/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "intrinsics_arm.h" #include "arch/arm/instruction_set_features_arm.h" #include "art_method.h" #include "code_generator_arm.h" #include "entrypoints/quick/quick_entrypoints.h" #include "intrinsics.h" #include "intrinsics_utils.h" #include "lock_word.h" #include "mirror/array-inl.h" #include "mirror/object_array-inl.h" #include "mirror/reference.h" #include "mirror/string.h" #include "scoped_thread_state_change-inl.h" #include "thread-inl.h" #include "utils/arm/assembler_arm.h" namespace art { namespace arm { ArmAssembler* IntrinsicCodeGeneratorARM::GetAssembler() { return codegen_->GetAssembler(); } ArenaAllocator* IntrinsicCodeGeneratorARM::GetAllocator() { return codegen_->GetGraph()->GetArena(); } using IntrinsicSlowPathARM = IntrinsicSlowPath<InvokeDexCallingConventionVisitorARM>; #define __ assembler-> // Compute base address for the System.arraycopy intrinsic in `base`. static void GenSystemArrayCopyBaseAddress(ArmAssembler* assembler, Primitive::Type type, const Register& array, const Location& pos, const Register& base) { // This routine is only used by the SystemArrayCopy intrinsic at the // moment. We can allow Primitive::kPrimNot as `type` to implement // the SystemArrayCopyChar intrinsic. DCHECK_EQ(type, Primitive::kPrimNot); const int32_t element_size = Primitive::ComponentSize(type); const uint32_t element_size_shift = Primitive::ComponentSizeShift(type); const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value(); if (pos.IsConstant()) { int32_t constant = pos.GetConstant()->AsIntConstant()->GetValue(); __ AddConstant(base, array, element_size * constant + data_offset); } else { __ add(base, array, ShifterOperand(pos.AsRegister<Register>(), LSL, element_size_shift)); __ AddConstant(base, data_offset); } } // Compute end address for the System.arraycopy intrinsic in `end`. static void GenSystemArrayCopyEndAddress(ArmAssembler* assembler, Primitive::Type type, const Location& copy_length, const Register& base, const Register& end) { // This routine is only used by the SystemArrayCopy intrinsic at the // moment. We can allow Primitive::kPrimNot as `type` to implement // the SystemArrayCopyChar intrinsic. DCHECK_EQ(type, Primitive::kPrimNot); const int32_t element_size = Primitive::ComponentSize(type); const uint32_t element_size_shift = Primitive::ComponentSizeShift(type); if (copy_length.IsConstant()) { int32_t constant = copy_length.GetConstant()->AsIntConstant()->GetValue(); __ AddConstant(end, base, element_size * constant); } else { __ add(end, base, ShifterOperand(copy_length.AsRegister<Register>(), LSL, element_size_shift)); } } #undef __ // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. #define __ down_cast<ArmAssembler*>(codegen->GetAssembler())-> // NOLINT // Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers. class ReadBarrierSystemArrayCopySlowPathARM : public SlowPathCode { public: explicit ReadBarrierSystemArrayCopySlowPathARM(HInstruction* instruction) : SlowPathCode(instruction) { DCHECK(kEmitCompilerReadBarrier); DCHECK(kUseBakerReadBarrier); } void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { CodeGeneratorARM* arm_codegen = down_cast<CodeGeneratorARM*>(codegen); ArmAssembler* assembler = arm_codegen->GetAssembler(); LocationSummary* locations = instruction_->GetLocations(); DCHECK(locations->CanCall()); DCHECK(instruction_->IsInvokeStaticOrDirect()) << "Unexpected instruction in read barrier arraycopy slow path: " << instruction_->DebugName(); DCHECK(instruction_->GetLocations()->Intrinsified()); DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy); Primitive::Type type = Primitive::kPrimNot; const int32_t element_size = Primitive::ComponentSize(type); Register dest = locations->InAt(2).AsRegister<Register>(); Location dest_pos = locations->InAt(3); Register src_curr_addr = locations->GetTemp(0).AsRegister<Register>(); Register dst_curr_addr = locations->GetTemp(1).AsRegister<Register>(); Register src_stop_addr = locations->GetTemp(2).AsRegister<Register>(); Register tmp = locations->GetTemp(3).AsRegister<Register>(); __ Bind(GetEntryLabel()); // Compute the base destination address in `dst_curr_addr`. GenSystemArrayCopyBaseAddress(assembler, type, dest, dest_pos, dst_curr_addr); Label loop; __ Bind(&loop); __ ldr(tmp, Address(src_curr_addr, element_size, Address::PostIndex)); __ MaybeUnpoisonHeapReference(tmp); // TODO: Inline the mark bit check before calling the runtime? // tmp = ReadBarrier::Mark(tmp); // No need to save live registers; it's taken care of by the // entrypoint. Also, there is no need to update the stack mask, // as this runtime call will not trigger a garbage collection. // (See ReadBarrierMarkSlowPathARM::EmitNativeCode for more // explanations.) DCHECK_NE(tmp, SP); DCHECK_NE(tmp, LR); DCHECK_NE(tmp, PC); // IP is used internally by the ReadBarrierMarkRegX entry point // as a temporary (and not preserved). It thus cannot be used by // any live register in this slow path. DCHECK_NE(src_curr_addr, IP); DCHECK_NE(dst_curr_addr, IP); DCHECK_NE(src_stop_addr, IP); DCHECK_NE(tmp, IP); DCHECK(0 <= tmp && tmp < kNumberOfCoreRegisters) << tmp; // TODO: Load the entrypoint once before the loop, instead of // loading it at every iteration. int32_t entry_point_offset = CodeGenerator::GetReadBarrierMarkEntryPointsOffset<kArmPointerSize>(tmp); // This runtime call does not require a stack map. arm_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); __ MaybePoisonHeapReference(tmp); __ str(tmp, Address(dst_curr_addr, element_size, Address::PostIndex)); __ cmp(src_curr_addr, ShifterOperand(src_stop_addr)); __ b(&loop, NE); __ b(GetExitLabel()); } const char* GetDescription() const OVERRIDE { return "ReadBarrierSystemArrayCopySlowPathARM"; } private: DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathARM); }; #undef __ IntrinsicLocationsBuilderARM::IntrinsicLocationsBuilderARM(CodeGeneratorARM* codegen) : arena_(codegen->GetGraph()->GetArena()), codegen_(codegen), assembler_(codegen->GetAssembler()), features_(codegen->GetInstructionSetFeatures()) {} bool IntrinsicLocationsBuilderARM::TryDispatch(HInvoke* invoke) { Dispatch(invoke); LocationSummary* res = invoke->GetLocations(); if (res == nullptr) { return false; } return res->Intrinsified(); } #define __ assembler-> static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresRegister()); } static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresFpuRegister()); } static void MoveFPToInt(LocationSummary* locations, bool is64bit, ArmAssembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); if (is64bit) { __ vmovrrd(output.AsRegisterPairLow<Register>(), output.AsRegisterPairHigh<Register>(), FromLowSToD(input.AsFpuRegisterPairLow<SRegister>())); } else { __ vmovrs(output.AsRegister<Register>(), input.AsFpuRegister<SRegister>()); } } static void MoveIntToFP(LocationSummary* locations, bool is64bit, ArmAssembler* assembler) { Location input = locations->InAt(0); Location output = locations->Out(); if (is64bit) { __ vmovdrr(FromLowSToD(output.AsFpuRegisterPairLow<SRegister>()), input.AsRegisterPairLow<Register>(), input.AsRegisterPairHigh<Register>()); } else { __ vmovsr(output.AsFpuRegister<SRegister>(), input.AsRegister<Register>()); } } void IntrinsicLocationsBuilderARM::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { CreateFPToIntLocations(arena_, invoke); } void IntrinsicLocationsBuilderARM::VisitDoubleLongBitsToDouble(HInvoke* invoke) { CreateIntToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } void IntrinsicCodeGeneratorARM::VisitDoubleLongBitsToDouble(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } void IntrinsicLocationsBuilderARM::VisitFloatFloatToRawIntBits(HInvoke* invoke) { CreateFPToIntLocations(arena_, invoke); } void IntrinsicLocationsBuilderARM::VisitFloatIntBitsToFloat(HInvoke* invoke) { CreateIntToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitFloatFloatToRawIntBits(HInvoke* invoke) { MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } void IntrinsicCodeGeneratorARM::VisitFloatIntBitsToFloat(HInvoke* invoke) { MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); } static void GenNumberOfLeadingZeros(HInvoke* invoke, Primitive::Type type, CodeGeneratorARM* codegen) { ArmAssembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Location in = locations->InAt(0); Register out = locations->Out().AsRegister<Register>(); DCHECK((type == Primitive::kPrimInt) || (type == Primitive::kPrimLong)); if (type == Primitive::kPrimLong) { Register in_reg_lo = in.AsRegisterPairLow<Register>(); Register in_reg_hi = in.AsRegisterPairHigh<Register>(); Label end; Label* final_label = codegen->GetFinalLabel(invoke, &end); __ clz(out, in_reg_hi); __ CompareAndBranchIfNonZero(in_reg_hi, final_label); __ clz(out, in_reg_lo); __ AddConstant(out, 32); if (end.IsLinked()) { __ Bind(&end); } } else { __ clz(out, in.AsRegister<Register>()); } } void IntrinsicLocationsBuilderARM::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { GenNumberOfLeadingZeros(invoke, Primitive::kPrimInt, codegen_); } void IntrinsicLocationsBuilderARM::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } void IntrinsicCodeGeneratorARM::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { GenNumberOfLeadingZeros(invoke, Primitive::kPrimLong, codegen_); } static void GenNumberOfTrailingZeros(HInvoke* invoke, Primitive::Type type, CodeGeneratorARM* codegen) { DCHECK((type == Primitive::kPrimInt) || (type == Primitive::kPrimLong)); ArmAssembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register out = locations->Out().AsRegister<Register>(); if (type == Primitive::kPrimLong) { Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>(); Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); Label end; Label* final_label = codegen->GetFinalLabel(invoke, &end); __ rbit(out, in_reg_lo); __ clz(out, out); __ CompareAndBranchIfNonZero(in_reg_lo, final_label); __ rbit(out, in_reg_hi); __ clz(out, out); __ AddConstant(out, 32); if (end.IsLinked()) { __ Bind(&end); } } else { Register in = locations->InAt(0).AsRegister<Register>(); __ rbit(out, in); __ clz(out, out); } } void IntrinsicLocationsBuilderARM::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void IntrinsicCodeGeneratorARM::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { GenNumberOfTrailingZeros(invoke, Primitive::kPrimInt, codegen_); } void IntrinsicLocationsBuilderARM::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } void IntrinsicCodeGeneratorARM::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { GenNumberOfTrailingZeros(invoke, Primitive::kPrimLong, codegen_); } static void MathAbsFP(LocationSummary* locations, bool is64bit, ArmAssembler* assembler) { Location in = locations->InAt(0); Location out = locations->Out(); if (is64bit) { __ vabsd(FromLowSToD(out.AsFpuRegisterPairLow<SRegister>()), FromLowSToD(in.AsFpuRegisterPairLow<SRegister>())); } else { __ vabss(out.AsFpuRegister<SRegister>(), in.AsFpuRegister<SRegister>()); } } void IntrinsicLocationsBuilderARM::VisitMathAbsDouble(HInvoke* invoke) { CreateFPToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathAbsDouble(HInvoke* invoke) { MathAbsFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } void IntrinsicLocationsBuilderARM::VisitMathAbsFloat(HInvoke* invoke) { CreateFPToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathAbsFloat(HInvoke* invoke) { MathAbsFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } static void CreateIntToIntPlusTemp(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); locations->AddTemp(Location::RequiresRegister()); } static void GenAbsInteger(LocationSummary* locations, bool is64bit, ArmAssembler* assembler) { Location in = locations->InAt(0); Location output = locations->Out(); Register mask = locations->GetTemp(0).AsRegister<Register>(); if (is64bit) { Register in_reg_lo = in.AsRegisterPairLow<Register>(); Register in_reg_hi = in.AsRegisterPairHigh<Register>(); Register out_reg_lo = output.AsRegisterPairLow<Register>(); Register out_reg_hi = output.AsRegisterPairHigh<Register>(); DCHECK_NE(out_reg_lo, in_reg_hi) << "Diagonal overlap unexpected."; __ Asr(mask, in_reg_hi, 31); __ adds(out_reg_lo, in_reg_lo, ShifterOperand(mask)); __ adc(out_reg_hi, in_reg_hi, ShifterOperand(mask)); __ eor(out_reg_lo, mask, ShifterOperand(out_reg_lo)); __ eor(out_reg_hi, mask, ShifterOperand(out_reg_hi)); } else { Register in_reg = in.AsRegister<Register>(); Register out_reg = output.AsRegister<Register>(); __ Asr(mask, in_reg, 31); __ add(out_reg, in_reg, ShifterOperand(mask)); __ eor(out_reg, mask, ShifterOperand(out_reg)); } } void IntrinsicLocationsBuilderARM::VisitMathAbsInt(HInvoke* invoke) { CreateIntToIntPlusTemp(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathAbsInt(HInvoke* invoke) { GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); } void IntrinsicLocationsBuilderARM::VisitMathAbsLong(HInvoke* invoke) { CreateIntToIntPlusTemp(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathAbsLong(HInvoke* invoke) { GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); } static void GenMinMax(LocationSummary* locations, bool is_min, ArmAssembler* assembler) { Register op1 = locations->InAt(0).AsRegister<Register>(); Register op2 = locations->InAt(1).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); __ cmp(op1, ShifterOperand(op2)); __ it((is_min) ? Condition::LT : Condition::GT, kItElse); __ mov(out, ShifterOperand(op1), is_min ? Condition::LT : Condition::GT); __ mov(out, ShifterOperand(op2), is_min ? Condition::GE : Condition::LE); } static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); } void IntrinsicLocationsBuilderARM::VisitMathMinIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathMinIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ true, GetAssembler()); } void IntrinsicLocationsBuilderARM::VisitMathMaxIntInt(HInvoke* invoke) { CreateIntIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathMaxIntInt(HInvoke* invoke) { GenMinMax(invoke->GetLocations(), /* is_min */ false, GetAssembler()); } void IntrinsicLocationsBuilderARM::VisitMathSqrt(HInvoke* invoke) { CreateFPToFPLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathSqrt(HInvoke* invoke) { LocationSummary* locations = invoke->GetLocations(); ArmAssembler* assembler = GetAssembler(); __ vsqrtd(FromLowSToD(locations->Out().AsFpuRegisterPairLow<SRegister>()), FromLowSToD(locations->InAt(0).AsFpuRegisterPairLow<SRegister>())); } void IntrinsicLocationsBuilderARM::VisitMemoryPeekByte(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMemoryPeekByte(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); // Ignore upper 4B of long address. __ ldrsb(invoke->GetLocations()->Out().AsRegister<Register>(), Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>())); } void IntrinsicLocationsBuilderARM::VisitMemoryPeekIntNative(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMemoryPeekIntNative(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); // Ignore upper 4B of long address. __ ldr(invoke->GetLocations()->Out().AsRegister<Register>(), Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>())); } void IntrinsicLocationsBuilderARM::VisitMemoryPeekLongNative(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMemoryPeekLongNative(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); // Ignore upper 4B of long address. Register addr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>(); // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor // exception. So we can't use ldrd as addr may be unaligned. Register lo = invoke->GetLocations()->Out().AsRegisterPairLow<Register>(); Register hi = invoke->GetLocations()->Out().AsRegisterPairHigh<Register>(); if (addr == lo) { __ ldr(hi, Address(addr, 4)); __ ldr(lo, Address(addr, 0)); } else { __ ldr(lo, Address(addr, 0)); __ ldr(hi, Address(addr, 4)); } } void IntrinsicLocationsBuilderARM::VisitMemoryPeekShortNative(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMemoryPeekShortNative(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); // Ignore upper 4B of long address. __ ldrsh(invoke->GetLocations()->Out().AsRegister<Register>(), Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>())); } static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); } void IntrinsicLocationsBuilderARM::VisitMemoryPokeByte(HInvoke* invoke) { CreateIntIntToVoidLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMemoryPokeByte(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); __ strb(invoke->GetLocations()->InAt(1).AsRegister<Register>(), Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>())); } void IntrinsicLocationsBuilderARM::VisitMemoryPokeIntNative(HInvoke* invoke) { CreateIntIntToVoidLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMemoryPokeIntNative(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); __ str(invoke->GetLocations()->InAt(1).AsRegister<Register>(), Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>())); } void IntrinsicLocationsBuilderARM::VisitMemoryPokeLongNative(HInvoke* invoke) { CreateIntIntToVoidLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMemoryPokeLongNative(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); // Ignore upper 4B of long address. Register addr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>(); // Worst case: Control register bit SCTLR.A = 0. Then unaligned accesses throw a processor // exception. So we can't use ldrd as addr may be unaligned. __ str(invoke->GetLocations()->InAt(1).AsRegisterPairLow<Register>(), Address(addr, 0)); __ str(invoke->GetLocations()->InAt(1).AsRegisterPairHigh<Register>(), Address(addr, 4)); } void IntrinsicLocationsBuilderARM::VisitMemoryPokeShortNative(HInvoke* invoke) { CreateIntIntToVoidLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMemoryPokeShortNative(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); __ strh(invoke->GetLocations()->InAt(1).AsRegister<Register>(), Address(invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>())); } void IntrinsicLocationsBuilderARM::VisitThreadCurrentThread(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorARM::VisitThreadCurrentThread(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); __ LoadFromOffset(kLoadWord, invoke->GetLocations()->Out().AsRegister<Register>(), TR, Thread::PeerOffset<kArmPointerSize>().Int32Value()); } static void GenUnsafeGet(HInvoke* invoke, Primitive::Type type, bool is_volatile, CodeGeneratorARM* codegen) { LocationSummary* locations = invoke->GetLocations(); ArmAssembler* assembler = codegen->GetAssembler(); Location base_loc = locations->InAt(1); Register base = base_loc.AsRegister<Register>(); // Object pointer. Location offset_loc = locations->InAt(2); Register offset = offset_loc.AsRegisterPairLow<Register>(); // Long offset, lo part only. Location trg_loc = locations->Out(); switch (type) { case Primitive::kPrimInt: { Register trg = trg_loc.AsRegister<Register>(); __ ldr(trg, Address(base, offset)); if (is_volatile) { __ dmb(ISH); } break; } case Primitive::kPrimNot: { Register trg = trg_loc.AsRegister<Register>(); if (kEmitCompilerReadBarrier) { if (kUseBakerReadBarrier) { Location temp = locations->GetTemp(0); codegen->GenerateReferenceLoadWithBakerReadBarrier( invoke, trg_loc, base, 0U, offset_loc, TIMES_1, temp, /* needs_null_check */ false); if (is_volatile) { __ dmb(ISH); } } else { __ ldr(trg, Address(base, offset)); if (is_volatile) { __ dmb(ISH); } codegen->GenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, 0U, offset_loc); } } else { __ ldr(trg, Address(base, offset)); if (is_volatile) { __ dmb(ISH); } __ MaybeUnpoisonHeapReference(trg); } break; } case Primitive::kPrimLong: { Register trg_lo = trg_loc.AsRegisterPairLow<Register>(); __ add(IP, base, ShifterOperand(offset)); if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) { Register trg_hi = trg_loc.AsRegisterPairHigh<Register>(); __ ldrexd(trg_lo, trg_hi, IP); } else { __ ldrd(trg_lo, Address(IP)); } if (is_volatile) { __ dmb(ISH); } break; } default: LOG(FATAL) << "Unexpected type " << type; UNREACHABLE(); } } static void CreateIntIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke, Primitive::Type type) { bool can_call = kEmitCompilerReadBarrier && (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject || invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile); LocationSummary* locations = new (arena) LocationSummary(invoke, (can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall), kIntrinsified); if (can_call && kUseBakerReadBarrier) { locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. } locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap)); if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // We need a temporary register for the read barrier marking slow // path in InstructionCodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier. locations->AddTemp(Location::RequiresRegister()); } } void IntrinsicLocationsBuilderARM::VisitUnsafeGet(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt); } void IntrinsicLocationsBuilderARM::VisitUnsafeGetVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt); } void IntrinsicLocationsBuilderARM::VisitUnsafeGetLong(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong); } void IntrinsicLocationsBuilderARM::VisitUnsafeGetLongVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong); } void IntrinsicLocationsBuilderARM::VisitUnsafeGetObject(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot); } void IntrinsicLocationsBuilderARM::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot); } void IntrinsicCodeGeneratorARM::VisitUnsafeGet(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafeGetVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafeGetLong(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafeGetLongVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ true, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafeGetObject(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, codegen_); } static void CreateIntIntIntIntToVoid(ArenaAllocator* arena, const ArmInstructionSetFeatures& features, Primitive::Type type, bool is_volatile, HInvoke* invoke) { LocationSummary* locations = new (arena) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); if (type == Primitive::kPrimLong) { // Potentially need temps for ldrexd-strexd loop. if (is_volatile && !features.HasAtomicLdrdAndStrd()) { locations->AddTemp(Location::RequiresRegister()); // Temp_lo. locations->AddTemp(Location::RequiresRegister()); // Temp_hi. } } else if (type == Primitive::kPrimNot) { // Temps for card-marking. locations->AddTemp(Location::RequiresRegister()); // Temp. locations->AddTemp(Location::RequiresRegister()); // Card. } } void IntrinsicLocationsBuilderARM::VisitUnsafePut(HInvoke* invoke) { CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ false, invoke); } void IntrinsicLocationsBuilderARM::VisitUnsafePutOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ false, invoke); } void IntrinsicLocationsBuilderARM::VisitUnsafePutVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimInt, /* is_volatile */ true, invoke); } void IntrinsicLocationsBuilderARM::VisitUnsafePutObject(HInvoke* invoke) { CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ false, invoke); } void IntrinsicLocationsBuilderARM::VisitUnsafePutObjectOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ false, invoke); } void IntrinsicLocationsBuilderARM::VisitUnsafePutObjectVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoid(arena_, features_, Primitive::kPrimNot, /* is_volatile */ true, invoke); } void IntrinsicLocationsBuilderARM::VisitUnsafePutLong(HInvoke* invoke) { CreateIntIntIntIntToVoid( arena_, features_, Primitive::kPrimLong, /* is_volatile */ false, invoke); } void IntrinsicLocationsBuilderARM::VisitUnsafePutLongOrdered(HInvoke* invoke) { CreateIntIntIntIntToVoid( arena_, features_, Primitive::kPrimLong, /* is_volatile */ false, invoke); } void IntrinsicLocationsBuilderARM::VisitUnsafePutLongVolatile(HInvoke* invoke) { CreateIntIntIntIntToVoid( arena_, features_, Primitive::kPrimLong, /* is_volatile */ true, invoke); } static void GenUnsafePut(LocationSummary* locations, Primitive::Type type, bool is_volatile, bool is_ordered, CodeGeneratorARM* codegen) { ArmAssembler* assembler = codegen->GetAssembler(); Register base = locations->InAt(1).AsRegister<Register>(); // Object pointer. Register offset = locations->InAt(2).AsRegisterPairLow<Register>(); // Long offset, lo part only. Register value; if (is_volatile || is_ordered) { __ dmb(ISH); } if (type == Primitive::kPrimLong) { Register value_lo = locations->InAt(3).AsRegisterPairLow<Register>(); value = value_lo; if (is_volatile && !codegen->GetInstructionSetFeatures().HasAtomicLdrdAndStrd()) { Register temp_lo = locations->GetTemp(0).AsRegister<Register>(); Register temp_hi = locations->GetTemp(1).AsRegister<Register>(); Register value_hi = locations->InAt(3).AsRegisterPairHigh<Register>(); __ add(IP, base, ShifterOperand(offset)); Label loop_head; __ Bind(&loop_head); __ ldrexd(temp_lo, temp_hi, IP); __ strexd(temp_lo, value_lo, value_hi, IP); __ cmp(temp_lo, ShifterOperand(0)); __ b(&loop_head, NE); } else { __ add(IP, base, ShifterOperand(offset)); __ strd(value_lo, Address(IP)); } } else { value = locations->InAt(3).AsRegister<Register>(); Register source = value; if (kPoisonHeapReferences && type == Primitive::kPrimNot) { Register temp = locations->GetTemp(0).AsRegister<Register>(); __ Mov(temp, value); __ PoisonHeapReference(temp); source = temp; } __ str(source, Address(base, offset)); } if (is_volatile) { __ dmb(ISH); } if (type == Primitive::kPrimNot) { Register temp = locations->GetTemp(0).AsRegister<Register>(); Register card = locations->GetTemp(1).AsRegister<Register>(); bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(temp, card, base, value, value_can_be_null); } } void IntrinsicCodeGeneratorARM::VisitUnsafePut(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ false, /* is_ordered */ false, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafePutOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ false, /* is_ordered */ true, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafePutVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimInt, /* is_volatile */ true, /* is_ordered */ false, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafePutObject(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ false, /* is_ordered */ false, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafePutObjectOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ false, /* is_ordered */ true, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafePutObjectVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimNot, /* is_volatile */ true, /* is_ordered */ false, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafePutLong(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ false, /* is_ordered */ false, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafePutLongOrdered(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ false, /* is_ordered */ true, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafePutLongVolatile(HInvoke* invoke) { GenUnsafePut(invoke->GetLocations(), Primitive::kPrimLong, /* is_volatile */ true, /* is_ordered */ false, codegen_); } static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* arena, HInvoke* invoke, Primitive::Type type) { bool can_call = kEmitCompilerReadBarrier && kUseBakerReadBarrier && (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject); LocationSummary* locations = new (arena) LocationSummary(invoke, (can_call ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall), kIntrinsified); locations->SetInAt(0, Location::NoLocation()); // Unused receiver. locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); locations->SetInAt(4, Location::RequiresRegister()); // If heap poisoning is enabled, we don't want the unpoisoning // operations to potentially clobber the output. Likewise when // emitting a (Baker) read barrier, which may call. Location::OutputOverlap overlaps = ((kPoisonHeapReferences && type == Primitive::kPrimNot) || can_call) ? Location::kOutputOverlap : Location::kNoOutputOverlap; locations->SetOut(Location::RequiresRegister(), overlaps); // Temporary registers used in CAS. In the object case // (UnsafeCASObject intrinsic), these are also used for // card-marking, and possibly for (Baker) read barrier. locations->AddTemp(Location::RequiresRegister()); // Pointer. locations->AddTemp(Location::RequiresRegister()); // Temp 1. } static void GenCas(HInvoke* invoke, Primitive::Type type, CodeGeneratorARM* codegen) { DCHECK_NE(type, Primitive::kPrimLong); ArmAssembler* assembler = codegen->GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Location out_loc = locations->Out(); Register out = out_loc.AsRegister<Register>(); // Boolean result. Register base = locations->InAt(1).AsRegister<Register>(); // Object pointer. Location offset_loc = locations->InAt(2); Register offset = offset_loc.AsRegisterPairLow<Register>(); // Offset (discard high 4B). Register expected = locations->InAt(3).AsRegister<Register>(); // Expected. Register value = locations->InAt(4).AsRegister<Register>(); // Value. Location tmp_ptr_loc = locations->GetTemp(0); Register tmp_ptr = tmp_ptr_loc.AsRegister<Register>(); // Pointer to actual memory. Register tmp = locations->GetTemp(1).AsRegister<Register>(); // Value in memory. if (type == Primitive::kPrimNot) { // The only read barrier implementation supporting the // UnsafeCASObject intrinsic is the Baker-style read barriers. DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); // Mark card for object assuming new value is stored. Worst case we will mark an unchanged // object and scan the receiver at the next GC for nothing. bool value_can_be_null = true; // TODO: Worth finding out this information? codegen->MarkGCCard(tmp_ptr, tmp, base, value, value_can_be_null); if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // Need to make sure the reference stored in the field is a to-space // one before attempting the CAS or the CAS could fail incorrectly. codegen->GenerateReferenceLoadWithBakerReadBarrier( invoke, out_loc, // Unused, used only as a "temporary" within the read barrier. base, /* offset */ 0u, /* index */ offset_loc, ScaleFactor::TIMES_1, tmp_ptr_loc, /* needs_null_check */ false, /* always_update_field */ true, &tmp); } } // Prevent reordering with prior memory operations. // Emit a DMB ISH instruction instead of an DMB ISHST one, as the // latter allows a preceding load to be delayed past the STXR // instruction below. __ dmb(ISH); __ add(tmp_ptr, base, ShifterOperand(offset)); if (kPoisonHeapReferences && type == Primitive::kPrimNot) { __ PoisonHeapReference(expected); if (value == expected) { // Do not poison `value`, as it is the same register as // `expected`, which has just been poisoned. } else { __ PoisonHeapReference(value); } } // do { // tmp = [r_ptr] - expected; // } while (tmp == 0 && failure([r_ptr] <- r_new_value)); // result = tmp != 0; Label loop_head; __ Bind(&loop_head); __ ldrex(tmp, tmp_ptr); __ subs(tmp, tmp, ShifterOperand(expected)); __ it(EQ, ItState::kItT); __ strex(tmp, value, tmp_ptr, EQ); __ cmp(tmp, ShifterOperand(1), EQ); __ b(&loop_head, EQ); __ dmb(ISH); __ rsbs(out, tmp, ShifterOperand(1)); __ it(CC); __ mov(out, ShifterOperand(0), CC); if (kPoisonHeapReferences && type == Primitive::kPrimNot) { __ UnpoisonHeapReference(expected); if (value == expected) { // Do not unpoison `value`, as it is the same register as // `expected`, which has just been unpoisoned. } else { __ UnpoisonHeapReference(value); } } } void IntrinsicLocationsBuilderARM::VisitUnsafeCASInt(HInvoke* invoke) { CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke, Primitive::kPrimInt); } void IntrinsicLocationsBuilderARM::VisitUnsafeCASObject(HInvoke* invoke) { // The only read barrier implementation supporting the // UnsafeCASObject intrinsic is the Baker-style read barriers. if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { return; } CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke, Primitive::kPrimNot); } void IntrinsicCodeGeneratorARM::VisitUnsafeCASInt(HInvoke* invoke) { GenCas(invoke, Primitive::kPrimInt, codegen_); } void IntrinsicCodeGeneratorARM::VisitUnsafeCASObject(HInvoke* invoke) { // The only read barrier implementation supporting the // UnsafeCASObject intrinsic is the Baker-style read barriers. DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); GenCas(invoke, Primitive::kPrimNot, codegen_); } void IntrinsicLocationsBuilderARM::VisitStringCompareTo(HInvoke* invoke) { // The inputs plus one temp. LocationSummary* locations = new (arena_) LocationSummary(invoke, invoke->InputAt(1)->CanBeNull() ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); // Need temporary registers for String compression's feature. if (mirror::kUseStringCompression) { locations->AddTemp(Location::RequiresRegister()); } locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } void IntrinsicCodeGeneratorARM::VisitStringCompareTo(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register str = locations->InAt(0).AsRegister<Register>(); Register arg = locations->InAt(1).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); Register temp0 = locations->GetTemp(0).AsRegister<Register>(); Register temp1 = locations->GetTemp(1).AsRegister<Register>(); Register temp2 = locations->GetTemp(2).AsRegister<Register>(); Register temp3; if (mirror::kUseStringCompression) { temp3 = locations->GetTemp(3).AsRegister<Register>(); } Label loop; Label find_char_diff; Label end; Label different_compression; // Get offsets of count and value fields within a string object. const int32_t count_offset = mirror::String::CountOffset().Int32Value(); const int32_t value_offset = mirror::String::ValueOffset().Int32Value(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); // Take slow path and throw if input can be and is null. SlowPathCode* slow_path = nullptr; const bool can_slow_path = invoke->InputAt(1)->CanBeNull(); if (can_slow_path) { slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke); codegen_->AddSlowPath(slow_path); __ CompareAndBranchIfZero(arg, slow_path->GetEntryLabel()); } // Reference equality check, return 0 if same reference. __ subs(out, str, ShifterOperand(arg)); __ b(&end, EQ); if (mirror::kUseStringCompression) { // Load `count` fields of this and argument strings. __ ldr(temp3, Address(str, count_offset)); __ ldr(temp2, Address(arg, count_offset)); // Extract lengths from the `count` fields. __ Lsr(temp0, temp3, 1u); __ Lsr(temp1, temp2, 1u); } else { // Load lengths of this and argument strings. __ ldr(temp0, Address(str, count_offset)); __ ldr(temp1, Address(arg, count_offset)); } // out = length diff. __ subs(out, temp0, ShifterOperand(temp1)); // temp0 = min(len(str), len(arg)). __ it(GT); __ mov(temp0, ShifterOperand(temp1), GT); // Shorter string is empty? __ CompareAndBranchIfZero(temp0, &end); if (mirror::kUseStringCompression) { // Check if both strings using same compression style to use this comparison loop. __ eor(temp2, temp2, ShifterOperand(temp3)); __ Lsrs(temp2, temp2, 1u); __ b(&different_compression, CS); // For string compression, calculate the number of bytes to compare (not chars). // This could in theory exceed INT32_MAX, so treat temp0 as unsigned. __ Lsls(temp3, temp3, 31u); // Extract purely the compression flag. __ it(NE); __ add(temp0, temp0, ShifterOperand(temp0), NE); } // Store offset of string value in preparation for comparison loop. __ mov(temp1, ShifterOperand(value_offset)); // Assertions that must hold in order to compare multiple characters at a time. CHECK_ALIGNED(value_offset, 8); static_assert(IsAligned<8>(kObjectAlignment), "String data must be 8-byte aligned for unrolled CompareTo loop."); const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar); DCHECK_EQ(char_size, 2u); Label find_char_diff_2nd_cmp; // Unrolled loop comparing 4x16-bit chars per iteration (ok because of string data alignment). __ Bind(&loop); __ ldr(IP, Address(str, temp1)); __ ldr(temp2, Address(arg, temp1)); __ cmp(IP, ShifterOperand(temp2)); __ b(&find_char_diff, NE); __ add(temp1, temp1, ShifterOperand(char_size * 2)); __ ldr(IP, Address(str, temp1)); __ ldr(temp2, Address(arg, temp1)); __ cmp(IP, ShifterOperand(temp2)); __ b(&find_char_diff_2nd_cmp, NE); __ add(temp1, temp1, ShifterOperand(char_size * 2)); // With string compression, we have compared 8 bytes, otherwise 4 chars. __ subs(temp0, temp0, ShifterOperand(mirror::kUseStringCompression ? 8 : 4)); __ b(&loop, HI); __ b(&end); __ Bind(&find_char_diff_2nd_cmp); if (mirror::kUseStringCompression) { __ subs(temp0, temp0, ShifterOperand(4)); // 4 bytes previously compared. __ b(&end, LS); // Was the second comparison fully beyond the end? } else { // Without string compression, we can start treating temp0 as signed // and rely on the signed comparison below. __ sub(temp0, temp0, ShifterOperand(2)); } // Find the single character difference. __ Bind(&find_char_diff); // Get the bit position of the first character that differs. __ eor(temp1, temp2, ShifterOperand(IP)); __ rbit(temp1, temp1); __ clz(temp1, temp1); // temp0 = number of characters remaining to compare. // (Without string compression, it could be < 1 if a difference is found by the second CMP // in the comparison loop, and after the end of the shorter string data). // Without string compression (temp1 >> 4) = character where difference occurs between the last // two words compared, in the interval [0,1]. // (0 for low half-word different, 1 for high half-word different). // With string compression, (temp1 << 3) = byte where the difference occurs, // in the interval [0,3]. // If temp0 <= (temp1 >> (kUseStringCompression ? 3 : 4)), the difference occurs outside // the remaining string data, so just return length diff (out). // The comparison is unsigned for string compression, otherwise signed. __ cmp(temp0, ShifterOperand(temp1, LSR, mirror::kUseStringCompression ? 3 : 4)); __ b(&end, mirror::kUseStringCompression ? LS : LE); // Extract the characters and calculate the difference. if (mirror::kUseStringCompression) { // For compressed strings we need to clear 0x7 from temp1, for uncompressed we need to clear // 0xf. We also need to prepare the character extraction mask `uncompressed ? 0xffffu : 0xffu`. // The compression flag is now in the highest bit of temp3, so let's play some tricks. __ orr(temp3, temp3, ShifterOperand(0xffu << 23)); // uncompressed ? 0xff800000u : 0x7ff80000u __ bic(temp1, temp1, ShifterOperand(temp3, LSR, 31 - 3)); // &= ~(uncompressed ? 0xfu : 0x7u) __ Asr(temp3, temp3, 7u); // uncompressed ? 0xffff0000u : 0xff0000u. __ Lsr(temp2, temp2, temp1); // Extract second character. __ Lsr(temp3, temp3, 16u); // uncompressed ? 0xffffu : 0xffu __ Lsr(out, IP, temp1); // Extract first character. __ and_(temp2, temp2, ShifterOperand(temp3)); __ and_(out, out, ShifterOperand(temp3)); } else { __ bic(temp1, temp1, ShifterOperand(0xf)); __ Lsr(temp2, temp2, temp1); __ Lsr(out, IP, temp1); __ movt(temp2, 0); __ movt(out, 0); } __ sub(out, out, ShifterOperand(temp2)); if (mirror::kUseStringCompression) { __ b(&end); __ Bind(&different_compression); // Comparison for different compression style. const size_t c_char_size = Primitive::ComponentSize(Primitive::kPrimByte); DCHECK_EQ(c_char_size, 1u); // We want to free up the temp3, currently holding `str.count`, for comparison. // So, we move it to the bottom bit of the iteration count `temp0` which we tnen // need to treat as unsigned. Start by freeing the bit with an ADD and continue // further down by a LSRS+SBC which will flip the meaning of the flag but allow // `subs temp0, #2; bhi different_compression_loop` to serve as the loop condition. __ add(temp0, temp0, ShifterOperand(temp0)); // Unlike LSL, this ADD is always 16-bit. // `temp1` will hold the compressed data pointer, `temp2` the uncompressed data pointer. __ mov(temp1, ShifterOperand(str)); __ mov(temp2, ShifterOperand(arg)); __ Lsrs(temp3, temp3, 1u); // Continue the move of the compression flag. __ it(CS, kItThen); // Interleave with selection of temp1 and temp2. __ mov(temp1, ShifterOperand(arg), CS); // Preserves flags. __ mov(temp2, ShifterOperand(str), CS); // Preserves flags. __ sbc(temp0, temp0, ShifterOperand(0)); // Complete the move of the compression flag. // Adjust temp1 and temp2 from string pointers to data pointers. __ add(temp1, temp1, ShifterOperand(value_offset)); __ add(temp2, temp2, ShifterOperand(value_offset)); Label different_compression_loop; Label different_compression_diff; // Main loop for different compression. __ Bind(&different_compression_loop); __ ldrb(IP, Address(temp1, c_char_size, Address::PostIndex)); __ ldrh(temp3, Address(temp2, char_size, Address::PostIndex)); __ cmp(IP, ShifterOperand(temp3)); __ b(&different_compression_diff, NE); __ subs(temp0, temp0, ShifterOperand(2)); __ b(&different_compression_loop, HI); __ b(&end); // Calculate the difference. __ Bind(&different_compression_diff); __ sub(out, IP, ShifterOperand(temp3)); // Flip the difference if the `arg` is compressed. // `temp0` contains inverted `str` compression flag, i.e the same as `arg` compression flag. __ Lsrs(temp0, temp0, 1u); static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ it(CC); __ rsb(out, out, ShifterOperand(0), CC); } __ Bind(&end); if (can_slow_path) { __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderARM::VisitStringEquals(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); // Temporary registers to store lengths of strings and for calculations. // Using instruction cbz requires a low register, so explicitly set a temp to be R0. locations->AddTemp(Location::RegisterLocation(R0)); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister()); } void IntrinsicCodeGeneratorARM::VisitStringEquals(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register str = locations->InAt(0).AsRegister<Register>(); Register arg = locations->InAt(1).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); Register temp = locations->GetTemp(0).AsRegister<Register>(); Register temp1 = locations->GetTemp(1).AsRegister<Register>(); Register temp2 = locations->GetTemp(2).AsRegister<Register>(); Label loop; Label end; Label return_true; Label return_false; Label* final_label = codegen_->GetFinalLabel(invoke, &end); // Get offsets of count, value, and class fields within a string object. const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); StringEqualsOptimizations optimizations(invoke); if (!optimizations.GetArgumentNotNull()) { // Check if input is null, return false if it is. __ CompareAndBranchIfZero(arg, &return_false); } // Reference equality check, return true if same reference. __ cmp(str, ShifterOperand(arg)); __ b(&return_true, EQ); if (!optimizations.GetArgumentIsString()) { // Instanceof check for the argument by comparing class fields. // All string objects must have the same type since String cannot be subclassed. // Receiver must be a string object, so its class field is equal to all strings' class fields. // If the argument is a string object, its class field must be equal to receiver's class field. __ ldr(temp, Address(str, class_offset)); __ ldr(temp1, Address(arg, class_offset)); __ cmp(temp, ShifterOperand(temp1)); __ b(&return_false, NE); } // Load `count` fields of this and argument strings. __ ldr(temp, Address(str, count_offset)); __ ldr(temp1, Address(arg, count_offset)); // Check if `count` fields are equal, return false if they're not. // Also compares the compression style, if differs return false. __ cmp(temp, ShifterOperand(temp1)); __ b(&return_false, NE); // Return true if both strings are empty. Even with string compression `count == 0` means empty. static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, "Expecting 0=compressed, 1=uncompressed"); __ cbz(temp, &return_true); // Assertions that must hold in order to compare strings 4 bytes at a time. DCHECK_ALIGNED(value_offset, 4); static_assert(IsAligned<4>(kObjectAlignment), "String data must be aligned for fast compare."); if (mirror::kUseStringCompression) { // For string compression, calculate the number of bytes to compare (not chars). // This could in theory exceed INT32_MAX, so treat temp as unsigned. __ Lsrs(temp, temp, 1u); // Extract length and check compression flag. __ it(CS); // If uncompressed, __ add(temp, temp, ShifterOperand(temp), CS); // double the byte count. } // Store offset of string value in preparation for comparison loop. __ LoadImmediate(temp1, value_offset); // Loop to compare strings 4 bytes at a time starting at the front of the string. // Ok to do this because strings are zero-padded to kObjectAlignment. __ Bind(&loop); __ ldr(out, Address(str, temp1)); __ ldr(temp2, Address(arg, temp1)); __ add(temp1, temp1, ShifterOperand(sizeof(uint32_t))); __ cmp(out, ShifterOperand(temp2)); __ b(&return_false, NE); // With string compression, we have compared 4 bytes, otherwise 2 chars. __ subs(temp, temp, ShifterOperand(mirror::kUseStringCompression ? 4 : 2)); __ b(&loop, HI); // Return true and exit the function. // If loop does not result in returning false, we return true. __ Bind(&return_true); __ LoadImmediate(out, 1); __ b(final_label); // Return false and exit the function. __ Bind(&return_false); __ LoadImmediate(out, 0); if (end.IsLinked()) { __ Bind(&end); } } static void GenerateVisitStringIndexOf(HInvoke* invoke, ArmAssembler* assembler, CodeGeneratorARM* codegen, ArenaAllocator* allocator, bool start_at_zero) { LocationSummary* locations = invoke->GetLocations(); // Note that the null check must have been done earlier. DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, // or directly dispatch for a large constant, or omit slow-path for a small constant or a char. SlowPathCode* slow_path = nullptr; HInstruction* code_point = invoke->InputAt(1); if (code_point->IsIntConstant()) { if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) > std::numeric_limits<uint16_t>::max()) { // Always needs the slow-path. We could directly dispatch to it, but this case should be // rare, so for simplicity just put the full slow-path down and branch unconditionally. slow_path = new (allocator) IntrinsicSlowPathARM(invoke); codegen->AddSlowPath(slow_path); __ b(slow_path->GetEntryLabel()); __ Bind(slow_path->GetExitLabel()); return; } } else if (code_point->GetType() != Primitive::kPrimChar) { Register char_reg = locations->InAt(1).AsRegister<Register>(); // 0xffff is not modified immediate but 0x10000 is, so use `>= 0x10000` instead of `> 0xffff`. __ cmp(char_reg, ShifterOperand(static_cast<uint32_t>(std::numeric_limits<uint16_t>::max()) + 1)); slow_path = new (allocator) IntrinsicSlowPathARM(invoke); codegen->AddSlowPath(slow_path); __ b(slow_path->GetEntryLabel(), HS); } if (start_at_zero) { Register tmp_reg = locations->GetTemp(0).AsRegister<Register>(); DCHECK_EQ(tmp_reg, R2); // Start-index = 0. __ LoadImmediate(tmp_reg, 0); } codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path); CheckEntrypointTypes<kQuickIndexOf, int32_t, void*, uint32_t, uint32_t>(); if (slow_path != nullptr) { __ Bind(slow_path->GetExitLabel()); } } void IntrinsicLocationsBuilderARM::VisitStringIndexOf(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's // best to align the inputs accordingly. InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetOut(Location::RegisterLocation(R0)); // Need to send start-index=0. locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2))); } void IntrinsicCodeGeneratorARM::VisitStringIndexOf(HInvoke* invoke) { GenerateVisitStringIndexOf( invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ true); } void IntrinsicLocationsBuilderARM::VisitStringIndexOfAfter(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); // We have a hand-crafted assembly stub that follows the runtime calling convention. So it's // best to align the inputs accordingly. InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetOut(Location::RegisterLocation(R0)); } void IntrinsicCodeGeneratorARM::VisitStringIndexOfAfter(HInvoke* invoke) { GenerateVisitStringIndexOf( invoke, GetAssembler(), codegen_, GetAllocator(), /* start_at_zero */ false); } void IntrinsicLocationsBuilderARM::VisitStringNewStringFromBytes(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3))); locations->SetOut(Location::RegisterLocation(R0)); } void IntrinsicCodeGeneratorARM::VisitStringNewStringFromBytes(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register byte_array = locations->InAt(0).AsRegister<Register>(); __ cmp(byte_array, ShifterOperand(0)); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke); codegen_->AddSlowPath(slow_path); __ b(slow_path->GetEntryLabel(), EQ); codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path); CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>(); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderARM::VisitStringNewStringFromChars(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->SetOut(Location::RegisterLocation(R0)); } void IntrinsicCodeGeneratorARM::VisitStringNewStringFromChars(HInvoke* invoke) { // No need to emit code checking whether `locations->InAt(2)` is a null // pointer, as callers of the native method // // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) // // all include a null check on `data` before calling that method. codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc()); CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>(); } void IntrinsicLocationsBuilderARM::VisitStringNewStringFromString(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->SetOut(Location::RegisterLocation(R0)); } void IntrinsicCodeGeneratorARM::VisitStringNewStringFromString(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register string_to_copy = locations->InAt(0).AsRegister<Register>(); __ cmp(string_to_copy, ShifterOperand(0)); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke); codegen_->AddSlowPath(slow_path); __ b(slow_path->GetEntryLabel(), EQ); codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path); CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>(); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderARM::VisitSystemArrayCopy(HInvoke* invoke) { // The only read barrier implementation supporting the // SystemArrayCopy intrinsic is the Baker-style read barriers. if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { return; } CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke); LocationSummary* locations = invoke->GetLocations(); if (locations == nullptr) { return; } HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); if (src_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(src_pos->GetValue())) { locations->SetInAt(1, Location::RequiresRegister()); } if (dest_pos != nullptr && !assembler_->ShifterOperandCanAlwaysHold(dest_pos->GetValue())) { locations->SetInAt(3, Location::RequiresRegister()); } if (length != nullptr && !assembler_->ShifterOperandCanAlwaysHold(length->GetValue())) { locations->SetInAt(4, Location::RequiresRegister()); } if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // Temporary register IP cannot be used in // ReadBarrierSystemArrayCopySlowPathARM (because that register // is clobbered by ReadBarrierMarkRegX entry points). Get an extra // temporary register from the register allocator. locations->AddTemp(Location::RequiresRegister()); } } static void CheckPosition(ArmAssembler* assembler, Location pos, Register input, Location length, SlowPathCode* slow_path, Register temp, bool length_is_input_length = false) { // Where is the length in the Array? const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); if (pos.IsConstant()) { int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue(); if (pos_const == 0) { if (!length_is_input_length) { // Check that length(input) >= length. __ LoadFromOffset(kLoadWord, temp, input, length_offset); if (length.IsConstant()) { __ cmp(temp, ShifterOperand(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmp(temp, ShifterOperand(length.AsRegister<Register>())); } __ b(slow_path->GetEntryLabel(), LT); } } else { // Check that length(input) >= pos. __ LoadFromOffset(kLoadWord, temp, input, length_offset); __ subs(temp, temp, ShifterOperand(pos_const)); __ b(slow_path->GetEntryLabel(), LT); // Check that (length(input) - pos) >= length. if (length.IsConstant()) { __ cmp(temp, ShifterOperand(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmp(temp, ShifterOperand(length.AsRegister<Register>())); } __ b(slow_path->GetEntryLabel(), LT); } } else if (length_is_input_length) { // The only way the copy can succeed is if pos is zero. Register pos_reg = pos.AsRegister<Register>(); __ CompareAndBranchIfNonZero(pos_reg, slow_path->GetEntryLabel()); } else { // Check that pos >= 0. Register pos_reg = pos.AsRegister<Register>(); __ cmp(pos_reg, ShifterOperand(0)); __ b(slow_path->GetEntryLabel(), LT); // Check that pos <= length(input). __ LoadFromOffset(kLoadWord, temp, input, length_offset); __ subs(temp, temp, ShifterOperand(pos_reg)); __ b(slow_path->GetEntryLabel(), LT); // Check that (length(input) - pos) >= length. if (length.IsConstant()) { __ cmp(temp, ShifterOperand(length.GetConstant()->AsIntConstant()->GetValue())); } else { __ cmp(temp, ShifterOperand(length.AsRegister<Register>())); } __ b(slow_path->GetEntryLabel(), LT); } } void IntrinsicCodeGeneratorARM::VisitSystemArrayCopy(HInvoke* invoke) { // The only read barrier implementation supporting the // SystemArrayCopy intrinsic is the Baker-style read barriers. DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); Register src = locations->InAt(0).AsRegister<Register>(); Location src_pos = locations->InAt(1); Register dest = locations->InAt(2).AsRegister<Register>(); Location dest_pos = locations->InAt(3); Location length = locations->InAt(4); Location temp1_loc = locations->GetTemp(0); Register temp1 = temp1_loc.AsRegister<Register>(); Location temp2_loc = locations->GetTemp(1); Register temp2 = temp2_loc.AsRegister<Register>(); Location temp3_loc = locations->GetTemp(2); Register temp3 = temp3_loc.AsRegister<Register>(); SlowPathCode* intrinsic_slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke); codegen_->AddSlowPath(intrinsic_slow_path); Label conditions_on_positions_validated; SystemArrayCopyOptimizations optimizations(invoke); // If source and destination are the same, we go to slow path if we need to do // forward copying. if (src_pos.IsConstant()) { int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); if (dest_pos.IsConstant()) { int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); if (optimizations.GetDestinationIsSource()) { // Checked when building locations. DCHECK_GE(src_pos_constant, dest_pos_constant); } else if (src_pos_constant < dest_pos_constant) { __ cmp(src, ShifterOperand(dest)); __ b(intrinsic_slow_path->GetEntryLabel(), EQ); } // Checked when building locations. DCHECK(!optimizations.GetDestinationIsSource() || (src_pos_constant >= dest_pos.GetConstant()->AsIntConstant()->GetValue())); } else { if (!optimizations.GetDestinationIsSource()) { __ cmp(src, ShifterOperand(dest)); __ b(&conditions_on_positions_validated, NE); } __ cmp(dest_pos.AsRegister<Register>(), ShifterOperand(src_pos_constant)); __ b(intrinsic_slow_path->GetEntryLabel(), GT); } } else { if (!optimizations.GetDestinationIsSource()) { __ cmp(src, ShifterOperand(dest)); __ b(&conditions_on_positions_validated, NE); } if (dest_pos.IsConstant()) { int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); __ cmp(src_pos.AsRegister<Register>(), ShifterOperand(dest_pos_constant)); } else { __ cmp(src_pos.AsRegister<Register>(), ShifterOperand(dest_pos.AsRegister<Register>())); } __ b(intrinsic_slow_path->GetEntryLabel(), LT); } __ Bind(&conditions_on_positions_validated); if (!optimizations.GetSourceIsNotNull()) { // Bail out if the source is null. __ CompareAndBranchIfZero(src, intrinsic_slow_path->GetEntryLabel()); } if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) { // Bail out if the destination is null. __ CompareAndBranchIfZero(dest, intrinsic_slow_path->GetEntryLabel()); } // If the length is negative, bail out. // We have already checked in the LocationsBuilder for the constant case. if (!length.IsConstant() && !optimizations.GetCountIsSourceLength() && !optimizations.GetCountIsDestinationLength()) { __ cmp(length.AsRegister<Register>(), ShifterOperand(0)); __ b(intrinsic_slow_path->GetEntryLabel(), LT); } // Validity checks: source. CheckPosition(assembler, src_pos, src, length, intrinsic_slow_path, temp1, optimizations.GetCountIsSourceLength()); // Validity checks: dest. CheckPosition(assembler, dest_pos, dest, length, intrinsic_slow_path, temp1, optimizations.GetCountIsDestinationLength()); if (!optimizations.GetDoesNotNeedTypeCheck()) { // Check whether all elements of the source array are assignable to the component // type of the destination array. We do two checks: the classes are the same, // or the destination is Object[]. If none of these checks succeed, we go to the // slow path. if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { if (!optimizations.GetSourceIsNonPrimitiveArray()) { // /* HeapReference<Class> */ temp1 = src->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check */ false); // Bail out if the source is not a non primitive array. // /* HeapReference<Class> */ temp1 = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false); __ CompareAndBranchIfZero(temp1, intrinsic_slow_path->GetEntryLabel()); // If heap poisoning is enabled, `temp1` has been unpoisoned // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. // /* uint16_t */ temp1 = static_cast<uint16>(temp1->primitive_type_); __ LoadFromOffset(kLoadUnsignedHalfword, temp1, temp1, primitive_offset); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel()); } // /* HeapReference<Class> */ temp1 = dest->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, dest, class_offset, temp2_loc, /* needs_null_check */ false); if (!optimizations.GetDestinationIsNonPrimitiveArray()) { // Bail out if the destination is not a non primitive array. // // Register `temp1` is not trashed by the read barrier emitted // by GenerateFieldLoadWithBakerReadBarrier below, as that // method produces a call to a ReadBarrierMarkRegX entry point, // which saves all potentially live registers, including // temporaries such a `temp1`. // /* HeapReference<Class> */ temp2 = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp2_loc, temp1, component_offset, temp3_loc, /* needs_null_check */ false); __ CompareAndBranchIfZero(temp2, intrinsic_slow_path->GetEntryLabel()); // If heap poisoning is enabled, `temp2` has been unpoisoned // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. // /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_); __ LoadFromOffset(kLoadUnsignedHalfword, temp2, temp2, primitive_offset); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ CompareAndBranchIfNonZero(temp2, intrinsic_slow_path->GetEntryLabel()); } // For the same reason given earlier, `temp1` is not trashed by the // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below. // /* HeapReference<Class> */ temp2 = src->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp2_loc, src, class_offset, temp3_loc, /* needs_null_check */ false); // Note: if heap poisoning is on, we are comparing two unpoisoned references here. __ cmp(temp1, ShifterOperand(temp2)); if (optimizations.GetDestinationIsTypedObjectArray()) { Label do_copy; __ b(&do_copy, EQ); // /* HeapReference<Class> */ temp1 = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false); // /* HeapReference<Class> */ temp1 = temp1->super_class_ // We do not need to emit a read barrier for the following // heap reference load, as `temp1` is only used in a // comparison with null below, and this reference is not // kept afterwards. __ LoadFromOffset(kLoadWord, temp1, temp1, super_offset); __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel()); __ Bind(&do_copy); } else { __ b(intrinsic_slow_path->GetEntryLabel(), NE); } } else { // Non read barrier code. // /* HeapReference<Class> */ temp1 = dest->klass_ __ LoadFromOffset(kLoadWord, temp1, dest, class_offset); // /* HeapReference<Class> */ temp2 = src->klass_ __ LoadFromOffset(kLoadWord, temp2, src, class_offset); bool did_unpoison = false; if (!optimizations.GetDestinationIsNonPrimitiveArray() || !optimizations.GetSourceIsNonPrimitiveArray()) { // One or two of the references need to be unpoisoned. Unpoison them // both to make the identity check valid. __ MaybeUnpoisonHeapReference(temp1); __ MaybeUnpoisonHeapReference(temp2); did_unpoison = true; } if (!optimizations.GetDestinationIsNonPrimitiveArray()) { // Bail out if the destination is not a non primitive array. // /* HeapReference<Class> */ temp3 = temp1->component_type_ __ LoadFromOffset(kLoadWord, temp3, temp1, component_offset); __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(temp3); // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_); __ LoadFromOffset(kLoadUnsignedHalfword, temp3, temp3, primitive_offset); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel()); } if (!optimizations.GetSourceIsNonPrimitiveArray()) { // Bail out if the source is not a non primitive array. // /* HeapReference<Class> */ temp3 = temp2->component_type_ __ LoadFromOffset(kLoadWord, temp3, temp2, component_offset); __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(temp3); // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_); __ LoadFromOffset(kLoadUnsignedHalfword, temp3, temp3, primitive_offset); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel()); } __ cmp(temp1, ShifterOperand(temp2)); if (optimizations.GetDestinationIsTypedObjectArray()) { Label do_copy; __ b(&do_copy, EQ); if (!did_unpoison) { __ MaybeUnpoisonHeapReference(temp1); } // /* HeapReference<Class> */ temp1 = temp1->component_type_ __ LoadFromOffset(kLoadWord, temp1, temp1, component_offset); __ MaybeUnpoisonHeapReference(temp1); // /* HeapReference<Class> */ temp1 = temp1->super_class_ __ LoadFromOffset(kLoadWord, temp1, temp1, super_offset); // No need to unpoison the result, we're comparing against null. __ CompareAndBranchIfNonZero(temp1, intrinsic_slow_path->GetEntryLabel()); __ Bind(&do_copy); } else { __ b(intrinsic_slow_path->GetEntryLabel(), NE); } } } else if (!optimizations.GetSourceIsNonPrimitiveArray()) { DCHECK(optimizations.GetDestinationIsNonPrimitiveArray()); // Bail out if the source is not a non primitive array. if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // /* HeapReference<Class> */ temp1 = src->klass_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp1_loc, src, class_offset, temp2_loc, /* needs_null_check */ false); // /* HeapReference<Class> */ temp3 = temp1->component_type_ codegen_->GenerateFieldLoadWithBakerReadBarrier( invoke, temp3_loc, temp1, component_offset, temp2_loc, /* needs_null_check */ false); __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel()); // If heap poisoning is enabled, `temp3` has been unpoisoned // by the the previous call to GenerateFieldLoadWithBakerReadBarrier. } else { // /* HeapReference<Class> */ temp1 = src->klass_ __ LoadFromOffset(kLoadWord, temp1, src, class_offset); __ MaybeUnpoisonHeapReference(temp1); // /* HeapReference<Class> */ temp3 = temp1->component_type_ __ LoadFromOffset(kLoadWord, temp3, temp1, component_offset); __ CompareAndBranchIfZero(temp3, intrinsic_slow_path->GetEntryLabel()); __ MaybeUnpoisonHeapReference(temp3); } // /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_); __ LoadFromOffset(kLoadUnsignedHalfword, temp3, temp3, primitive_offset); static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); __ CompareAndBranchIfNonZero(temp3, intrinsic_slow_path->GetEntryLabel()); } if (length.IsConstant() && length.GetConstant()->AsIntConstant()->GetValue() == 0) { // Null constant length: not need to emit the loop code at all. } else { Label done; const Primitive::Type type = Primitive::kPrimNot; const int32_t element_size = Primitive::ComponentSize(type); if (length.IsRegister()) { // Don't enter the copy loop if the length is null. __ CompareAndBranchIfZero(length.AsRegister<Register>(), &done); } if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { // TODO: Also convert this intrinsic to the IsGcMarking strategy? // SystemArrayCopy implementation for Baker read barriers (see // also CodeGeneratorARM::GenerateReferenceLoadWithBakerReadBarrier): // // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState(); // lfence; // Load fence or artificial data dependency to prevent load-load reordering // bool is_gray = (rb_state == ReadBarrier::GrayState()); // if (is_gray) { // // Slow-path copy. // do { // *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++))); // } while (src_ptr != end_ptr) // } else { // // Fast-path copy. // do { // *dest_ptr++ = *src_ptr++; // } while (src_ptr != end_ptr) // } // /* int32_t */ monitor = src->monitor_ __ LoadFromOffset(kLoadWord, temp2, src, monitor_offset); // /* LockWord */ lock_word = LockWord(monitor) static_assert(sizeof(LockWord) == sizeof(int32_t), "art::LockWord and int32_t have different sizes."); // Introduce a dependency on the lock_word including the rb_state, // which shall prevent load-load reordering without using // a memory barrier (which would be more expensive). // `src` is unchanged by this operation, but its value now depends // on `temp2`. __ add(src, src, ShifterOperand(temp2, LSR, 32)); // Compute the base source address in `temp1`. // Note that `temp1` (the base source address) is computed from // `src` (and `src_pos`) here, and thus honors the artificial // dependency of `src` on `temp2`. GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1); // Compute the end source address in `temp3`. GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3); // The base destination address is computed later, as `temp2` is // used for intermediate computations. // Slow path used to copy array when `src` is gray. // Note that the base destination address is computed in `temp2` // by the slow path code. SlowPathCode* read_barrier_slow_path = new (GetAllocator()) ReadBarrierSystemArrayCopySlowPathARM(invoke); codegen_->AddSlowPath(read_barrier_slow_path); // Given the numeric representation, it's enough to check the low bit of the // rb_state. We do that by shifting the bit out of the lock word with LSRS // which can be a 16-bit instruction unlike the TST immediate. static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); __ Lsrs(temp2, temp2, LockWord::kReadBarrierStateShift + 1); // Carry flag is the last bit shifted out by LSRS. __ b(read_barrier_slow_path->GetEntryLabel(), CS); // Fast-path copy. // Compute the base destination address in `temp2`. GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2); // Iterate over the arrays and do a raw copy of the objects. We don't need to // poison/unpoison. Label loop; __ Bind(&loop); __ ldr(IP, Address(temp1, element_size, Address::PostIndex)); __ str(IP, Address(temp2, element_size, Address::PostIndex)); __ cmp(temp1, ShifterOperand(temp3)); __ b(&loop, NE); __ Bind(read_barrier_slow_path->GetExitLabel()); } else { // Non read barrier code. // Compute the base source address in `temp1`. GenSystemArrayCopyBaseAddress(GetAssembler(), type, src, src_pos, temp1); // Compute the base destination address in `temp2`. GenSystemArrayCopyBaseAddress(GetAssembler(), type, dest, dest_pos, temp2); // Compute the end source address in `temp3`. GenSystemArrayCopyEndAddress(GetAssembler(), type, length, temp1, temp3); // Iterate over the arrays and do a raw copy of the objects. We don't need to // poison/unpoison. Label loop; __ Bind(&loop); __ ldr(IP, Address(temp1, element_size, Address::PostIndex)); __ str(IP, Address(temp2, element_size, Address::PostIndex)); __ cmp(temp1, ShifterOperand(temp3)); __ b(&loop, NE); } __ Bind(&done); } // We only need one card marking on the destination array. codegen_->MarkGCCard(temp1, temp2, dest, Register(kNoRegister), /* value_can_be_null */ false); __ Bind(intrinsic_slow_path->GetExitLabel()); } static void CreateFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) { // If the graph is debuggable, all callee-saved floating-point registers are blocked by // the code generator. Furthermore, the register allocator creates fixed live intervals // for all caller-saved registers because we are doing a function call. As a result, if // the input and output locations are unallocated, the register allocator runs out of // registers and fails; however, a debuggable graph is not the common case. if (invoke->GetBlock()->GetGraph()->IsDebuggable()) { return; } DCHECK_EQ(invoke->GetNumberOfArguments(), 1U); DCHECK_EQ(invoke->InputAt(0)->GetType(), Primitive::kPrimDouble); DCHECK_EQ(invoke->GetType(), Primitive::kPrimDouble); LocationSummary* const locations = new (arena) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); const InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister()); // Native code uses the soft float ABI. locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(1))); } static void CreateFPFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) { // If the graph is debuggable, all callee-saved floating-point registers are blocked by // the code generator. Furthermore, the register allocator creates fixed live intervals // for all caller-saved registers because we are doing a function call. As a result, if // the input and output locations are unallocated, the register allocator runs out of // registers and fails; however, a debuggable graph is not the common case. if (invoke->GetBlock()->GetGraph()->IsDebuggable()) { return; } DCHECK_EQ(invoke->GetNumberOfArguments(), 2U); DCHECK_EQ(invoke->InputAt(0)->GetType(), Primitive::kPrimDouble); DCHECK_EQ(invoke->InputAt(1)->GetType(), Primitive::kPrimDouble); DCHECK_EQ(invoke->GetType(), Primitive::kPrimDouble); LocationSummary* const locations = new (arena) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); const InvokeRuntimeCallingConvention calling_convention; locations->SetInAt(0, Location::RequiresFpuRegister()); locations->SetInAt(1, Location::RequiresFpuRegister()); locations->SetOut(Location::RequiresFpuRegister()); // Native code uses the soft float ABI. locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0))); locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(1))); locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2))); locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(3))); } static void GenFPToFPCall(HInvoke* invoke, ArmAssembler* assembler, CodeGeneratorARM* codegen, QuickEntrypointEnum entry) { LocationSummary* const locations = invoke->GetLocations(); const InvokeRuntimeCallingConvention calling_convention; DCHECK_EQ(invoke->GetNumberOfArguments(), 1U); DCHECK(locations->WillCall() && locations->Intrinsified()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(0))); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(1))); // Native code uses the soft float ABI. __ vmovrrd(calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1), FromLowSToD(locations->InAt(0).AsFpuRegisterPairLow<SRegister>())); codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); __ vmovdrr(FromLowSToD(locations->Out().AsFpuRegisterPairLow<SRegister>()), calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)); } static void GenFPFPToFPCall(HInvoke* invoke, ArmAssembler* assembler, CodeGeneratorARM* codegen, QuickEntrypointEnum entry) { LocationSummary* const locations = invoke->GetLocations(); const InvokeRuntimeCallingConvention calling_convention; DCHECK_EQ(invoke->GetNumberOfArguments(), 2U); DCHECK(locations->WillCall() && locations->Intrinsified()); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(0))); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(1))); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(2))); DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(calling_convention.GetRegisterAt(3))); // Native code uses the soft float ABI. __ vmovrrd(calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1), FromLowSToD(locations->InAt(0).AsFpuRegisterPairLow<SRegister>())); __ vmovrrd(calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3), FromLowSToD(locations->InAt(1).AsFpuRegisterPairLow<SRegister>())); codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); __ vmovdrr(FromLowSToD(locations->Out().AsFpuRegisterPairLow<SRegister>()), calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)); } void IntrinsicLocationsBuilderARM::VisitMathCos(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathCos(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCos); } void IntrinsicLocationsBuilderARM::VisitMathSin(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathSin(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSin); } void IntrinsicLocationsBuilderARM::VisitMathAcos(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathAcos(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAcos); } void IntrinsicLocationsBuilderARM::VisitMathAsin(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathAsin(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAsin); } void IntrinsicLocationsBuilderARM::VisitMathAtan(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathAtan(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan); } void IntrinsicLocationsBuilderARM::VisitMathCbrt(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathCbrt(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCbrt); } void IntrinsicLocationsBuilderARM::VisitMathCosh(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathCosh(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickCosh); } void IntrinsicLocationsBuilderARM::VisitMathExp(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathExp(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExp); } void IntrinsicLocationsBuilderARM::VisitMathExpm1(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathExpm1(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickExpm1); } void IntrinsicLocationsBuilderARM::VisitMathLog(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathLog(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog); } void IntrinsicLocationsBuilderARM::VisitMathLog10(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathLog10(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickLog10); } void IntrinsicLocationsBuilderARM::VisitMathSinh(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathSinh(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickSinh); } void IntrinsicLocationsBuilderARM::VisitMathTan(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathTan(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTan); } void IntrinsicLocationsBuilderARM::VisitMathTanh(HInvoke* invoke) { CreateFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathTanh(HInvoke* invoke) { GenFPToFPCall(invoke, GetAssembler(), codegen_, kQuickTanh); } void IntrinsicLocationsBuilderARM::VisitMathAtan2(HInvoke* invoke) { CreateFPFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathAtan2(HInvoke* invoke) { GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickAtan2); } void IntrinsicLocationsBuilderARM::VisitMathHypot(HInvoke* invoke) { CreateFPFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathHypot(HInvoke* invoke) { GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickHypot); } void IntrinsicLocationsBuilderARM::VisitMathNextAfter(HInvoke* invoke) { CreateFPFPToFPCallLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitMathNextAfter(HInvoke* invoke) { GenFPFPToFPCall(invoke, GetAssembler(), codegen_, kQuickNextAfter); } void IntrinsicLocationsBuilderARM::VisitIntegerReverse(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitIntegerReverse(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register out = locations->Out().AsRegister<Register>(); Register in = locations->InAt(0).AsRegister<Register>(); __ rbit(out, in); } void IntrinsicLocationsBuilderARM::VisitLongReverse(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } void IntrinsicCodeGeneratorARM::VisitLongReverse(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>(); Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); Register out_reg_lo = locations->Out().AsRegisterPairLow<Register>(); Register out_reg_hi = locations->Out().AsRegisterPairHigh<Register>(); __ rbit(out_reg_lo, in_reg_hi); __ rbit(out_reg_hi, in_reg_lo); } void IntrinsicLocationsBuilderARM::VisitIntegerReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitIntegerReverseBytes(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register out = locations->Out().AsRegister<Register>(); Register in = locations->InAt(0).AsRegister<Register>(); __ rev(out, in); } void IntrinsicLocationsBuilderARM::VisitLongReverseBytes(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); } void IntrinsicCodeGeneratorARM::VisitLongReverseBytes(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register in_reg_lo = locations->InAt(0).AsRegisterPairLow<Register>(); Register in_reg_hi = locations->InAt(0).AsRegisterPairHigh<Register>(); Register out_reg_lo = locations->Out().AsRegisterPairLow<Register>(); Register out_reg_hi = locations->Out().AsRegisterPairHigh<Register>(); __ rev(out_reg_lo, in_reg_hi); __ rev(out_reg_hi, in_reg_lo); } void IntrinsicLocationsBuilderARM::VisitShortReverseBytes(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitShortReverseBytes(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register out = locations->Out().AsRegister<Register>(); Register in = locations->InAt(0).AsRegister<Register>(); __ revsh(out, in); } static void GenBitCount(HInvoke* instr, Primitive::Type type, ArmAssembler* assembler) { DCHECK(Primitive::IsIntOrLongType(type)) << type; DCHECK_EQ(instr->GetType(), Primitive::kPrimInt); DCHECK_EQ(Primitive::PrimitiveKind(instr->InputAt(0)->GetType()), type); bool is_long = type == Primitive::kPrimLong; LocationSummary* locations = instr->GetLocations(); Location in = locations->InAt(0); Register src_0 = is_long ? in.AsRegisterPairLow<Register>() : in.AsRegister<Register>(); Register src_1 = is_long ? in.AsRegisterPairHigh<Register>() : src_0; SRegister tmp_s = locations->GetTemp(0).AsFpuRegisterPairLow<SRegister>(); DRegister tmp_d = FromLowSToD(tmp_s); Register out_r = locations->Out().AsRegister<Register>(); // Move data from core register(s) to temp D-reg for bit count calculation, then move back. // According to Cortex A57 and A72 optimization guides, compared to transferring to full D-reg, // transferring data from core reg to upper or lower half of vfp D-reg requires extra latency, // That's why for integer bit count, we use 'vmov d0, r0, r0' instead of 'vmov d0[0], r0'. __ vmovdrr(tmp_d, src_1, src_0); // Temp DReg |--src_1|--src_0| __ vcntd(tmp_d, tmp_d); // Temp DReg |c|c|c|c|c|c|c|c| __ vpaddld(tmp_d, tmp_d, 8, /* is_unsigned */ true); // Temp DReg |--c|--c|--c|--c| __ vpaddld(tmp_d, tmp_d, 16, /* is_unsigned */ true); // Temp DReg |------c|------c| if (is_long) { __ vpaddld(tmp_d, tmp_d, 32, /* is_unsigned */ true); // Temp DReg |--------------c| } __ vmovrs(out_r, tmp_s); } void IntrinsicLocationsBuilderARM::VisitIntegerBitCount(HInvoke* invoke) { CreateIntToIntLocations(arena_, invoke); invoke->GetLocations()->AddTemp(Location::RequiresFpuRegister()); } void IntrinsicCodeGeneratorARM::VisitIntegerBitCount(HInvoke* invoke) { GenBitCount(invoke, Primitive::kPrimInt, GetAssembler()); } void IntrinsicLocationsBuilderARM::VisitLongBitCount(HInvoke* invoke) { VisitIntegerBitCount(invoke); } void IntrinsicCodeGeneratorARM::VisitLongBitCount(HInvoke* invoke) { GenBitCount(invoke, Primitive::kPrimLong, GetAssembler()); } void IntrinsicLocationsBuilderARM::VisitStringGetCharsNoCheck(HInvoke* invoke) { LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetInAt(1, Location::RequiresRegister()); locations->SetInAt(2, Location::RequiresRegister()); locations->SetInAt(3, Location::RequiresRegister()); locations->SetInAt(4, Location::RequiresRegister()); // Temporary registers to store lengths of strings and for calculations. locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); locations->AddTemp(Location::RequiresRegister()); } void IntrinsicCodeGeneratorARM::VisitStringGetCharsNoCheck(HInvoke* invoke) { ArmAssembler* assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); // Check assumption that sizeof(Char) is 2 (used in scaling below). const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar); DCHECK_EQ(char_size, 2u); // Location of data in char array buffer. const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); // Location of char array data in string. const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); // void getCharsNoCheck(int srcBegin, int srcEnd, char[] dst, int dstBegin); // Since getChars() calls getCharsNoCheck() - we use registers rather than constants. Register srcObj = locations->InAt(0).AsRegister<Register>(); Register srcBegin = locations->InAt(1).AsRegister<Register>(); Register srcEnd = locations->InAt(2).AsRegister<Register>(); Register dstObj = locations->InAt(3).AsRegister<Register>(); Register dstBegin = locations->InAt(4).AsRegister<Register>(); Register num_chr = locations->GetTemp(0).AsRegister<Register>(); Register src_ptr = locations->GetTemp(1).AsRegister<Register>(); Register dst_ptr = locations->GetTemp(2).AsRegister<Register>(); Label done, compressed_string_loop; Label* final_label = codegen_->GetFinalLabel(invoke, &done); // dst to be copied. __ add(dst_ptr, dstObj, ShifterOperand(data_offset)); __ add(dst_ptr, dst_ptr, ShifterOperand(dstBegin, LSL, 1)); __ subs(num_chr, srcEnd, ShifterOperand(srcBegin)); // Early out for valid zero-length retrievals. __ b(final_label, EQ); // src range to copy. __ add(src_ptr, srcObj, ShifterOperand(value_offset)); Label compressed_string_preloop; if (mirror::kUseStringCompression) { // Location of count in string. const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); // String's length. __ ldr(IP, Address(srcObj, count_offset)); __ tst(IP, ShifterOperand(1)); __ b(&compressed_string_preloop, EQ); } __ add(src_ptr, src_ptr, ShifterOperand(srcBegin, LSL, 1)); // Do the copy. Label loop, remainder; // Save repairing the value of num_chr on the < 4 character path. __ subs(IP, num_chr, ShifterOperand(4)); __ b(&remainder, LT); // Keep the result of the earlier subs, we are going to fetch at least 4 characters. __ mov(num_chr, ShifterOperand(IP)); // Main loop used for longer fetches loads and stores 4x16-bit characters at a time. // (LDRD/STRD fault on unaligned addresses and it's not worth inlining extra code // to rectify these everywhere this intrinsic applies.) __ Bind(&loop); __ ldr(IP, Address(src_ptr, char_size * 2)); __ subs(num_chr, num_chr, ShifterOperand(4)); __ str(IP, Address(dst_ptr, char_size * 2)); __ ldr(IP, Address(src_ptr, char_size * 4, Address::PostIndex)); __ str(IP, Address(dst_ptr, char_size * 4, Address::PostIndex)); __ b(&loop, GE); __ adds(num_chr, num_chr, ShifterOperand(4)); __ b(final_label, EQ); // Main loop for < 4 character case and remainder handling. Loads and stores one // 16-bit Java character at a time. __ Bind(&remainder); __ ldrh(IP, Address(src_ptr, char_size, Address::PostIndex)); __ subs(num_chr, num_chr, ShifterOperand(1)); __ strh(IP, Address(dst_ptr, char_size, Address::PostIndex)); __ b(&remainder, GT); if (mirror::kUseStringCompression) { __ b(final_label); const size_t c_char_size = Primitive::ComponentSize(Primitive::kPrimByte); DCHECK_EQ(c_char_size, 1u); // Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time. __ Bind(&compressed_string_preloop); __ add(src_ptr, src_ptr, ShifterOperand(srcBegin)); __ Bind(&compressed_string_loop); __ ldrb(IP, Address(src_ptr, c_char_size, Address::PostIndex)); __ strh(IP, Address(dst_ptr, char_size, Address::PostIndex)); __ subs(num_chr, num_chr, ShifterOperand(1)); __ b(&compressed_string_loop, GT); } if (done.IsLinked()) { __ Bind(&done); } } void IntrinsicLocationsBuilderARM::VisitFloatIsInfinite(HInvoke* invoke) { CreateFPToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitFloatIsInfinite(HInvoke* invoke) { ArmAssembler* const assembler = GetAssembler(); LocationSummary* const locations = invoke->GetLocations(); const Register out = locations->Out().AsRegister<Register>(); // Shifting left by 1 bit makes the value encodable as an immediate operand; // we don't care about the sign bit anyway. constexpr uint32_t infinity = kPositiveInfinityFloat << 1U; __ vmovrs(out, locations->InAt(0).AsFpuRegister<SRegister>()); // We don't care about the sign bit, so shift left. __ Lsl(out, out, 1); __ eor(out, out, ShifterOperand(infinity)); // If the result is 0, then it has 32 leading zeros, and less than that otherwise. __ clz(out, out); // Any number less than 32 logically shifted right by 5 bits results in 0; // the same operation on 32 yields 1. __ Lsr(out, out, 5); } void IntrinsicLocationsBuilderARM::VisitDoubleIsInfinite(HInvoke* invoke) { CreateFPToIntLocations(arena_, invoke); } void IntrinsicCodeGeneratorARM::VisitDoubleIsInfinite(HInvoke* invoke) { ArmAssembler* const assembler = GetAssembler(); LocationSummary* const locations = invoke->GetLocations(); const Register out = locations->Out().AsRegister<Register>(); // The highest 32 bits of double precision positive infinity separated into // two constants encodable as immediate operands. constexpr uint32_t infinity_high = 0x7f000000U; constexpr uint32_t infinity_high2 = 0x00f00000U; static_assert((infinity_high | infinity_high2) == static_cast<uint32_t>(kPositiveInfinityDouble >> 32U), "The constants do not add up to the high 32 bits of double precision positive infinity."); __ vmovrrd(IP, out, FromLowSToD(locations->InAt(0).AsFpuRegisterPairLow<SRegister>())); __ eor(out, out, ShifterOperand(infinity_high)); __ eor(out, out, ShifterOperand(infinity_high2)); // We don't care about the sign bit, so shift left. __ orr(out, IP, ShifterOperand(out, LSL, 1)); // If the result is 0, then it has 32 leading zeros, and less than that otherwise. __ clz(out, out); // Any number less than 32 logically shifted right by 5 bits results in 0; // the same operation on 32 yields 1. __ Lsr(out, out, 5); } void IntrinsicLocationsBuilderARM::VisitReferenceGetReferent(HInvoke* invoke) { if (kEmitCompilerReadBarrier) { // Do not intrinsify this call with the read barrier configuration. return; } LocationSummary* locations = new (arena_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); locations->SetInAt(0, Location::RequiresRegister()); locations->SetOut(Location::SameAsFirstInput()); locations->AddTemp(Location::RequiresRegister()); } void IntrinsicCodeGeneratorARM::VisitReferenceGetReferent(HInvoke* invoke) { DCHECK(!kEmitCompilerReadBarrier); ArmAssembler* const assembler = GetAssembler(); LocationSummary* locations = invoke->GetLocations(); Register obj = locations->InAt(0).AsRegister<Register>(); Register out = locations->Out().AsRegister<Register>(); SlowPathCode* slow_path = new (GetAllocator()) IntrinsicSlowPathARM(invoke); codegen_->AddSlowPath(slow_path); // Load ArtMethod first. HInvokeStaticOrDirect* invoke_direct = invoke->AsInvokeStaticOrDirect(); DCHECK(invoke_direct != nullptr); Register temp = codegen_->GenerateCalleeMethodStaticOrDirectCall( invoke_direct, locations->GetTemp(0)).AsRegister<Register>(); // Now get declaring class. __ ldr(temp, Address(temp, ArtMethod::DeclaringClassOffset().Int32Value())); uint32_t slow_path_flag_offset = codegen_->GetReferenceSlowFlagOffset(); uint32_t disable_flag_offset = codegen_->GetReferenceDisableFlagOffset(); DCHECK_NE(slow_path_flag_offset, 0u); DCHECK_NE(disable_flag_offset, 0u); DCHECK_NE(slow_path_flag_offset, disable_flag_offset); // Check static flags that prevent using intrinsic. __ ldr(IP, Address(temp, disable_flag_offset)); __ ldr(temp, Address(temp, slow_path_flag_offset)); __ orr(IP, IP, ShifterOperand(temp)); __ CompareAndBranchIfNonZero(IP, slow_path->GetEntryLabel()); // Fast path. __ ldr(out, Address(obj, mirror::Reference::ReferentOffset().Int32Value())); codegen_->MaybeRecordImplicitNullCheck(invoke); __ MaybeUnpoisonHeapReference(out); __ Bind(slow_path->GetExitLabel()); } void IntrinsicLocationsBuilderARM::VisitIntegerValueOf(HInvoke* invoke) { InvokeRuntimeCallingConvention calling_convention; IntrinsicVisitor::ComputeIntegerValueOfLocations( invoke, codegen_, Location::RegisterLocation(R0), Location::RegisterLocation(calling_convention.GetRegisterAt(0))); } void IntrinsicCodeGeneratorARM::VisitIntegerValueOf(HInvoke* invoke) { IntrinsicVisitor::IntegerValueOfInfo info = IntrinsicVisitor::ComputeIntegerValueOfInfo(); LocationSummary* locations = invoke->GetLocations(); ArmAssembler* const assembler = GetAssembler(); Register out = locations->Out().AsRegister<Register>(); InvokeRuntimeCallingConvention calling_convention; Register argument = calling_convention.GetRegisterAt(0); if (invoke->InputAt(0)->IsConstant()) { int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue(); if (value >= info.low && value <= info.high) { // Just embed the j.l.Integer in the code. ScopedObjectAccess soa(Thread::Current()); mirror::Object* boxed = info.cache->Get(value + (-info.low)); DCHECK(boxed != nullptr && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(boxed)); uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(boxed)); __ LoadLiteral(out, codegen_->DeduplicateBootImageAddressLiteral(address)); } else { // Allocate and initialize a new j.l.Integer. // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the // JIT object table. uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer)); __ LoadLiteral(argument, codegen_->DeduplicateBootImageAddressLiteral(address)); codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); __ LoadImmediate(IP, value); __ StoreToOffset(kStoreWord, IP, out, info.value_offset); // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation // one. codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); } } else { Register in = locations->InAt(0).AsRegister<Register>(); // Check bounds of our cache. __ AddConstant(out, in, -info.low); __ CmpConstant(out, info.high - info.low + 1); Label allocate, done; __ b(&allocate, HS); // If the value is within the bounds, load the j.l.Integer directly from the array. uint32_t data_offset = mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.cache)); __ LoadLiteral(IP, codegen_->DeduplicateBootImageAddressLiteral(data_offset + address)); codegen_->LoadFromShiftedRegOffset(Primitive::kPrimNot, locations->Out(), IP, out); __ MaybeUnpoisonHeapReference(out); __ b(&done); __ Bind(&allocate); // Otherwise allocate and initialize a new j.l.Integer. address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer)); __ LoadLiteral(argument, codegen_->DeduplicateBootImageAddressLiteral(address)); codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc()); CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); __ StoreToOffset(kStoreWord, in, out, info.value_offset); // `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation // one. codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); __ Bind(&done); } } UNIMPLEMENTED_INTRINSIC(ARM, MathMinDoubleDouble) UNIMPLEMENTED_INTRINSIC(ARM, MathMinFloatFloat) UNIMPLEMENTED_INTRINSIC(ARM, MathMaxDoubleDouble) UNIMPLEMENTED_INTRINSIC(ARM, MathMaxFloatFloat) UNIMPLEMENTED_INTRINSIC(ARM, MathMinLongLong) UNIMPLEMENTED_INTRINSIC(ARM, MathMaxLongLong) UNIMPLEMENTED_INTRINSIC(ARM, MathCeil) // Could be done by changing rounding mode, maybe? UNIMPLEMENTED_INTRINSIC(ARM, MathFloor) // Could be done by changing rounding mode, maybe? UNIMPLEMENTED_INTRINSIC(ARM, MathRint) UNIMPLEMENTED_INTRINSIC(ARM, MathRoundDouble) // Could be done by changing rounding mode, maybe? UNIMPLEMENTED_INTRINSIC(ARM, MathRoundFloat) // Could be done by changing rounding mode, maybe? UNIMPLEMENTED_INTRINSIC(ARM, UnsafeCASLong) // High register pressure. UNIMPLEMENTED_INTRINSIC(ARM, SystemArrayCopyChar) UNIMPLEMENTED_INTRINSIC(ARM, IntegerHighestOneBit) UNIMPLEMENTED_INTRINSIC(ARM, LongHighestOneBit) UNIMPLEMENTED_INTRINSIC(ARM, IntegerLowestOneBit) UNIMPLEMENTED_INTRINSIC(ARM, LongLowestOneBit) UNIMPLEMENTED_INTRINSIC(ARM, StringStringIndexOf); UNIMPLEMENTED_INTRINSIC(ARM, StringStringIndexOfAfter); UNIMPLEMENTED_INTRINSIC(ARM, StringBufferAppend); UNIMPLEMENTED_INTRINSIC(ARM, StringBufferLength); UNIMPLEMENTED_INTRINSIC(ARM, StringBufferToString); UNIMPLEMENTED_INTRINSIC(ARM, StringBuilderAppend); UNIMPLEMENTED_INTRINSIC(ARM, StringBuilderLength); UNIMPLEMENTED_INTRINSIC(ARM, StringBuilderToString); // 1.8. UNIMPLEMENTED_INTRINSIC(ARM, UnsafeGetAndAddInt) UNIMPLEMENTED_INTRINSIC(ARM, UnsafeGetAndAddLong) UNIMPLEMENTED_INTRINSIC(ARM, UnsafeGetAndSetInt) UNIMPLEMENTED_INTRINSIC(ARM, UnsafeGetAndSetLong) UNIMPLEMENTED_INTRINSIC(ARM, UnsafeGetAndSetObject) UNREACHABLE_INTRINSICS(ARM) #undef __ } // namespace arm } // namespace art