke_type, kInterface); ScopedObjectAccess soa(Thread::Current()); // Needed for the IMT index. invoke = new (arena_) HInvokeInterface(arena_, number_of_arguments, return_type, dex_pc, method_idx, resolved_method, ImTable::GetImtIndex(resolved_method)); } return HandleInvoke(invoke, number_of_vreg_arguments, args, register_index, is_range, descriptor, clinit_check, false /* is_unresolved */); } bool HInstructionBuilder::BuildInvokePolymorphic(const Instruction& instruction ATTRIBUTE_UNUSED, uint32_t dex_pc, uint32_t method_idx, uint32_t proto_idx, uint32_t number_of_vreg_arguments, bool is_range, uint32_t* args, uint32_t register_index) { const char* descriptor = dex_file_->GetShorty(proto_idx); DCHECK_EQ(1 + ArtMethod::NumArgRegisters(descriptor), number_of_vreg_arguments); Primitive::Type return_type = Primitive::GetType(descriptor[0]); size_t number_of_arguments = strlen(descriptor); HInvoke* invoke = new (arena_) HInvokePolymorphic(arena_, number_of_arguments, return_type, dex_pc, method_idx); return HandleInvoke(invoke, number_of_vreg_arguments, args, register_index, is_range, descriptor, nullptr /* clinit_check */, false /* is_unresolved */); } bool HInstructionBuilder::BuildNewInstance(dex::TypeIndex type_index, uint32_t dex_pc) { ScopedObjectAccess soa(Thread::Current()); HLoadClass* load_class = BuildLoadClass(type_index, dex_pc); HInstruction* cls = load_class; Handle<mirror::Class> klass = load_class->GetClass(); if (!IsInitialized(klass)) { cls = new (arena_) HClinitCheck(load_class, dex_pc); AppendInstruction(cls); } // Only the access check entrypoint handles the finalizable class case. If we // need access checks, then we haven't resolved the method and the class may // again be finalizable. QuickEntrypointEnum entrypoint = kQuickAllocObjectInitialized; if (load_class->NeedsAccessCheck() || klass->IsFinalizable() || !klass->IsInstantiable()) { entrypoint = kQuickAllocObjectWithChecks; } // Consider classes we haven't resolved as potentially finalizable. bool finalizable = (klass == nullptr) || klass->IsFinalizable(); AppendInstruction(new (arena_) HNewInstance( cls, dex_pc, type_index, *dex_compilation_unit_->GetDexFile(), finalizable, entrypoint)); return true; } static bool IsSubClass(mirror::Class* to_test, mirror::Class* super_class) REQUIRES_SHARED(Locks::mutator_lock_) { return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class); } bool HInstructionBuilder::IsInitialized(Handle<mirror::Class> cls) const { if (cls == nullptr) { return false; } // `CanAssumeClassIsLoaded` will return true if we're JITting, or will // check whether the class is in an image for the AOT compilation. if (cls->IsInitialized() && compiler_driver_->CanAssumeClassIsLoaded(cls.Get())) { return true; } if (IsSubClass(GetOutermostCompilingClass(), cls.Get())) { return true; } // TODO: We should walk over the inlined methods, but we don't pass // that information to the builder. if (IsSubClass(GetCompilingClass(), cls.Get())) { return true; } return false; } HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke( uint32_t dex_pc, ArtMethod* resolved_method, HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) { Handle<mirror::Class> klass = handles_->NewHandle(resolved_method->GetDeclaringClass()); HClinitCheck* clinit_check = nullptr; if (IsInitialized(klass)) { *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone; } else { HLoadClass* cls = BuildLoadClass(klass->GetDexTypeIndex(), klass->GetDexFile(), klass, dex_pc, /* needs_access_check */ false); if (cls != nullptr) { *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit; clinit_check = new (arena_) HClinitCheck(cls, dex_pc); AppendInstruction(clinit_check); } } return clinit_check; } bool HInstructionBuilder::SetupInvokeArguments(HInvoke* invoke, uint32_t number_of_vreg_arguments, uint32_t* args, uint32_t register_index, bool is_range, const char* descriptor, size_t start_index, size_t* argument_index) { uint32_t descriptor_index = 1; // Skip the return type. for (size_t i = start_index; // Make sure we don't go over the expected arguments or over the number of // dex registers given. If the instruction was seen as dead by the verifier, // it hasn't been properly checked. (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments()); i++, (*argument_index)++) { Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]); bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble); if (!is_range && is_wide && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) { // Longs and doubles should be in pairs, that is, sequential registers. The verifier should // reject any class where this is violated. However, the verifier only does these checks // on non trivially dead instructions, so we just bailout the compilation. VLOG(compiler) << "Did not compile " << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) << " because of non-sequential dex register pair in wide argument"; MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode); return false; } HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type); invoke->SetArgumentAt(*argument_index, arg); if (is_wide) { i++; } } if (*argument_index != invoke->GetNumberOfArguments()) { VLOG(compiler) << "Did not compile " << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) << " because of wrong number of arguments in invoke instruction"; MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode); return false; } if (invoke->IsInvokeStaticOrDirect() && HInvokeStaticOrDirect::NeedsCurrentMethodInput( invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) { invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod()); (*argument_index)++; } return true; } bool HInstructionBuilder::HandleInvoke(HInvoke* invoke, uint32_t number_of_vreg_arguments, uint32_t* args, uint32_t register_index, bool is_range, const char* descriptor, HClinitCheck* clinit_check, bool is_unresolved) { DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit()); size_t start_index = 0; size_t argument_index = 0; if (invoke->GetInvokeType() != InvokeType::kStatic) { // Instance call. uint32_t obj_reg = is_range ? register_index : args[0]; HInstruction* arg = is_unresolved ? LoadLocal(obj_reg, Primitive::kPrimNot) : LoadNullCheckedLocal(obj_reg, invoke->GetDexPc()); invoke->SetArgumentAt(0, arg); start_index = 1; argument_index = 1; } if (!SetupInvokeArguments(invoke, number_of_vreg_arguments, args, register_index, is_range, descriptor, start_index, &argument_index)) { return false; } if (clinit_check != nullptr) { // Add the class initialization check as last input of `invoke`. DCHECK(invoke->IsInvokeStaticOrDirect()); DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement() == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit); invoke->SetArgumentAt(argument_index, clinit_check); argument_index++; } AppendInstruction(invoke); latest_result_ = invoke; return true; } bool HInstructionBuilder::HandleStringInit(HInvoke* invoke, uint32_t number_of_vreg_arguments, uint32_t* args, uint32_t register_index, bool is_range, const char* descriptor) { DCHECK(invoke->IsInvokeStaticOrDirect()); DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit()); size_t start_index = 1; size_t argument_index = 0; if (!SetupInvokeArguments(invoke, number_of_vreg_arguments, args, register_index, is_range, descriptor, start_index, &argument_index)) { return false; } AppendInstruction(invoke); // This is a StringFactory call, not an actual String constructor. Its result // replaces the empty String pre-allocated by NewInstance. uint32_t orig_this_reg = is_range ? register_index : args[0]; HInstruction* arg_this = LoadLocal(orig_this_reg, Primitive::kPrimNot); // Replacing the NewInstance might render it redundant. Keep a list of these // to be visited once it is clear whether it is has remaining uses. if (arg_this->IsNewInstance()) { ssa_builder_->AddUninitializedString(arg_this->AsNewInstance()); } else { DCHECK(arg_this->IsPhi()); // NewInstance is not the direct input of the StringFactory call. It might // be redundant but optimizing this case is not worth the effort. } // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`. for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) { if ((*current_locals_)[vreg] == arg_this) { (*current_locals_)[vreg] = invoke; } } return true; } static Primitive::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) { const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index); const char* type = dex_file.GetFieldTypeDescriptor(field_id); return Primitive::GetType(type[0]); } bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction, uint32_t dex_pc, bool is_put) { uint32_t source_or_dest_reg = instruction.VRegA_22c(); uint32_t obj_reg = instruction.VRegB_22c(); uint16_t field_index; if (instruction.IsQuickened()) { if (!CanDecodeQuickenedInfo()) { return false; } field_index = LookupQuickenedInfo(dex_pc); } else { field_index = instruction.VRegC_22c(); } ScopedObjectAccess soa(Thread::Current()); ArtField* resolved_field = ResolveField(field_index, /* is_static */ false, is_put); // Generate an explicit null check on the reference, unless the field access // is unresolved. In that case, we rely on the runtime to perform various // checks first, followed by a null check. HInstruction* object = (resolved_field == nullptr) ? LoadLocal(obj_reg, Primitive::kPrimNot) : LoadNullCheckedLocal(obj_reg, dex_pc); Primitive::Type field_type = (resolved_field == nullptr) ? GetFieldAccessType(*dex_file_, field_index) : resolved_field->GetTypeAsPrimitiveType(); if (is_put) { HInstruction* value = LoadLocal(source_or_dest_reg, field_type); HInstruction* field_set = nullptr; if (resolved_field == nullptr) { MaybeRecordStat(MethodCompilationStat::kUnresolvedField); field_set = new (arena_) HUnresolvedInstanceFieldSet(object, value, field_type, field_index, dex_pc); } else { uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); field_set = new (arena_) HInstanceFieldSet(object, value, resolved_field, field_type, resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, class_def_index, *dex_file_, dex_pc); } AppendInstruction(field_set); } else { HInstruction* field_get = nullptr; if (resolved_field == nullptr) { MaybeRecordStat(MethodCompilationStat::kUnresolvedField); field_get = new (arena_) HUnresolvedInstanceFieldGet(object, field_type, field_index, dex_pc); } else { uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex(); field_get = new (arena_) HInstanceFieldGet(object, resolved_field, field_type, resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, class_def_index, *dex_file_, dex_pc); } AppendInstruction(field_get); UpdateLocal(source_or_dest_reg, field_get); } return true; } static mirror::Class* GetClassFrom(CompilerDriver* driver, const DexCompilationUnit& compilation_unit) { ScopedObjectAccess soa(Thread::Current()); Handle<mirror::ClassLoader> class_loader = compilation_unit.GetClassLoader(); Handle<mirror::DexCache> dex_cache = compilation_unit.GetDexCache(); return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit); } mirror::Class* HInstructionBuilder::GetOutermostCompilingClass() const { return GetClassFrom(compiler_driver_, *outer_compilation_unit_); } mirror::Class* HInstructionBuilder::GetCompilingClass() const { return GetClassFrom(compiler_driver_, *dex_compilation_unit_); } bool HInstructionBuilder::IsOutermostCompilingClass(dex::TypeIndex type_index) const { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<2> hs(soa.Self()); Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache(); Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader(); Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass( soa, dex_cache, class_loader, type_index, dex_compilation_unit_))); Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass())); // GetOutermostCompilingClass returns null when the class is unresolved // (e.g. if it derives from an unresolved class). This is bogus knowing that // we are compiling it. // When this happens we cannot establish a direct relation between the current // class and the outer class, so we return false. // (Note that this is only used for optimizing invokes and field accesses) return (cls != nullptr) && (outer_class.Get() == cls.Get()); } void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction, uint32_t dex_pc, bool is_put, Primitive::Type field_type) { uint32_t source_or_dest_reg = instruction.VRegA_21c(); uint16_t field_index = instruction.VRegB_21c(); if (is_put) { HInstruction* value = LoadLocal(source_or_dest_reg, field_type); AppendInstruction( new (arena_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc)); } else { AppendInstruction(new (arena_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc)); UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); } } ArtField* HInstructionBuilder::ResolveField(uint16_t field_idx, bool is_static, bool is_put) { ScopedObjectAccess soa(Thread::Current()); StackHandleScope<2> hs(soa.Self()); ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker(); Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader(); Handle<mirror::Class> compiling_class(hs.NewHandle(GetCompilingClass())); ArtField* resolved_field = class_linker->ResolveField(*dex_compilation_unit_->GetDexFile(), field_idx, dex_compilation_unit_->GetDexCache(), class_loader, is_static); if (UNLIKELY(resolved_field == nullptr)) { // Clean up any exception left by type resolution. soa.Self()->ClearException(); return nullptr; } // Check static/instance. The class linker has a fast path for looking into the dex cache // and does not check static/instance if it hits it. if (UNLIKELY(resolved_field->IsStatic() != is_static)) { return nullptr; } // Check access. if (compiling_class == nullptr) { if (!resolved_field->IsPublic()) { return nullptr; } } else if (!compiling_class->CanAccessResolvedField(resolved_field->GetDeclaringClass(), resolved_field, dex_compilation_unit_->GetDexCache().Get(), field_idx)) { return nullptr; } if (is_put && resolved_field->IsFinal() && (compiling_class.Get() != resolved_field->GetDeclaringClass())) { // Final fields can only be updated within their own class. // TODO: Only allow it in constructors. b/34966607. return nullptr; } return resolved_field; } bool HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction, uint32_t dex_pc, bool is_put) { uint32_t source_or_dest_reg = instruction.VRegA_21c(); uint16_t field_index = instruction.VRegB_21c(); ScopedObjectAccess soa(Thread::Current()); ArtField* resolved_field = ResolveField(field_index, /* is_static */ true, is_put); if (resolved_field == nullptr) { MaybeRecordStat(MethodCompilationStat::kUnresolvedField); Primitive::Type field_type = GetFieldAccessType(*dex_file_, field_index); BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); return true; } Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType(); Handle<mirror::Class> klass = handles_->NewHandle(resolved_field->GetDeclaringClass()); HLoadClass* constant = BuildLoadClass(klass->GetDexTypeIndex(), klass->GetDexFile(), klass, dex_pc, /* needs_access_check */ false); if (constant == nullptr) { // The class cannot be referenced from this compiled code. Generate // an unresolved access. MaybeRecordStat(MethodCompilationStat::kUnresolvedFieldNotAFastAccess); BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type); return true; } HInstruction* cls = constant; if (!IsInitialized(klass)) { cls = new (arena_) HClinitCheck(constant, dex_pc); AppendInstruction(cls); } uint16_t class_def_index = klass->GetDexClassDefIndex(); if (is_put) { // We need to keep the class alive before loading the value. HInstruction* value = LoadLocal(source_or_dest_reg, field_type); DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type)); AppendInstruction(new (arena_) HStaticFieldSet(cls, value, resolved_field, field_type, resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, class_def_index, *dex_file_, dex_pc)); } else { AppendInstruction(new (arena_) HStaticFieldGet(cls, resolved_field, field_type, resolved_field->GetOffset(), resolved_field->IsVolatile(), field_index, class_def_index, *dex_file_, dex_pc)); UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); } return true; } void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg, uint16_t first_vreg, int64_t second_vreg_or_constant, uint32_t dex_pc, Primitive::Type type, bool second_is_constant, bool isDiv) { DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong); HInstruction* first = LoadLocal(first_vreg, type); HInstruction* second = nullptr; if (second_is_constant) { if (type == Primitive::kPrimInt) { second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc); } else { second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc); } } else { second = LoadLocal(second_vreg_or_constant, type); } if (!second_is_constant || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0) || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) { second = new (arena_) HDivZeroCheck(second, dex_pc); AppendInstruction(second); } if (isDiv) { AppendInstruction(new (arena_) HDiv(type, first, second, dex_pc)); } else { AppendInstruction(new (arena_) HRem(type, first, second, dex_pc)); } UpdateLocal(out_vreg, current_block_->GetLastInstruction()); } void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction, uint32_t dex_pc, bool is_put, Primitive::Type anticipated_type) { uint8_t source_or_dest_reg = instruction.VRegA_23x(); uint8_t array_reg = instruction.VRegB_23x(); uint8_t index_reg = instruction.VRegC_23x(); HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc); HInstruction* length = new (arena_) HArrayLength(object, dex_pc); AppendInstruction(length); HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt); index = new (arena_) HBoundsCheck(index, length, dex_pc); AppendInstruction(index); if (is_put) { HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type); // TODO: Insert a type check node if the type is Object. HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc); ssa_builder_->MaybeAddAmbiguousArraySet(aset); AppendInstruction(aset); } else { HArrayGet* aget = new (arena_) HArrayGet(object, index, anticipated_type, dex_pc); ssa_builder_->MaybeAddAmbiguousArrayGet(aget); AppendInstruction(aget); UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); } graph_->SetHasBoundsChecks(true); } void HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc, dex::TypeIndex type_index, uint32_t number_of_vreg_arguments, bool is_range, uint32_t* args, uint32_t register_index) { HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc); HLoadClass* cls = BuildLoadClass(type_index, dex_pc); HInstruction* object = new (arena_) HNewArray(cls, length, dex_pc); AppendInstruction(object); const char* descriptor = dex_file_->StringByTypeIdx(type_index); DCHECK_EQ(descriptor[0], '[') << descriptor; char primitive = descriptor[1]; DCHECK(primitive == 'I' || primitive == 'L' || primitive == '[') << descriptor; bool is_reference_array = (primitive == 'L') || (primitive == '['); Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt; for (size_t i = 0; i < number_of_vreg_arguments; ++i) { HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type); HInstruction* index = graph_->GetIntConstant(i, dex_pc); HArraySet* aset = new (arena_) HArraySet(object, index, value, type, dex_pc); ssa_builder_->MaybeAddAmbiguousArraySet(aset); AppendInstruction(aset); } latest_result_ = object; } template <typename T> void HInstructionBuilder::BuildFillArrayData(HInstruction* object, const T* data, uint32_t element_count, Primitive::Type anticipated_type, uint32_t dex_pc) { for (uint32_t i = 0; i < element_count; ++i) { HInstruction* index = graph_->GetIntConstant(i, dex_pc); HInstruction* value = graph_->GetIntConstant(data[i], dex_pc); HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc); ssa_builder_->MaybeAddAmbiguousArraySet(aset); AppendInstruction(aset); } } void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) { HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc); int32_t payload_offset = instruction.VRegB_31t() + dex_pc; const Instruction::ArrayDataPayload* payload = reinterpret_cast<const Instruction::ArrayDataPayload*>(code_item_.insns_ + payload_offset); const uint8_t* data = payload->data; uint32_t element_count = payload->element_count; if (element_count == 0u) { // For empty payload we emit only the null check above. return; } HInstruction* length = new (arena_) HArrayLength(array, dex_pc); AppendInstruction(length); // Implementation of this DEX instruction seems to be that the bounds check is // done before doing any stores. HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc); AppendInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc)); switch (payload->element_width) { case 1: BuildFillArrayData(array, reinterpret_cast<const int8_t*>(data), element_count, Primitive::kPrimByte, dex_pc); break; case 2: BuildFillArrayData(array, reinterpret_cast<const int16_t*>(data), element_count, Primitive::kPrimShort, dex_pc); break; case 4: BuildFillArrayData(array, reinterpret_cast<const int32_t*>(data), element_count, Primitive::kPrimInt, dex_pc); break; case 8: BuildFillWideArrayData(array, reinterpret_cast<const int64_t*>(data), element_count, dex_pc); break; default: LOG(FATAL) << "Unknown element width for " << payload->element_width; } graph_->SetHasBoundsChecks(true); } void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object, const int64_t* data, uint32_t element_count, uint32_t dex_pc) { for (uint32_t i = 0; i < element_count; ++i) { HInstruction* index = graph_->GetIntConstant(i, dex_pc); HInstruction* value = graph_->GetLongConstant(data[i], dex_pc); HArraySet* aset = new (arena_) HArraySet(object, index, value, Primitive::kPrimLong, dex_pc); ssa_builder_->MaybeAddAmbiguousArraySet(aset); AppendInstruction(aset); } } static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls) REQUIRES_SHARED(Locks::mutator_lock_) { if (cls == nullptr) { return TypeCheckKind::kUnresolvedCheck; } else if (cls->IsInterface()) { return TypeCheckKind::kInterfaceCheck; } else if (cls->IsArrayClass()) { if (cls->GetComponentType()->IsObjectClass()) { return TypeCheckKind::kArrayObjectCheck; } else if (cls->CannotBeAssignedFromOtherTypes()) { return TypeCheckKind::kExactCheck; } else { return TypeCheckKind::kArrayCheck; } } else if (cls->IsFinal()) { return TypeCheckKind::kExactCheck; } else if (cls->IsAbstract()) { return TypeCheckKind::kAbstractClassCheck; } else { return TypeCheckKind::kClassHierarchyCheck; } } HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, uint32_t dex_pc) { ScopedObjectAccess soa(Thread::Current()); const DexFile& dex_file = *dex_compilation_unit_->GetDexFile(); Handle<mirror::ClassLoader> class_loader = dex_compilation_unit_->GetClassLoader(); Handle<mirror::Class> klass = handles_->NewHandle(compiler_driver_->ResolveClass( soa, dex_compilation_unit_->GetDexCache(), class_loader, type_index, dex_compilation_unit_)); bool needs_access_check = true; if (klass != nullptr) { if (klass->IsPublic()) { needs_access_check = false; } else { mirror::Class* compiling_class = GetCompilingClass(); if (compiling_class != nullptr && compiling_class->CanAccess(klass.Get())) { needs_access_check = false; } } } return BuildLoadClass(type_index, dex_file, klass, dex_pc, needs_access_check); } HLoadClass* HInstructionBuilder::BuildLoadClass(dex::TypeIndex type_index, const DexFile& dex_file, Handle<mirror::Class> klass, uint32_t dex_pc, bool needs_access_check) { // Try to find a reference in the compiling dex file. const DexFile* actual_dex_file = &dex_file; if (!IsSameDexFile(dex_file, *dex_compilation_unit_->GetDexFile())) { dex::TypeIndex local_type_index = klass->FindTypeIndexInOtherDexFile(*dex_compilation_unit_->GetDexFile()); if (local_type_index.IsValid()) { type_index = local_type_index; actual_dex_file = dex_compilation_unit_->GetDexFile(); } } // Note: `klass` must be from `handles_`. HLoadClass* load_class = new (arena_) HLoadClass( graph_->GetCurrentMethod(), type_index, *actual_dex_file, klass, klass != nullptr && (klass.Get() == GetOutermostCompilingClass()), dex_pc, needs_access_check); HLoadClass::LoadKind load_kind = HSharpening::ComputeLoadClassKind(load_class, code_generator_, compiler_driver_, *dex_compilation_unit_); if (load_kind == HLoadClass::LoadKind::kInvalid) { // We actually cannot reference this class, we're forced to bail. return nullptr; } // Append the instruction first, as setting the load kind affects the inputs. AppendInstruction(load_class); load_class->SetLoadKind(load_kind); return load_class; } void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction, uint8_t destination, uint8_t reference, dex::TypeIndex type_index, uint32_t dex_pc) { HInstruction* object = LoadLocal(reference, Primitive::kPrimNot); HLoadClass* cls = BuildLoadClass(type_index, dex_pc); ScopedObjectAccess soa(Thread::Current()); TypeCheckKind check_kind = ComputeTypeCheckKind(cls->GetClass()); if (instruction.Opcode() == Instruction::INSTANCE_OF) { AppendInstruction(new (arena_) HInstanceOf(object, cls, check_kind, dex_pc)); UpdateLocal(destination, current_block_->GetLastInstruction()); } else { DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST); // We emit a CheckCast followed by a BoundType. CheckCast is a statement // which may throw. If it succeeds BoundType sets the new type of `object` // for all subsequent uses. AppendInstruction(new (arena_) HCheckCast(object, cls, check_kind, dex_pc)); AppendInstruction(new (arena_) HBoundType(object, dex_pc)); UpdateLocal(reference, current_block_->GetLastInstruction()); } } bool HInstructionBuilder::NeedsAccessCheck(dex::TypeIndex type_index, bool* finalizable) const { return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks( LookupReferrerClass(), LookupResolvedType(type_index, *dex_compilation_unit_), finalizable); } bool HInstructionBuilder::CanDecodeQuickenedInfo() const { return interpreter_metadata_ != nullptr; } uint16_t HInstructionBuilder::LookupQuickenedInfo(uint32_t dex_pc) { DCHECK(interpreter_metadata_ != nullptr); // First check if the info has already been decoded from `interpreter_metadata_`. auto it = skipped_interpreter_metadata_.find(dex_pc); if (it != skipped_interpreter_metadata_.end()) { // Remove the entry from the map and return the parsed info. uint16_t value_in_map = it->second; skipped_interpreter_metadata_.erase(it); return value_in_map; } // Otherwise start parsing `interpreter_metadata_` until the slot for `dex_pc` // is found. Store skipped values in the `skipped_interpreter_metadata_` map. while (true) { uint32_t dex_pc_in_map = DecodeUnsignedLeb128(&interpreter_metadata_); uint16_t value_in_map = DecodeUnsignedLeb128(&interpreter_metadata_); DCHECK_LE(dex_pc_in_map, dex_pc); if (dex_pc_in_map == dex_pc) { return value_in_map; } else { // Overwrite and not Put, as quickened CHECK-CAST has two entries with // the same dex_pc. This is OK, because the compiler does not care about those // entries. skipped_interpreter_metadata_.Overwrite(dex_pc_in_map, value_in_map); } } } bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction, uint32_t dex_pc) { switch (instruction.Opcode()) { case Instruction::CONST_4: { int32_t register_index = instruction.VRegA(); HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc); UpdateLocal(register_index, constant); break; } case Instruction::CONST_16: { int32_t register_index = instruction.VRegA(); HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc); UpdateLocal(register_index, constant); break; } case Instruction::CONST: { int32_t register_index = instruction.VRegA(); HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc); UpdateLocal(register_index, constant); break; } case Instruction::CONST_HIGH16: { int32_t register_index = instruction.VRegA(); HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc); UpdateLocal(register_index, constant); break; } case Instruction::CONST_WIDE_16: { int32_t register_index = instruction.VRegA(); // Get 16 bits of constant value, sign extended to 64 bits. int64_t value = instruction.VRegB_21s(); value <<= 48; value >>= 48; HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); UpdateLocal(register_index, constant); break; } case Instruction::CONST_WIDE_32: { int32_t register_index = instruction.VRegA(); // Get 32 bits of constant value, sign extended to 64 bits. int64_t value = instruction.VRegB_31i(); value <<= 32; value >>= 32; HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); UpdateLocal(register_index, constant); break; } case Instruction::CONST_WIDE: { int32_t register_index = instruction.VRegA(); HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc); UpdateLocal(register_index, constant); break; } case Instruction::CONST_WIDE_HIGH16: { int32_t register_index = instruction.VRegA(); int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48; HLongConstant* constant = graph_->GetLongConstant(value, dex_pc); UpdateLocal(register_index, constant); break; } // Note that the SSA building will refine the types. case Instruction::MOVE: case Instruction::MOVE_FROM16: case Instruction::MOVE_16: { HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); UpdateLocal(instruction.VRegA(), value); break; } // Note that the SSA building will refine the types. case Instruction::MOVE_WIDE: case Instruction::MOVE_WIDE_FROM16: case Instruction::MOVE_WIDE_16: { HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong); UpdateLocal(instruction.VRegA(), value); break; } case Instruction::MOVE_OBJECT: case Instruction::MOVE_OBJECT_16: case Instruction::MOVE_OBJECT_FROM16: { // The verifier has no notion of a null type, so a move-object of constant 0 // will lead to the same constant 0 in the destination register. To mimic // this behavior, we just pretend we haven't seen a type change (int to reference) // for the 0 constant and phis. We rely on our type propagation to eventually get the // types correct. uint32_t reg_number = instruction.VRegB(); HInstruction* value = (*current_locals_)[reg_number]; if (value->IsIntConstant()) { DCHECK_EQ(value->AsIntConstant()->GetValue(), 0); } else if (value->IsPhi()) { DCHECK(value->GetType() == Primitive::kPrimInt || value->GetType() == Primitive::kPrimNot); } else { value = LoadLocal(reg_number, Primitive::kPrimNot); } UpdateLocal(instruction.VRegA(), value); break; } case Instruction::RETURN_VOID_NO_BARRIER: case Instruction::RETURN_VOID: { BuildReturn(instruction, Primitive::kPrimVoid, dex_pc); break; } #define IF_XX(comparison, cond) \ case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \ case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break IF_XX(HEqual, EQ); IF_XX(HNotEqual, NE); IF_XX(HLessThan, LT); IF_XX(HLessThanOrEqual, LE); IF_XX(HGreaterThan, GT); IF_XX(HGreaterThanOrEqual, GE); case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: { AppendInstruction(new (arena_) HGoto(dex_pc)); current_block_ = nullptr; break; } case Instruction::RETURN: { BuildReturn(instruction, return_type_, dex_pc); break; } case Instruction::RETURN_OBJECT: { BuildReturn(instruction, return_type_, dex_pc); break; } case Instruction::RETURN_WIDE: { BuildReturn(instruction, return_type_, dex_pc); break; } case Instruction::INVOKE_DIRECT: case Instruction::INVOKE_INTERFACE: case Instruction::INVOKE_STATIC: case Instruction::INVOKE_SUPER: case Instruction::INVOKE_VIRTUAL: case Instruction::INVOKE_VIRTUAL_QUICK: { uint16_t method_idx; if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) { if (!CanDecodeQuickenedInfo()) { return false; } method_idx = LookupQuickenedInfo(dex_pc); } else { method_idx = instruction.VRegB_35c(); } uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); uint32_t args[5]; instruction.GetVarArgs(args); if (!BuildInvoke(instruction, dex_pc, method_idx, number_of_vreg_arguments, false, args, -1)) { return false; } break; } case Instruction::INVOKE_DIRECT_RANGE: case Instruction::INVOKE_INTERFACE_RANGE: case Instruction::INVOKE_STATIC_RANGE: case Instruction::INVOKE_SUPER_RANGE: case Instruction::INVOKE_VIRTUAL_RANGE: case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: { uint16_t method_idx; if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) { if (!CanDecodeQuickenedInfo()) { return false; } method_idx = LookupQuickenedInfo(dex_pc); } else { method_idx = instruction.VRegB_3rc(); } uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); uint32_t register_index = instruction.VRegC(); if (!BuildInvoke(instruction, dex_pc, method_idx, number_of_vreg_arguments, true, nullptr, register_index)) { return false; } break; } case Instruction::INVOKE_POLYMORPHIC: { uint16_t method_idx = instruction.VRegB_45cc(); uint16_t proto_idx = instruction.VRegH_45cc(); uint32_t number_of_vreg_arguments = instruction.VRegA_45cc(); uint32_t args[5]; instruction.GetVarArgs(args); return BuildInvokePolymorphic(instruction, dex_pc, method_idx, proto_idx, number_of_vreg_arguments, false, args, -1); } case Instruction::INVOKE_POLYMORPHIC_RANGE: { uint16_t method_idx = instruction.VRegB_4rcc(); uint16_t proto_idx = instruction.VRegH_4rcc(); uint32_t number_of_vreg_arguments = instruction.VRegA_4rcc(); uint32_t register_index = instruction.VRegC_4rcc(); return BuildInvokePolymorphic(instruction, dex_pc, method_idx, proto_idx, number_of_vreg_arguments, true, nullptr, register_index); } case Instruction::NEG_INT: { Unop_12x<HNeg>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::NEG_LONG: { Unop_12x<HNeg>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::NEG_FLOAT: { Unop_12x<HNeg>(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::NEG_DOUBLE: { Unop_12x<HNeg>(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::NOT_INT: { Unop_12x<HNot>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::NOT_LONG: { Unop_12x<HNot>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::INT_TO_LONG: { Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc); break; } case Instruction::INT_TO_FLOAT: { Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc); break; } case Instruction::INT_TO_DOUBLE: { Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc); break; } case Instruction::LONG_TO_INT: { Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc); break; } case Instruction::LONG_TO_FLOAT: { Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc); break; } case Instruction::LONG_TO_DOUBLE: { Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc); break; } case Instruction::FLOAT_TO_INT: { Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc); break; } case Instruction::FLOAT_TO_LONG: { Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc); break; } case Instruction::FLOAT_TO_DOUBLE: { Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc); break; } case Instruction::DOUBLE_TO_INT: { Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc); break; } case Instruction::DOUBLE_TO_LONG: { Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc); break; } case Instruction::DOUBLE_TO_FLOAT: { Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc); break; } case Instruction::INT_TO_BYTE: { Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc); break; } case Instruction::INT_TO_SHORT: { Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc); break; } case Instruction::INT_TO_CHAR: { Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc); break; } case Instruction::ADD_INT: { Binop_23x<HAdd>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::ADD_LONG: { Binop_23x<HAdd>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::ADD_DOUBLE: { Binop_23x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::ADD_FLOAT: { Binop_23x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::SUB_INT: { Binop_23x<HSub>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::SUB_LONG: { Binop_23x<HSub>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::SUB_FLOAT: { Binop_23x<HSub>(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::SUB_DOUBLE: { Binop_23x<HSub>(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::ADD_INT_2ADDR: { Binop_12x<HAdd>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::MUL_INT: { Binop_23x<HMul>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::MUL_LONG: { Binop_23x<HMul>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::MUL_FLOAT: { Binop_23x<HMul>(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::MUL_DOUBLE: { Binop_23x<HMul>(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::DIV_INT: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, Primitive::kPrimInt, false, true); break; } case Instruction::DIV_LONG: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, Primitive::kPrimLong, false, true); break; } case Instruction::DIV_FLOAT: { Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::DIV_DOUBLE: { Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::REM_INT: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, Primitive::kPrimInt, false, false); break; } case Instruction::REM_LONG: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, Primitive::kPrimLong, false, false); break; } case Instruction::REM_FLOAT: { Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::REM_DOUBLE: { Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::AND_INT: { Binop_23x<HAnd>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::AND_LONG: { Binop_23x<HAnd>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::SHL_INT: { Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::SHL_LONG: { Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::SHR_INT: { Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::SHR_LONG: { Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::USHR_INT: { Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::USHR_LONG: { Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::OR_INT: { Binop_23x<HOr>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::OR_LONG: { Binop_23x<HOr>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::XOR_INT: { Binop_23x<HXor>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::XOR_LONG: { Binop_23x<HXor>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::ADD_LONG_2ADDR: { Binop_12x<HAdd>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::ADD_DOUBLE_2ADDR: { Binop_12x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::ADD_FLOAT_2ADDR: { Binop_12x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::SUB_INT_2ADDR: { Binop_12x<HSub>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::SUB_LONG_2ADDR: { Binop_12x<HSub>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::SUB_FLOAT_2ADDR: { Binop_12x<HSub>(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::SUB_DOUBLE_2ADDR: { Binop_12x<HSub>(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::MUL_INT_2ADDR: { Binop_12x<HMul>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::MUL_LONG_2ADDR: { Binop_12x<HMul>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::MUL_FLOAT_2ADDR: { Binop_12x<HMul>(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::MUL_DOUBLE_2ADDR: { Binop_12x<HMul>(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::DIV_INT_2ADDR: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), dex_pc, Primitive::kPrimInt, false, true); break; } case Instruction::DIV_LONG_2ADDR: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), dex_pc, Primitive::kPrimLong, false, true); break; } case Instruction::REM_INT_2ADDR: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), dex_pc, Primitive::kPrimInt, false, false); break; } case Instruction::REM_LONG_2ADDR: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(), dex_pc, Primitive::kPrimLong, false, false); break; } case Instruction::REM_FLOAT_2ADDR: { Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::REM_DOUBLE_2ADDR: { Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::SHL_INT_2ADDR: { Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::SHL_LONG_2ADDR: { Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::SHR_INT_2ADDR: { Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::SHR_LONG_2ADDR: { Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::USHR_INT_2ADDR: { Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::USHR_LONG_2ADDR: { Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::DIV_FLOAT_2ADDR: { Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc); break; } case Instruction::DIV_DOUBLE_2ADDR: { Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc); break; } case Instruction::AND_INT_2ADDR: { Binop_12x<HAnd>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::AND_LONG_2ADDR: { Binop_12x<HAnd>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::OR_INT_2ADDR: { Binop_12x<HOr>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::OR_LONG_2ADDR: { Binop_12x<HOr>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::XOR_INT_2ADDR: { Binop_12x<HXor>(instruction, Primitive::kPrimInt, dex_pc); break; } case Instruction::XOR_LONG_2ADDR: { Binop_12x<HXor>(instruction, Primitive::kPrimLong, dex_pc); break; } case Instruction::ADD_INT_LIT16: { Binop_22s<HAdd>(instruction, false, dex_pc); break; } case Instruction::AND_INT_LIT16: { Binop_22s<HAnd>(instruction, false, dex_pc); break; } case Instruction::OR_INT_LIT16: { Binop_22s<HOr>(instruction, false, dex_pc); break; } case Instruction::XOR_INT_LIT16: { Binop_22s<HXor>(instruction, false, dex_pc); break; } case Instruction::RSUB_INT: { Binop_22s<HSub>(instruction, true, dex_pc); break; } case Instruction::MUL_INT_LIT16: { Binop_22s<HMul>(instruction, false, dex_pc); break; } case Instruction::ADD_INT_LIT8: { Binop_22b<HAdd>(instruction, false, dex_pc); break; } case Instruction::AND_INT_LIT8: { Binop_22b<HAnd>(instruction, false, dex_pc); break; } case Instruction::OR_INT_LIT8: { Binop_22b<HOr>(instruction, false, dex_pc); break; } case Instruction::XOR_INT_LIT8: { Binop_22b<HXor>(instruction, false, dex_pc); break; } case Instruction::RSUB_INT_LIT8: { Binop_22b<HSub>(instruction, true, dex_pc); break; } case Instruction::MUL_INT_LIT8: { Binop_22b<HMul>(instruction, false, dex_pc); break; } case Instruction::DIV_INT_LIT16: case Instruction::DIV_INT_LIT8: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, Primitive::kPrimInt, true, true); break; } case Instruction::REM_INT_LIT16: case Instruction::REM_INT_LIT8: { BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(), dex_pc, Primitive::kPrimInt, true, false); break; } case Instruction::SHL_INT_LIT8: { Binop_22b<HShl>(instruction, false, dex_pc); break; } case Instruction::SHR_INT_LIT8: { Binop_22b<HShr>(instruction, false, dex_pc); break; } case Instruction::USHR_INT_LIT8: { Binop_22b<HUShr>(instruction, false, dex_pc); break; } case Instruction::NEW_INSTANCE: { if (!BuildNewInstance(dex::TypeIndex(instruction.VRegB_21c()), dex_pc)) { return false; } UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); break; } case Instruction::NEW_ARRAY: { dex::TypeIndex type_index(instruction.VRegC_22c()); HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt); HLoadClass* cls = BuildLoadClass(type_index, dex_pc); AppendInstruction(new (arena_) HNewArray(cls, length, dex_pc)); UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction()); break; } case Instruction::FILLED_NEW_ARRAY: { uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); dex::TypeIndex type_index(instruction.VRegB_35c()); uint32_t args[5]; instruction.GetVarArgs(args); BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0); break; } case Instruction::FILLED_NEW_ARRAY_RANGE: { uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); dex::TypeIndex type_index(instruction.VRegB_3rc()); uint32_t register_index = instruction.VRegC_3rc(); BuildFilledNewArray( dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index); break; } case Instruction::FILL_ARRAY_DATA: { BuildFillArrayData(instruction, dex_pc); break; } case Instruction::MOVE_RESULT: case Instruction::MOVE_RESULT_WIDE: case Instruction::MOVE_RESULT_OBJECT: { DCHECK(latest_result_ != nullptr); UpdateLocal(instruction.VRegA(), latest_result_); latest_result_ = nullptr; break; } case Instruction::CMP_LONG: { Binop_23x_cmp(instruction, Primitive::kPrimLong, ComparisonBias::kNoBias, dex_pc); break; } case Instruction::CMPG_FLOAT: { Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kGtBias, dex_pc); break; } case Instruction::CMPG_DOUBLE: { Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kGtBias, dex_pc); break; } case Instruction::CMPL_FLOAT: { Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kLtBias, dex_pc); break; } case Instruction::CMPL_DOUBLE: { Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kLtBias, dex_pc); break; } case Instruction::NOP: break; case Instruction::IGET: case Instruction::IGET_QUICK: case Instruction::IGET_WIDE: case Instruction::IGET_WIDE_QUICK: case Instruction::IGET_OBJECT: case Instruction::IGET_OBJECT_QUICK: case Instruction::IGET_BOOLEAN: case Instruction::IGET_BOOLEAN_QUICK: case Instruction::IGET_BYTE: case Instruction::IGET_BYTE_QUICK: case Instruction::IGET_CHAR: case Instruction::IGET_CHAR_QUICK: case Instruction::IGET_SHORT: case Instruction::IGET_SHORT_QUICK: { if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) { return false; } break; } case Instruction::IPUT: case Instruction::IPUT_QUICK: case Instruction::IPUT_WIDE: case Instruction::IPUT_WIDE_QUICK: case Instruction::IPUT_OBJECT: case Instruction::IPUT_OBJECT_QUICK: case Instruction::IPUT_BOOLEAN: case Instruction::IPUT_BOOLEAN_QUICK: case Instruction::IPUT_BYTE: case Instruction::IPUT_BYTE_QUICK: case Instruction::IPUT_CHAR: case Instruction::IPUT_CHAR_QUICK: case Instruction::IPUT_SHORT: case Instruction::IPUT_SHORT_QUICK: { if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) { return false; } break; } case Instruction::SGET: case Instruction::SGET_WIDE: case Instruction::SGET_OBJECT: case Instruction::SGET_BOOLEAN: case Instruction::SGET_BYTE: case Instruction::SGET_CHAR: case Instruction::SGET_SHORT: { if (!BuildStaticFieldAccess(instruction, dex_pc, false)) { return false; } break; } case Instruction::SPUT: case Instruction::SPUT_WIDE: case Instruction::SPUT_OBJECT: case Instruction::SPUT_BOOLEAN: case Instruction::SPUT_BYTE: case Instruction::SPUT_CHAR: case Instruction::SPUT_SHORT: { if (!BuildStaticFieldAccess(instruction, dex_pc, true)) { return false; } break; } #define ARRAY_XX(kind, anticipated_type) \ case Instruction::AGET##kind: { \ BuildArrayAccess(instruction, dex_pc, false, anticipated_type); \ break; \ } \ case Instruction::APUT##kind: { \ BuildArrayAccess(instruction, dex_pc, true, anticipated_type); \ break; \ } ARRAY_XX(, Primitive::kPrimInt); ARRAY_XX(_WIDE, Primitive::kPrimLong); ARRAY_XX(_OBJECT, Primitive::kPrimNot); ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean); ARRAY_XX(_BYTE, Primitive::kPrimByte); ARRAY_XX(_CHAR, Primitive::kPrimChar); ARRAY_XX(_SHORT, Primitive::kPrimShort); case Instruction::ARRAY_LENGTH: { HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc); AppendInstruction(new (arena_) HArrayLength(object, dex_pc)); UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction()); break; } case Instruction::CONST_STRING: { dex::StringIndex string_index(instruction.VRegB_21c()); AppendInstruction( new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc)); UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); break; } case Instruction::CONST_STRING_JUMBO: { dex::StringIndex string_index(instruction.VRegB_31c()); AppendInstruction( new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc)); UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction()); break; } case Instruction::CONST_CLASS: { dex::TypeIndex type_index(instruction.VRegB_21c()); BuildLoadClass(type_index, dex_pc); UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction()); break; } case Instruction::MOVE_EXCEPTION: { AppendInstruction(new (arena_) HLoadException(dex_pc)); UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction()); AppendInstruction(new (arena_) HClearException(dex_pc)); break; } case Instruction::THROW: { HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot); AppendInstruction(new (arena_) HThrow(exception, dex_pc)); // We finished building this block. Set the current block to null to avoid // adding dead instructions to it. current_block_ = nullptr; break; } case Instruction::INSTANCE_OF: { uint8_t destination = instruction.VRegA_22c(); uint8_t reference = instruction.VRegB_22c(); dex::TypeIndex type_index(instruction.VRegC_22c()); BuildTypeCheck(instruction, destination, reference, type_index, dex_pc); break; } case Instruction::CHECK_CAST: { uint8_t reference = instruction.VRegA_21c(); dex::TypeIndex type_index(instruction.VRegB_21c()); BuildTypeCheck(instruction, -1, reference, type_index, dex_pc); break; } case Instruction::MONITOR_ENTER: { AppendInstruction(new (arena_) HMonitorOperation( LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot), HMonitorOperation::OperationKind::kEnter, dex_pc)); break; } case Instruction::MONITOR_EXIT: { AppendInstruction(new (arena_) HMonitorOperation( LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot), HMonitorOperation::OperationKind::kExit, dex_pc)); break; } case Instruction::SPARSE_SWITCH: case Instruction::PACKED_SWITCH: { BuildSwitch(instruction, dex_pc); break; } default: VLOG(compiler) << "Did not compile " << dex_file_->PrettyMethod(dex_compilation_unit_->GetDexMethodIndex()) << " because of unhandled instruction " << instruction.Name(); MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction); return false; } return true; } // NOLINT(readability/fn_size) ObjPtr<mirror::Class> HInstructionBuilder::LookupResolvedType( dex::TypeIndex type_index, const DexCompilationUnit& compilation_unit) const { return ClassLinker::LookupResolvedType( type_index, compilation_unit.GetDexCache().Get(), compilation_unit.GetClassLoader().Get()); } ObjPtr<mirror::Class> HInstructionBuilder::LookupReferrerClass() const { // TODO: Cache the result in a Handle<mirror::Class>. const DexFile::MethodId& method_id = dex_compilation_unit_->GetDexFile()->GetMethodId(dex_compilation_unit_->GetDexMethodIndex()); return LookupResolvedType(method_id.class_idx_, *dex_compilation_unit_); } } // namespace art