/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <inttypes.h> #include <stdio.h> #include <stdlib.h> #include <sys/stat.h> #include "base/memory_tool.h" #include <fstream> #include <iostream> #include <limits> #include <sstream> #include <string> #include <unordered_set> #include <vector> #if defined(__linux__) && defined(__arm__) #include <sys/personality.h> #include <sys/utsname.h> #endif #include "android-base/stringprintf.h" #include "android-base/strings.h" #include "arch/instruction_set_features.h" #include "arch/mips/instruction_set_features_mips.h" #include "art_method-inl.h" #include "base/dumpable.h" #include "base/macros.h" #include "base/scoped_flock.h" #include "base/stl_util.h" #include "base/stringpiece.h" #include "base/time_utils.h" #include "base/timing_logger.h" #include "base/unix_file/fd_file.h" #include "class_linker.h" #include "compiler.h" #include "compiler_callbacks.h" #include "debug/elf_debug_writer.h" #include "debug/method_debug_info.h" #include "dex/quick_compiler_callbacks.h" #include "dex/verification_results.h" #include "dex2oat_return_codes.h" #include "dex_file-inl.h" #include "driver/compiler_driver.h" #include "driver/compiler_options.h" #include "elf_file.h" #include "elf_writer.h" #include "elf_writer_quick.h" #include "gc/space/image_space.h" #include "gc/space/space-inl.h" #include "image_writer.h" #include "interpreter/unstarted_runtime.h" #include "jit/profile_compilation_info.h" #include "leb128.h" #include "linker/buffered_output_stream.h" #include "linker/file_output_stream.h" #include "linker/multi_oat_relative_patcher.h" #include "mirror/class-inl.h" #include "mirror/class_loader.h" #include "mirror/object-inl.h" #include "mirror/object_array-inl.h" #include "oat_file_assistant.h" #include "oat_writer.h" #include "os.h" #include "runtime.h" #include "runtime_options.h" #include "ScopedLocalRef.h" #include "scoped_thread_state_change-inl.h" #include "utils.h" #include "vdex_file.h" #include "verifier/verifier_deps.h" #include "well_known_classes.h" #include "zip_archive.h" namespace art { using android::base::StringAppendV; using android::base::StringPrintf; static constexpr size_t kDefaultMinDexFilesForSwap = 2; static constexpr size_t kDefaultMinDexFileCumulativeSizeForSwap = 20 * MB; static int original_argc; static char** original_argv; static std::string CommandLine() { std::vector<std::string> command; for (int i = 0; i < original_argc; ++i) { command.push_back(original_argv[i]); } return android::base::Join(command, ' '); } // A stripped version. Remove some less essential parameters. If we see a "--zip-fd=" parameter, be // even more aggressive. There won't be much reasonable data here for us in that case anyways (the // locations are all staged). static std::string StrippedCommandLine() { std::vector<std::string> command; // Do a pre-pass to look for zip-fd and the compiler filter. bool saw_zip_fd = false; bool saw_compiler_filter = false; for (int i = 0; i < original_argc; ++i) { if (android::base::StartsWith(original_argv[i], "--zip-fd=")) { saw_zip_fd = true; } if (android::base::StartsWith(original_argv[i], "--compiler-filter=")) { saw_compiler_filter = true; } } // Now filter out things. for (int i = 0; i < original_argc; ++i) { // All runtime-arg parameters are dropped. if (strcmp(original_argv[i], "--runtime-arg") == 0) { i++; // Drop the next part, too. continue; } // Any instruction-setXXX is dropped. if (android::base::StartsWith(original_argv[i], "--instruction-set")) { continue; } // The boot image is dropped. if (android::base::StartsWith(original_argv[i], "--boot-image=")) { continue; } // The image format is dropped. if (android::base::StartsWith(original_argv[i], "--image-format=")) { continue; } // This should leave any dex-file and oat-file options, describing what we compiled. // However, we prefer to drop this when we saw --zip-fd. if (saw_zip_fd) { // Drop anything --zip-X, --dex-X, --oat-X, --swap-X, or --app-image-X if (android::base::StartsWith(original_argv[i], "--zip-") || android::base::StartsWith(original_argv[i], "--dex-") || android::base::StartsWith(original_argv[i], "--oat-") || android::base::StartsWith(original_argv[i], "--swap-") || android::base::StartsWith(original_argv[i], "--app-image-")) { continue; } } command.push_back(original_argv[i]); } if (!saw_compiler_filter) { command.push_back("--compiler-filter=" + CompilerFilter::NameOfFilter(CompilerFilter::kDefaultCompilerFilter)); } // Construct the final output. if (command.size() <= 1U) { // It seems only "/system/bin/dex2oat" is left, or not even that. Use a pretty line. return "Starting dex2oat."; } return android::base::Join(command, ' '); } static void UsageErrorV(const char* fmt, va_list ap) { std::string error; StringAppendV(&error, fmt, ap); LOG(ERROR) << error; } static void UsageError(const char* fmt, ...) { va_list ap; va_start(ap, fmt); UsageErrorV(fmt, ap); va_end(ap); } NO_RETURN static void Usage(const char* fmt, ...) { va_list ap; va_start(ap, fmt); UsageErrorV(fmt, ap); va_end(ap); UsageError("Command: %s", CommandLine().c_str()); UsageError("Usage: dex2oat [options]..."); UsageError(""); UsageError(" -j<number>: specifies the number of threads used for compilation."); UsageError(" Default is the number of detected hardware threads available on the"); UsageError(" host system."); UsageError(" Example: -j12"); UsageError(""); UsageError(" --dex-file=<dex-file>: specifies a .dex, .jar, or .apk file to compile."); UsageError(" Example: --dex-file=/system/framework/core.jar"); UsageError(""); UsageError(" --dex-location=<dex-location>: specifies an alternative dex location to"); UsageError(" encode in the oat file for the corresponding --dex-file argument."); UsageError(" Example: --dex-file=/home/build/out/system/framework/core.jar"); UsageError(" --dex-location=/system/framework/core.jar"); UsageError(""); UsageError(" --zip-fd=<file-descriptor>: specifies a file descriptor of a zip file"); UsageError(" containing a classes.dex file to compile."); UsageError(" Example: --zip-fd=5"); UsageError(""); UsageError(" --zip-location=<zip-location>: specifies a symbolic name for the file"); UsageError(" corresponding to the file descriptor specified by --zip-fd."); UsageError(" Example: --zip-location=/system/app/Calculator.apk"); UsageError(""); UsageError(" --oat-file=<file.oat>: specifies an oat output destination via a filename."); UsageError(" Example: --oat-file=/system/framework/boot.oat"); UsageError(""); UsageError(" --oat-fd=<number>: specifies the oat output destination via a file descriptor."); UsageError(" Example: --oat-fd=6"); UsageError(""); UsageError(" --oat-location=<oat-name>: specifies a symbolic name for the file corresponding"); UsageError(" to the file descriptor specified by --oat-fd."); UsageError(" Example: --oat-location=/data/dalvik-cache/system@app@Calculator.apk.oat"); UsageError(""); UsageError(" --oat-symbols=<file.oat>: specifies an oat output destination with full symbols."); UsageError(" Example: --oat-symbols=/symbols/system/framework/boot.oat"); UsageError(""); UsageError(" --image=<file.art>: specifies an output image filename."); UsageError(" Example: --image=/system/framework/boot.art"); UsageError(""); UsageError(" --image-format=(uncompressed|lz4|lz4hc):"); UsageError(" Which format to store the image."); UsageError(" Example: --image-format=lz4"); UsageError(" Default: uncompressed"); UsageError(""); UsageError(" --image-classes=<classname-file>: specifies classes to include in an image."); UsageError(" Example: --image=frameworks/base/preloaded-classes"); UsageError(""); UsageError(" --base=<hex-address>: specifies the base address when creating a boot image."); UsageError(" Example: --base=0x50000000"); UsageError(""); UsageError(" --boot-image=<file.art>: provide the image file for the boot class path."); UsageError(" Do not include the arch as part of the name, it is added automatically."); UsageError(" Example: --boot-image=/system/framework/boot.art"); UsageError(" (specifies /system/framework/<arch>/boot.art as the image file)"); UsageError(" Default: $ANDROID_ROOT/system/framework/boot.art"); UsageError(""); UsageError(" --android-root=<path>: used to locate libraries for portable linking."); UsageError(" Example: --android-root=out/host/linux-x86"); UsageError(" Default: $ANDROID_ROOT"); UsageError(""); UsageError(" --instruction-set=(arm|arm64|mips|mips64|x86|x86_64): compile for a particular"); UsageError(" instruction set."); UsageError(" Example: --instruction-set=x86"); UsageError(" Default: arm"); UsageError(""); UsageError(" --instruction-set-features=...,: Specify instruction set features"); UsageError(" Example: --instruction-set-features=div"); UsageError(" Default: default"); UsageError(""); UsageError(" --compile-pic: Force indirect use of code, methods, and classes"); UsageError(" Default: disabled"); UsageError(""); UsageError(" --compiler-backend=(Quick|Optimizing): select compiler backend"); UsageError(" set."); UsageError(" Example: --compiler-backend=Optimizing"); UsageError(" Default: Optimizing"); UsageError(""); UsageError(" --compiler-filter=" "(assume-verified" "|extract" "|verify" "|quicken" "|space-profile" "|space" "|speed-profile" "|speed" "|everything-profile" "|everything):"); UsageError(" select compiler filter."); UsageError(" Example: --compiler-filter=everything"); UsageError(" Default: speed"); UsageError(""); UsageError(" --huge-method-max=<method-instruction-count>: threshold size for a huge"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --huge-method-max=%d", CompilerOptions::kDefaultHugeMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultHugeMethodThreshold); UsageError(""); UsageError(" --large-method-max=<method-instruction-count>: threshold size for a large"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --large-method-max=%d", CompilerOptions::kDefaultLargeMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultLargeMethodThreshold); UsageError(""); UsageError(" --small-method-max=<method-instruction-count>: threshold size for a small"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --small-method-max=%d", CompilerOptions::kDefaultSmallMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultSmallMethodThreshold); UsageError(""); UsageError(" --tiny-method-max=<method-instruction-count>: threshold size for a tiny"); UsageError(" method for compiler filter tuning."); UsageError(" Example: --tiny-method-max=%d", CompilerOptions::kDefaultTinyMethodThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultTinyMethodThreshold); UsageError(""); UsageError(" --num-dex-methods=<method-count>: threshold size for a small dex file for"); UsageError(" compiler filter tuning. If the input has fewer than this many methods"); UsageError(" and the filter is not interpret-only or verify-none or verify-at-runtime, "); UsageError(" overrides the filter to use speed"); UsageError(" Example: --num-dex-method=%d", CompilerOptions::kDefaultNumDexMethodsThreshold); UsageError(" Default: %d", CompilerOptions::kDefaultNumDexMethodsThreshold); UsageError(""); UsageError(" --inline-max-code-units=<code-units-count>: the maximum code units that a method"); UsageError(" can have to be considered for inlining. A zero value will disable inlining."); UsageError(" Honored only by Optimizing. Has priority over the --compiler-filter option."); UsageError(" Intended for development/experimental use."); UsageError(" Example: --inline-max-code-units=%d", CompilerOptions::kDefaultInlineMaxCodeUnits); UsageError(" Default: %d", CompilerOptions::kDefaultInlineMaxCodeUnits); UsageError(""); UsageError(" --dump-timing: display a breakdown of where time was spent"); UsageError(""); UsageError(" -g"); UsageError(" --generate-debug-info: Generate debug information for native debugging,"); UsageError(" such as stack unwinding information, ELF symbols and DWARF sections."); UsageError(" If used without --debuggable, it will be best-effort only."); UsageError(" This option does not affect the generated code. (disabled by default)"); UsageError(""); UsageError(" --no-generate-debug-info: Do not generate debug information for native debugging."); UsageError(""); UsageError(" --generate-mini-debug-info: Generate minimal amount of LZMA-compressed"); UsageError(" debug information necessary to print backtraces. (disabled by default)"); UsageError(""); UsageError(" --no-generate-mini-debug-info: Do not generate backtrace info."); UsageError(""); UsageError(" --generate-build-id: Generate GNU-compatible linker build ID ELF section with"); UsageError(" SHA-1 of the file content (and thus stable across identical builds)"); UsageError(""); UsageError(" --no-generate-build-id: Do not generate the build ID ELF section."); UsageError(""); UsageError(" --debuggable: Produce code debuggable with Java debugger."); UsageError(""); UsageError(" --runtime-arg <argument>: used to specify various arguments for the runtime,"); UsageError(" such as initial heap size, maximum heap size, and verbose output."); UsageError(" Use a separate --runtime-arg switch for each argument."); UsageError(" Example: --runtime-arg -Xms256m"); UsageError(""); UsageError(" --profile-file=<filename>: specify profiler output file to use for compilation."); UsageError(""); UsageError(" --profile-file-fd=<number>: same as --profile-file but accepts a file descriptor."); UsageError(" Cannot be used together with --profile-file."); UsageError(""); UsageError(" --swap-file=<file-name>: specifies a file to use for swap."); UsageError(" Example: --swap-file=/data/tmp/swap.001"); UsageError(""); UsageError(" --swap-fd=<file-descriptor>: specifies a file to use for swap (by descriptor)."); UsageError(" Example: --swap-fd=10"); UsageError(""); UsageError(" --swap-dex-size-threshold=<size>: specifies the minimum total dex file size in"); UsageError(" bytes to allow the use of swap."); UsageError(" Example: --swap-dex-size-threshold=1000000"); UsageError(" Default: %zu", kDefaultMinDexFileCumulativeSizeForSwap); UsageError(""); UsageError(" --swap-dex-count-threshold=<count>: specifies the minimum number of dex files to"); UsageError(" allow the use of swap."); UsageError(" Example: --swap-dex-count-threshold=10"); UsageError(" Default: %zu", kDefaultMinDexFilesForSwap); UsageError(""); UsageError(" --very-large-app-threshold=<size>: specifies the minimum total dex file size in"); UsageError(" bytes to consider the input \"very large\" and punt on the compilation."); UsageError(" Example: --very-large-app-threshold=100000000"); UsageError(""); UsageError(" --app-image-fd=<file-descriptor>: specify output file descriptor for app image."); UsageError(" Example: --app-image-fd=10"); UsageError(""); UsageError(" --app-image-file=<file-name>: specify a file name for app image."); UsageError(" Example: --app-image-file=/data/dalvik-cache/system@app@Calculator.apk.art"); UsageError(""); UsageError(" --multi-image: specify that separate oat and image files be generated for each " "input dex file."); UsageError(""); UsageError(" --force-determinism: force the compiler to emit a deterministic output."); UsageError(""); UsageError(" --classpath-dir=<directory-path>: directory used to resolve relative class paths."); UsageError(""); std::cerr << "See log for usage error information\n"; exit(EXIT_FAILURE); } // The primary goal of the watchdog is to prevent stuck build servers // during development when fatal aborts lead to a cascade of failures // that result in a deadlock. class WatchDog { // WatchDog defines its own CHECK_PTHREAD_CALL to avoid using LOG which uses locks #undef CHECK_PTHREAD_CALL #define CHECK_WATCH_DOG_PTHREAD_CALL(call, args, what) \ do { \ int rc = call args; \ if (rc != 0) { \ errno = rc; \ std::string message(# call); \ message += " failed for "; \ message += reason; \ Fatal(message); \ } \ } while (false) public: explicit WatchDog(int64_t timeout_in_milliseconds) : timeout_in_milliseconds_(timeout_in_milliseconds), shutting_down_(false) { const char* reason = "dex2oat watch dog thread startup"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_init, (&mutex_, nullptr), reason); #ifndef __APPLE__ pthread_condattr_t condattr; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_init, (&condattr), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_setclock, (&condattr, CLOCK_MONOTONIC), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_init, (&cond_, &condattr), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_condattr_destroy, (&condattr), reason); #endif CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_init, (&attr_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_create, (&pthread_, &attr_, &CallBack, this), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_attr_destroy, (&attr_), reason); } ~WatchDog() { const char* reason = "dex2oat watch dog thread shutdown"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason); shutting_down_ = true; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_signal, (&cond_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_join, (pthread_, nullptr), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_cond_destroy, (&cond_), reason); CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_destroy, (&mutex_), reason); } // TODO: tune the multiplier for GC verification, the following is just to make the timeout // large. static constexpr int64_t kWatchdogVerifyMultiplier = kVerifyObjectSupport > kVerifyObjectModeFast ? 100 : 1; // When setting timeouts, keep in mind that the build server may not be as fast as your // desktop. Debug builds are slower so they have larger timeouts. static constexpr int64_t kWatchdogSlowdownFactor = kIsDebugBuild ? 5U : 1U; // 9.5 minutes scaled by kSlowdownFactor. This is slightly smaller than the Package Manager // watchdog (PackageManagerService.WATCHDOG_TIMEOUT, 10 minutes), so that dex2oat will abort // itself before that watchdog would take down the system server. static constexpr int64_t kWatchDogTimeoutSeconds = kWatchdogSlowdownFactor * (9 * 60 + 30); static constexpr int64_t kDefaultWatchdogTimeoutInMS = kWatchdogVerifyMultiplier * kWatchDogTimeoutSeconds * 1000; private: static void* CallBack(void* arg) { WatchDog* self = reinterpret_cast<WatchDog*>(arg); ::art::SetThreadName("dex2oat watch dog"); self->Wait(); return nullptr; } NO_RETURN static void Fatal(const std::string& message) { // TODO: When we can guarantee it won't prevent shutdown in error cases, move to LOG. However, // it's rather easy to hang in unwinding. // LogLine also avoids ART logging lock issues, as it's really only a wrapper around // logcat logging or stderr output. android::base::LogMessage::LogLine(__FILE__, __LINE__, android::base::LogId::DEFAULT, LogSeverity::FATAL, message.c_str()); exit(1); } void Wait() { timespec timeout_ts; #if defined(__APPLE__) InitTimeSpec(true, CLOCK_REALTIME, timeout_in_milliseconds_, 0, &timeout_ts); #else InitTimeSpec(true, CLOCK_MONOTONIC, timeout_in_milliseconds_, 0, &timeout_ts); #endif const char* reason = "dex2oat watch dog thread waiting"; CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_lock, (&mutex_), reason); while (!shutting_down_) { int rc = TEMP_FAILURE_RETRY(pthread_cond_timedwait(&cond_, &mutex_, &timeout_ts)); if (rc == ETIMEDOUT) { Fatal(StringPrintf("dex2oat did not finish after %" PRId64 " seconds", timeout_in_milliseconds_/1000)); } else if (rc != 0) { std::string message(StringPrintf("pthread_cond_timedwait failed: %s", strerror(errno))); Fatal(message.c_str()); } } CHECK_WATCH_DOG_PTHREAD_CALL(pthread_mutex_unlock, (&mutex_), reason); } const int64_t timeout_in_milliseconds_; bool shutting_down_; // TODO: Switch to Mutex when we can guarantee it won't prevent shutdown in error cases. pthread_mutex_t mutex_; pthread_cond_t cond_; pthread_attr_t attr_; pthread_t pthread_; }; class Dex2Oat FINAL { public: explicit Dex2Oat(TimingLogger* timings) : compiler_kind_(Compiler::kOptimizing), instruction_set_(kRuntimeISA == kArm ? kThumb2 : kRuntimeISA), // Take the default set of instruction features from the build. image_file_location_oat_checksum_(0), image_file_location_oat_data_begin_(0), image_patch_delta_(0), key_value_store_(nullptr), verification_results_(nullptr), runtime_(nullptr), thread_count_(sysconf(_SC_NPROCESSORS_CONF)), start_ns_(NanoTime()), start_cputime_ns_(ProcessCpuNanoTime()), oat_fd_(-1), input_vdex_fd_(-1), output_vdex_fd_(-1), input_vdex_file_(nullptr), zip_fd_(-1), image_base_(0U), image_classes_zip_filename_(nullptr), image_classes_filename_(nullptr), image_storage_mode_(ImageHeader::kStorageModeUncompressed), compiled_classes_zip_filename_(nullptr), compiled_classes_filename_(nullptr), compiled_methods_zip_filename_(nullptr), compiled_methods_filename_(nullptr), passes_to_run_filename_(nullptr), multi_image_(false), is_host_(false), class_loader_(nullptr), elf_writers_(), oat_writers_(), rodata_(), image_writer_(nullptr), driver_(nullptr), opened_dex_files_maps_(), opened_dex_files_(), no_inline_from_dex_files_(), dump_stats_(false), dump_passes_(false), dump_timing_(false), dump_slow_timing_(kIsDebugBuild), swap_fd_(kInvalidFd), app_image_fd_(kInvalidFd), profile_file_fd_(kInvalidFd), timings_(timings), force_determinism_(false) {} ~Dex2Oat() { // Log completion time before deleting the runtime_, because this accesses // the runtime. LogCompletionTime(); if (!kIsDebugBuild && !(RUNNING_ON_MEMORY_TOOL && kMemoryToolDetectsLeaks)) { // We want to just exit on non-debug builds, not bringing the runtime down // in an orderly fashion. So release the following fields. driver_.release(); image_writer_.release(); for (std::unique_ptr<const DexFile>& dex_file : opened_dex_files_) { dex_file.release(); } for (std::unique_ptr<MemMap>& map : opened_dex_files_maps_) { map.release(); } for (std::unique_ptr<File>& vdex_file : vdex_files_) { vdex_file.release(); } for (std::unique_ptr<File>& oat_file : oat_files_) { oat_file.release(); } runtime_.release(); verification_results_.release(); key_value_store_.release(); } } struct ParserOptions { std::vector<const char*> oat_symbols; std::string boot_image_filename; int64_t watch_dog_timeout_in_ms = -1; bool watch_dog_enabled = true; bool requested_specific_compiler = false; std::string error_msg; }; void ParseZipFd(const StringPiece& option) { ParseUintOption(option, "--zip-fd", &zip_fd_, Usage); } void ParseInputVdexFd(const StringPiece& option) { // Note that the input vdex fd might be -1. ParseIntOption(option, "--input-vdex-fd", &input_vdex_fd_, Usage); } void ParseOutputVdexFd(const StringPiece& option) { ParseUintOption(option, "--output-vdex-fd", &output_vdex_fd_, Usage); } void ParseOatFd(const StringPiece& option) { ParseUintOption(option, "--oat-fd", &oat_fd_, Usage); } void ParseFdForCollection(const StringPiece& option, const char* arg_name, std::vector<uint32_t>* fds) { uint32_t fd; ParseUintOption(option, arg_name, &fd, Usage); fds->push_back(fd); } void ParseJ(const StringPiece& option) { ParseUintOption(option, "-j", &thread_count_, Usage, /* is_long_option */ false); } void ParseBase(const StringPiece& option) { DCHECK(option.starts_with("--base=")); const char* image_base_str = option.substr(strlen("--base=")).data(); char* end; image_base_ = strtoul(image_base_str, &end, 16); if (end == image_base_str || *end != '\0') { Usage("Failed to parse hexadecimal value for option %s", option.data()); } } void ParseInstructionSet(const StringPiece& option) { DCHECK(option.starts_with("--instruction-set=")); StringPiece instruction_set_str = option.substr(strlen("--instruction-set=")).data(); // StringPiece is not necessarily zero-terminated, so need to make a copy and ensure it. std::unique_ptr<char[]> buf(new char[instruction_set_str.length() + 1]); strncpy(buf.get(), instruction_set_str.data(), instruction_set_str.length()); buf.get()[instruction_set_str.length()] = 0; instruction_set_ = GetInstructionSetFromString(buf.get()); // arm actually means thumb2. if (instruction_set_ == InstructionSet::kArm) { instruction_set_ = InstructionSet::kThumb2; } } void ParseInstructionSetVariant(const StringPiece& option, ParserOptions* parser_options) { DCHECK(option.starts_with("--instruction-set-variant=")); StringPiece str = option.substr(strlen("--instruction-set-variant=")).data(); instruction_set_features_ = InstructionSetFeatures::FromVariant( instruction_set_, str.as_string(), &parser_options->error_msg); if (instruction_set_features_.get() == nullptr) { Usage("%s", parser_options->error_msg.c_str()); } } void ParseInstructionSetFeatures(const StringPiece& option, ParserOptions* parser_options) { DCHECK(option.starts_with("--instruction-set-features=")); StringPiece str = option.substr(strlen("--instruction-set-features=")).data(); if (instruction_set_features_ == nullptr) { instruction_set_features_ = InstructionSetFeatures::FromVariant( instruction_set_, "default", &parser_options->error_msg); if (instruction_set_features_.get() == nullptr) { Usage("Problem initializing default instruction set features variant: %s", parser_options->error_msg.c_str()); } } instruction_set_features_ = instruction_set_features_->AddFeaturesFromString(str.as_string(), &parser_options->error_msg); if (instruction_set_features_ == nullptr) { Usage("Error parsing '%s': %s", option.data(), parser_options->error_msg.c_str()); } } void ParseCompilerBackend(const StringPiece& option, ParserOptions* parser_options) { DCHECK(option.starts_with("--compiler-backend=")); parser_options->requested_specific_compiler = true; StringPiece backend_str = option.substr(strlen("--compiler-backend=")).data(); if (backend_str == "Quick") { compiler_kind_ = Compiler::kQuick; } else if (backend_str == "Optimizing") { compiler_kind_ = Compiler::kOptimizing; } else { Usage("Unknown compiler backend: %s", backend_str.data()); } } void ParseImageFormat(const StringPiece& option) { const StringPiece substr("--image-format="); DCHECK(option.starts_with(substr)); const StringPiece format_str = option.substr(substr.length()); if (format_str == "lz4") { image_storage_mode_ = ImageHeader::kStorageModeLZ4; } else if (format_str == "lz4hc") { image_storage_mode_ = ImageHeader::kStorageModeLZ4HC; } else if (format_str == "uncompressed") { image_storage_mode_ = ImageHeader::kStorageModeUncompressed; } else { Usage("Unknown image format: %s", format_str.data()); } } void ProcessOptions(ParserOptions* parser_options) { compiler_options_->boot_image_ = !image_filenames_.empty(); compiler_options_->app_image_ = app_image_fd_ != -1 || !app_image_file_name_.empty(); if (IsAppImage() && IsBootImage()) { Usage("Can't have both --image and (--app-image-fd or --app-image-file)"); } if (oat_filenames_.empty() && oat_fd_ == -1) { Usage("Output must be supplied with either --oat-file or --oat-fd"); } if (input_vdex_fd_ != -1 && !input_vdex_.empty()) { Usage("Can't have both --input-vdex-fd and --input-vdex"); } if (output_vdex_fd_ != -1 && !output_vdex_.empty()) { Usage("Can't have both --output-vdex-fd and --output-vdex"); } if (!oat_filenames_.empty() && oat_fd_ != -1) { Usage("--oat-file should not be used with --oat-fd"); } if ((output_vdex_fd_ == -1) != (oat_fd_ == -1)) { Usage("VDEX and OAT output must be specified either with one --oat-filename " "or with --oat-fd and --output-vdex-fd file descriptors"); } if (!parser_options->oat_symbols.empty() && oat_fd_ != -1) { Usage("--oat-symbols should not be used with --oat-fd"); } if (!parser_options->oat_symbols.empty() && is_host_) { Usage("--oat-symbols should not be used with --host"); } if (output_vdex_fd_ != -1 && !image_filenames_.empty()) { Usage("--output-vdex-fd should not be used with --image"); } if (oat_fd_ != -1 && !image_filenames_.empty()) { Usage("--oat-fd should not be used with --image"); } if (!parser_options->oat_symbols.empty() && parser_options->oat_symbols.size() != oat_filenames_.size()) { Usage("--oat-file arguments do not match --oat-symbols arguments"); } if (!image_filenames_.empty() && image_filenames_.size() != oat_filenames_.size()) { Usage("--oat-file arguments do not match --image arguments"); } if (android_root_.empty()) { const char* android_root_env_var = getenv("ANDROID_ROOT"); if (android_root_env_var == nullptr) { Usage("--android-root unspecified and ANDROID_ROOT not set"); } android_root_ += android_root_env_var; } if (!IsBootImage() && parser_options->boot_image_filename.empty()) { parser_options->boot_image_filename += android_root_; parser_options->boot_image_filename += "/framework/boot.art"; } if (!parser_options->boot_image_filename.empty()) { boot_image_filename_ = parser_options->boot_image_filename; } if (image_classes_filename_ != nullptr && !IsBootImage()) { Usage("--image-classes should only be used with --image"); } if (image_classes_filename_ != nullptr && !boot_image_filename_.empty()) { Usage("--image-classes should not be used with --boot-image"); } if (image_classes_zip_filename_ != nullptr && image_classes_filename_ == nullptr) { Usage("--image-classes-zip should be used with --image-classes"); } if (compiled_classes_filename_ != nullptr && !IsBootImage()) { Usage("--compiled-classes should only be used with --image"); } if (compiled_classes_filename_ != nullptr && !boot_image_filename_.empty()) { Usage("--compiled-classes should not be used with --boot-image"); } if (compiled_classes_zip_filename_ != nullptr && compiled_classes_filename_ == nullptr) { Usage("--compiled-classes-zip should be used with --compiled-classes"); } if (dex_filenames_.empty() && zip_fd_ == -1) { Usage("Input must be supplied with either --dex-file or --zip-fd"); } if (!dex_filenames_.empty() && zip_fd_ != -1) { Usage("--dex-file should not be used with --zip-fd"); } if (!dex_filenames_.empty() && !zip_location_.empty()) { Usage("--dex-file should not be used with --zip-location"); } if (dex_locations_.empty()) { for (const char* dex_file_name : dex_filenames_) { dex_locations_.push_back(dex_file_name); } } else if (dex_locations_.size() != dex_filenames_.size()) { Usage("--dex-location arguments do not match --dex-file arguments"); } if (!dex_filenames_.empty() && !oat_filenames_.empty()) { if (oat_filenames_.size() != 1 && oat_filenames_.size() != dex_filenames_.size()) { Usage("--oat-file arguments must be singular or match --dex-file arguments"); } } if (zip_fd_ != -1 && zip_location_.empty()) { Usage("--zip-location should be supplied with --zip-fd"); } if (boot_image_filename_.empty()) { if (image_base_ == 0) { Usage("Non-zero --base not specified"); } } const bool have_profile_file = !profile_file_.empty(); const bool have_profile_fd = profile_file_fd_ != kInvalidFd; if (have_profile_file && have_profile_fd) { Usage("Profile file should not be specified with both --profile-file-fd and --profile-file"); } if (!parser_options->oat_symbols.empty()) { oat_unstripped_ = std::move(parser_options->oat_symbols); } // If no instruction set feature was given, use the default one for the target // instruction set. if (instruction_set_features_.get() == nullptr) { instruction_set_features_ = InstructionSetFeatures::FromVariant( instruction_set_, "default", &parser_options->error_msg); if (instruction_set_features_.get() == nullptr) { Usage("Problem initializing default instruction set features variant: %s", parser_options->error_msg.c_str()); } } if (instruction_set_ == kRuntimeISA) { std::unique_ptr<const InstructionSetFeatures> runtime_features( InstructionSetFeatures::FromCppDefines()); if (!instruction_set_features_->Equals(runtime_features.get())) { LOG(WARNING) << "Mismatch between dex2oat instruction set features (" << *instruction_set_features_ << ") and those of dex2oat executable (" << *runtime_features <<") for the command line:\n" << CommandLine(); } } if (compiler_options_->inline_max_code_units_ == CompilerOptions::kUnsetInlineMaxCodeUnits) { compiler_options_->inline_max_code_units_ = CompilerOptions::kDefaultInlineMaxCodeUnits; } // Checks are all explicit until we know the architecture. // Set the compilation target's implicit checks options. switch (instruction_set_) { case kArm: case kThumb2: case kArm64: case kX86: case kX86_64: case kMips: case kMips64: compiler_options_->implicit_null_checks_ = true; compiler_options_->implicit_so_checks_ = true; break; default: // Defaults are correct. break; } compiler_options_->verbose_methods_ = verbose_methods_.empty() ? nullptr : &verbose_methods_; if (!IsBootImage() && multi_image_) { Usage("--multi-image can only be used when creating boot images"); } if (IsBootImage() && multi_image_ && image_filenames_.size() > 1) { Usage("--multi-image cannot be used with multiple image names"); } // For now, if we're on the host and compile the boot image, *always* use multiple image files. if (!kIsTargetBuild && IsBootImage()) { if (image_filenames_.size() == 1) { multi_image_ = true; } } // Done with usage checks, enable watchdog if requested if (parser_options->watch_dog_enabled) { int64_t timeout = parser_options->watch_dog_timeout_in_ms > 0 ? parser_options->watch_dog_timeout_in_ms : WatchDog::kDefaultWatchdogTimeoutInMS; watchdog_.reset(new WatchDog(timeout)); } // Fill some values into the key-value store for the oat header. key_value_store_.reset(new SafeMap<std::string, std::string>()); // Automatically force determinism for the boot image in a host build if read barriers // are enabled, or if the default GC is CMS or MS. When the default GC is CMS // (Concurrent Mark-Sweep), the GC is switched to a non-concurrent one by passing the // option `-Xgc:nonconcurrent` (see below). if (!kIsTargetBuild && IsBootImage()) { if (SupportsDeterministicCompilation()) { force_determinism_ = true; } else { LOG(WARNING) << "Deterministic compilation is disabled."; } } compiler_options_->force_determinism_ = force_determinism_; if (passes_to_run_filename_ != nullptr) { passes_to_run_.reset(ReadCommentedInputFromFile<std::vector<std::string>>( passes_to_run_filename_, nullptr)); // No post-processing. if (passes_to_run_.get() == nullptr) { Usage("Failed to read list of passes to run."); } } compiler_options_->passes_to_run_ = passes_to_run_.get(); } static bool SupportsDeterministicCompilation() { return (kUseReadBarrier || gc::kCollectorTypeDefault == gc::kCollectorTypeCMS || gc::kCollectorTypeDefault == gc::kCollectorTypeMS); } void ExpandOatAndImageFilenames() { std::string base_oat = oat_filenames_[0]; size_t last_oat_slash = base_oat.rfind('/'); if (last_oat_slash == std::string::npos) { Usage("--multi-image used with unusable oat filename %s", base_oat.c_str()); } // We also need to honor path components that were encoded through '@'. Otherwise the loading // code won't be able to find the images. if (base_oat.find('@', last_oat_slash) != std::string::npos) { last_oat_slash = base_oat.rfind('@'); } base_oat = base_oat.substr(0, last_oat_slash + 1); std::string base_img = image_filenames_[0]; size_t last_img_slash = base_img.rfind('/'); if (last_img_slash == std::string::npos) { Usage("--multi-image used with unusable image filename %s", base_img.c_str()); } // We also need to honor path components that were encoded through '@'. Otherwise the loading // code won't be able to find the images. if (base_img.find('@', last_img_slash) != std::string::npos) { last_img_slash = base_img.rfind('@'); } // Get the prefix, which is the primary image name (without path components). Strip the // extension. std::string prefix = base_img.substr(last_img_slash + 1); if (prefix.rfind('.') != std::string::npos) { prefix = prefix.substr(0, prefix.rfind('.')); } if (!prefix.empty()) { prefix = prefix + "-"; } base_img = base_img.substr(0, last_img_slash + 1); // Note: we have some special case here for our testing. We have to inject the differentiating // parts for the different core images. std::string infix; // Empty infix by default. { // Check the first name. std::string dex_file = oat_filenames_[0]; size_t last_dex_slash = dex_file.rfind('/'); if (last_dex_slash != std::string::npos) { dex_file = dex_file.substr(last_dex_slash + 1); } size_t last_dex_dot = dex_file.rfind('.'); if (last_dex_dot != std::string::npos) { dex_file = dex_file.substr(0, last_dex_dot); } if (android::base::StartsWith(dex_file, "core-")) { infix = dex_file.substr(strlen("core")); } } std::string base_symbol_oat; if (!oat_unstripped_.empty()) { base_symbol_oat = oat_unstripped_[0]; size_t last_symbol_oat_slash = base_symbol_oat.rfind('/'); if (last_symbol_oat_slash == std::string::npos) { Usage("--multi-image used with unusable symbol filename %s", base_symbol_oat.c_str()); } base_symbol_oat = base_symbol_oat.substr(0, last_symbol_oat_slash + 1); } const size_t num_expanded_files = 2 + (base_symbol_oat.empty() ? 0 : 1); char_backing_storage_.reserve((dex_locations_.size() - 1) * num_expanded_files); // Now create the other names. Use a counted loop to skip the first one. for (size_t i = 1; i < dex_locations_.size(); ++i) { // TODO: Make everything properly std::string. std::string image_name = CreateMultiImageName(dex_locations_[i], prefix, infix, ".art"); char_backing_storage_.push_back(base_img + image_name); image_filenames_.push_back((char_backing_storage_.end() - 1)->c_str()); std::string oat_name = CreateMultiImageName(dex_locations_[i], prefix, infix, ".oat"); char_backing_storage_.push_back(base_oat + oat_name); oat_filenames_.push_back((char_backing_storage_.end() - 1)->c_str()); if (!base_symbol_oat.empty()) { char_backing_storage_.push_back(base_symbol_oat + oat_name); oat_unstripped_.push_back((char_backing_storage_.end() - 1)->c_str()); } } } // Modify the input string in the following way: // 0) Assume input is /a/b/c.d // 1) Strip the path -> c.d // 2) Inject prefix p -> pc.d // 3) Inject infix i -> pci.d // 4) Replace suffix with s if it's "jar" -> d == "jar" -> pci.s static std::string CreateMultiImageName(std::string in, const std::string& prefix, const std::string& infix, const char* replace_suffix) { size_t last_dex_slash = in.rfind('/'); if (last_dex_slash != std::string::npos) { in = in.substr(last_dex_slash + 1); } if (!prefix.empty()) { in = prefix + in; } if (!infix.empty()) { // Inject infix. size_t last_dot = in.rfind('.'); if (last_dot != std::string::npos) { in.insert(last_dot, infix); } } if (android::base::EndsWith(in, ".jar")) { in = in.substr(0, in.length() - strlen(".jar")) + (replace_suffix != nullptr ? replace_suffix : ""); } return in; } void InsertCompileOptions(int argc, char** argv) { std::ostringstream oss; for (int i = 0; i < argc; ++i) { if (i > 0) { oss << ' '; } oss << argv[i]; } key_value_store_->Put(OatHeader::kDex2OatCmdLineKey, oss.str()); oss.str(""); // Reset. oss << kRuntimeISA; key_value_store_->Put(OatHeader::kDex2OatHostKey, oss.str()); key_value_store_->Put( OatHeader::kPicKey, compiler_options_->compile_pic_ ? OatHeader::kTrueValue : OatHeader::kFalseValue); key_value_store_->Put( OatHeader::kDebuggableKey, compiler_options_->debuggable_ ? OatHeader::kTrueValue : OatHeader::kFalseValue); key_value_store_->Put( OatHeader::kNativeDebuggableKey, compiler_options_->GetNativeDebuggable() ? OatHeader::kTrueValue : OatHeader::kFalseValue); key_value_store_->Put(OatHeader::kCompilerFilter, CompilerFilter::NameOfFilter(compiler_options_->GetCompilerFilter())); key_value_store_->Put(OatHeader::kConcurrentCopying, kUseReadBarrier ? OatHeader::kTrueValue : OatHeader::kFalseValue); } // Parse the arguments from the command line. In case of an unrecognized option or impossible // values/combinations, a usage error will be displayed and exit() is called. Thus, if the method // returns, arguments have been successfully parsed. void ParseArgs(int argc, char** argv) { original_argc = argc; original_argv = argv; InitLogging(argv, Runtime::Aborter); // Skip over argv[0]. argv++; argc--; if (argc == 0) { Usage("No arguments specified"); } std::unique_ptr<ParserOptions> parser_options(new ParserOptions()); compiler_options_.reset(new CompilerOptions()); for (int i = 0; i < argc; i++) { const StringPiece option(argv[i]); const bool log_options = false; if (log_options) { LOG(INFO) << "dex2oat: option[" << i << "]=" << argv[i]; } if (option.starts_with("--dex-file=")) { dex_filenames_.push_back(option.substr(strlen("--dex-file=")).data()); } else if (option.starts_with("--dex-location=")) { dex_locations_.push_back(option.substr(strlen("--dex-location=")).data()); } else if (option.starts_with("--zip-fd=")) { ParseZipFd(option); } else if (option.starts_with("--zip-location=")) { zip_location_ = option.substr(strlen("--zip-location=")).data(); } else if (option.starts_with("--input-vdex-fd=")) { ParseInputVdexFd(option); } else if (option.starts_with("--input-vdex=")) { input_vdex_ = option.substr(strlen("--input-vdex=")).data(); } else if (option.starts_with("--output-vdex=")) { output_vdex_ = option.substr(strlen("--output-vdex=")).data(); } else if (option.starts_with("--output-vdex-fd=")) { ParseOutputVdexFd(option); } else if (option.starts_with("--oat-file=")) { oat_filenames_.push_back(option.substr(strlen("--oat-file=")).data()); } else if (option.starts_with("--oat-symbols=")) { parser_options->oat_symbols.push_back(option.substr(strlen("--oat-symbols=")).data()); } else if (option.starts_with("--oat-fd=")) { ParseOatFd(option); } else if (option.starts_with("--oat-location=")) { oat_location_ = option.substr(strlen("--oat-location=")).data(); } else if (option == "--watch-dog") { parser_options->watch_dog_enabled = true; } else if (option == "--no-watch-dog") { parser_options->watch_dog_enabled = false; } else if (option.starts_with("--watchdog-timeout=")) { ParseIntOption(option, "--watchdog-timeout", &parser_options->watch_dog_timeout_in_ms, Usage); } else if (option.starts_with("-j")) { ParseJ(option); } else if (option.starts_with("--image=")) { image_filenames_.push_back(option.substr(strlen("--image=")).data()); } else if (option.starts_with("--image-classes=")) { image_classes_filename_ = option.substr(strlen("--image-classes=")).data(); } else if (option.starts_with("--image-classes-zip=")) { image_classes_zip_filename_ = option.substr(strlen("--image-classes-zip=")).data(); } else if (option.starts_with("--image-format=")) { ParseImageFormat(option); } else if (option.starts_with("--compiled-classes=")) { compiled_classes_filename_ = option.substr(strlen("--compiled-classes=")).data(); } else if (option.starts_with("--compiled-classes-zip=")) { compiled_classes_zip_filename_ = option.substr(strlen("--compiled-classes-zip=")).data(); } else if (option.starts_with("--compiled-methods=")) { compiled_methods_filename_ = option.substr(strlen("--compiled-methods=")).data(); } else if (option.starts_with("--compiled-methods-zip=")) { compiled_methods_zip_filename_ = option.substr(strlen("--compiled-methods-zip=")).data(); } else if (option.starts_with("--run-passes=")) { passes_to_run_filename_ = option.substr(strlen("--run-passes=")).data(); } else if (option.starts_with("--base=")) { ParseBase(option); } else if (option.starts_with("--boot-image=")) { parser_options->boot_image_filename = option.substr(strlen("--boot-image=")).data(); } else if (option.starts_with("--android-root=")) { android_root_ = option.substr(strlen("--android-root=")).data(); } else if (option.starts_with("--instruction-set=")) { ParseInstructionSet(option); } else if (option.starts_with("--instruction-set-variant=")) { ParseInstructionSetVariant(option, parser_options.get()); } else if (option.starts_with("--instruction-set-features=")) { ParseInstructionSetFeatures(option, parser_options.get()); } else if (option.starts_with("--compiler-backend=")) { ParseCompilerBackend(option, parser_options.get()); } else if (option.starts_with("--profile-file=")) { profile_file_ = option.substr(strlen("--profile-file=")).ToString(); } else if (option.starts_with("--profile-file-fd=")) { ParseUintOption(option, "--profile-file-fd", &profile_file_fd_, Usage); } else if (option == "--host") { is_host_ = true; } else if (option == "--runtime-arg") { if (++i >= argc) { Usage("Missing required argument for --runtime-arg"); } if (log_options) { LOG(INFO) << "dex2oat: option[" << i << "]=" << argv[i]; } runtime_args_.push_back(argv[i]); } else if (option == "--dump-timing") { dump_timing_ = true; } else if (option == "--dump-passes") { dump_passes_ = true; } else if (option == "--dump-stats") { dump_stats_ = true; } else if (option.starts_with("--swap-file=")) { swap_file_name_ = option.substr(strlen("--swap-file=")).data(); } else if (option.starts_with("--swap-fd=")) { ParseUintOption(option, "--swap-fd", &swap_fd_, Usage); } else if (option.starts_with("--swap-dex-size-threshold=")) { ParseUintOption(option, "--swap-dex-size-threshold", &min_dex_file_cumulative_size_for_swap_, Usage); } else if (option.starts_with("--swap-dex-count-threshold=")) { ParseUintOption(option, "--swap-dex-count-threshold", &min_dex_files_for_swap_, Usage); } else if (option.starts_with("--very-large-app-threshold=")) { ParseUintOption(option, "--very-large-app-threshold", &very_large_threshold_, Usage); } else if (option.starts_with("--app-image-file=")) { app_image_file_name_ = option.substr(strlen("--app-image-file=")).data(); } else if (option.starts_with("--app-image-fd=")) { ParseUintOption(option, "--app-image-fd", &app_image_fd_, Usage); } else if (option.starts_with("--verbose-methods=")) { // TODO: rather than switch off compiler logging, make all VLOG(compiler) messages // conditional on having verbost methods. gLogVerbosity.compiler = false; Split(option.substr(strlen("--verbose-methods=")).ToString(), ',', &verbose_methods_); } else if (option == "--multi-image") { multi_image_ = true; } else if (option.starts_with("--no-inline-from=")) { no_inline_from_string_ = option.substr(strlen("--no-inline-from=")).data(); } else if (option == "--force-determinism") { if (!SupportsDeterministicCompilation()) { Usage("Option --force-determinism requires read barriers or a CMS/MS garbage collector"); } force_determinism_ = true; } else if (option.starts_with("--classpath-dir=")) { classpath_dir_ = option.substr(strlen("--classpath-dir=")).data(); } else if (!compiler_options_->ParseCompilerOption(option, Usage)) { Usage("Unknown argument %s", option.data()); } } ProcessOptions(parser_options.get()); // Insert some compiler things. InsertCompileOptions(argc, argv); } // Check whether the oat output files are writable, and open them for later. Also open a swap // file, if a name is given. bool OpenFile() { // Prune non-existent dex files now so that we don't create empty oat files for multi-image. PruneNonExistentDexFiles(); // Expand oat and image filenames for multi image. if (IsBootImage() && multi_image_) { ExpandOatAndImageFilenames(); } // OAT and VDEX file handling bool eagerly_unquicken_vdex = DoDexLayoutOptimizations(); if (oat_fd_ == -1) { DCHECK(!oat_filenames_.empty()); for (const char* oat_filename : oat_filenames_) { std::unique_ptr<File> oat_file(OS::CreateEmptyFile(oat_filename)); if (oat_file.get() == nullptr) { PLOG(ERROR) << "Failed to create oat file: " << oat_filename; return false; } if (fchmod(oat_file->Fd(), 0644) != 0) { PLOG(ERROR) << "Failed to make oat file world readable: " << oat_filename; oat_file->Erase(); return false; } oat_files_.push_back(std::move(oat_file)); DCHECK_EQ(input_vdex_fd_, -1); if (!input_vdex_.empty()) { std::string error_msg; input_vdex_file_ = VdexFile::Open(input_vdex_, /* writable */ false, /* low_4gb */ false, eagerly_unquicken_vdex, &error_msg); } DCHECK_EQ(output_vdex_fd_, -1); std::string vdex_filename = output_vdex_.empty() ? ReplaceFileExtension(oat_filename, "vdex") : output_vdex_; if (vdex_filename == input_vdex_ && output_vdex_.empty()) { update_input_vdex_ = true; std::unique_ptr<File> vdex_file(OS::OpenFileReadWrite(vdex_filename.c_str())); vdex_files_.push_back(std::move(vdex_file)); } else { std::unique_ptr<File> vdex_file(OS::CreateEmptyFile(vdex_filename.c_str())); if (vdex_file.get() == nullptr) { PLOG(ERROR) << "Failed to open vdex file: " << vdex_filename; return false; } if (fchmod(vdex_file->Fd(), 0644) != 0) { PLOG(ERROR) << "Failed to make vdex file world readable: " << vdex_filename; vdex_file->Erase(); return false; } vdex_files_.push_back(std::move(vdex_file)); } } } else { std::unique_ptr<File> oat_file(new File(oat_fd_, oat_location_, /* check_usage */ true)); if (oat_file.get() == nullptr) { PLOG(ERROR) << "Failed to create oat file: " << oat_location_; return false; } oat_file->DisableAutoClose(); if (oat_file->SetLength(0) != 0) { PLOG(WARNING) << "Truncating oat file " << oat_location_ << " failed."; } oat_files_.push_back(std::move(oat_file)); if (input_vdex_fd_ != -1) { struct stat s; int rc = TEMP_FAILURE_RETRY(fstat(input_vdex_fd_, &s)); if (rc == -1) { PLOG(WARNING) << "Failed getting length of vdex file"; } else { std::string error_msg; input_vdex_file_ = VdexFile::Open(input_vdex_fd_, s.st_size, "vdex", /* writable */ false, /* low_4gb */ false, eagerly_unquicken_vdex, &error_msg); // If there's any problem with the passed vdex, just warn and proceed // without it. if (input_vdex_file_ == nullptr) { PLOG(WARNING) << "Failed opening vdex file: " << error_msg; } } } DCHECK_NE(output_vdex_fd_, -1); std::string vdex_location = ReplaceFileExtension(oat_location_, "vdex"); std::unique_ptr<File> vdex_file(new File(output_vdex_fd_, vdex_location, /* check_usage */ true)); if (vdex_file.get() == nullptr) { PLOG(ERROR) << "Failed to create vdex file: " << vdex_location; return false; } vdex_file->DisableAutoClose(); if (input_vdex_file_ != nullptr && output_vdex_fd_ == input_vdex_fd_) { update_input_vdex_ = true; } else { if (vdex_file->SetLength(0) != 0) { PLOG(ERROR) << "Truncating vdex file " << vdex_location << " failed."; return false; } } vdex_files_.push_back(std::move(vdex_file)); oat_filenames_.push_back(oat_location_.c_str()); } // If we're updating in place a vdex file, be defensive and put an invalid vdex magic in case // dex2oat gets killed. // Note: we're only invalidating the magic data in the file, as dex2oat needs the rest of // the information to remain valid. if (update_input_vdex_) { std::unique_ptr<BufferedOutputStream> vdex_out(MakeUnique<BufferedOutputStream>( MakeUnique<FileOutputStream>(vdex_files_.back().get()))); if (!vdex_out->WriteFully(&VdexFile::Header::kVdexInvalidMagic, arraysize(VdexFile::Header::kVdexInvalidMagic))) { PLOG(ERROR) << "Failed to invalidate vdex header. File: " << vdex_out->GetLocation(); return false; } if (!vdex_out->Flush()) { PLOG(ERROR) << "Failed to flush stream after invalidating header of vdex file." << " File: " << vdex_out->GetLocation(); return false; } } // Swap file handling // // If the swap fd is not -1, we assume this is the file descriptor of an open but unlinked file // that we can use for swap. // // If the swap fd is -1 and we have a swap-file string, open the given file as a swap file. We // will immediately unlink to satisfy the swap fd assumption. if (swap_fd_ == -1 && !swap_file_name_.empty()) { std::unique_ptr<File> swap_file(OS::CreateEmptyFile(swap_file_name_.c_str())); if (swap_file.get() == nullptr) { PLOG(ERROR) << "Failed to create swap file: " << swap_file_name_; return false; } swap_fd_ = swap_file->Fd(); swap_file->MarkUnchecked(); // We don't we to track this, it will be unlinked immediately. swap_file->DisableAutoClose(); // We'll handle it ourselves, the File object will be // released immediately. unlink(swap_file_name_.c_str()); } return true; } void EraseOutputFiles() { for (auto& files : { &vdex_files_, &oat_files_ }) { for (size_t i = 0; i < files->size(); ++i) { if ((*files)[i].get() != nullptr) { (*files)[i]->Erase(); (*files)[i].reset(); } } } } void Shutdown() { ScopedObjectAccess soa(Thread::Current()); for (jobject dex_cache : dex_caches_) { soa.Env()->DeleteLocalRef(dex_cache); } dex_caches_.clear(); } void LoadClassProfileDescriptors() { if (profile_compilation_info_ != nullptr && IsAppImage()) { Runtime* runtime = Runtime::Current(); CHECK(runtime != nullptr); // Filter out class path classes since we don't want to include these in the image. std::set<DexCacheResolvedClasses> resolved_classes( profile_compilation_info_->GetResolvedClasses(dex_files_)); image_classes_.reset(new std::unordered_set<std::string>( runtime->GetClassLinker()->GetClassDescriptorsForResolvedClasses(resolved_classes))); VLOG(compiler) << "Loaded " << image_classes_->size() << " image class descriptors from profile"; if (VLOG_IS_ON(compiler)) { for (const std::string& s : *image_classes_) { LOG(INFO) << "Image class " << s; } } } } // Set up the environment for compilation. Includes starting the runtime and loading/opening the // boot class path. dex2oat::ReturnCode Setup() { TimingLogger::ScopedTiming t("dex2oat Setup", timings_); if (!PrepareImageClasses() || !PrepareCompiledClasses() || !PrepareCompiledMethods()) { return dex2oat::ReturnCode::kOther; } verification_results_.reset(new VerificationResults(compiler_options_.get())); callbacks_.reset(new QuickCompilerCallbacks( verification_results_.get(), IsBootImage() ? CompilerCallbacks::CallbackMode::kCompileBootImage : CompilerCallbacks::CallbackMode::kCompileApp)); RuntimeArgumentMap runtime_options; if (!PrepareRuntimeOptions(&runtime_options)) { return dex2oat::ReturnCode::kOther; } CreateOatWriters(); if (!AddDexFileSources()) { return dex2oat::ReturnCode::kOther; } if (IsBootImage() && image_filenames_.size() > 1) { // If we're compiling the boot image, store the boot classpath into the Key-Value store. // We need this for the multi-image case. key_value_store_->Put(OatHeader::kBootClassPathKey, gc::space::ImageSpace::GetMultiImageBootClassPath(dex_locations_, oat_filenames_, image_filenames_)); } if (!IsBootImage()) { // When compiling an app, create the runtime early to retrieve // the image location key needed for the oat header. if (!CreateRuntime(std::move(runtime_options))) { return dex2oat::ReturnCode::kCreateRuntime; } if (CompilerFilter::DependsOnImageChecksum(compiler_options_->GetCompilerFilter())) { TimingLogger::ScopedTiming t3("Loading image checksum", timings_); std::vector<gc::space::ImageSpace*> image_spaces = Runtime::Current()->GetHeap()->GetBootImageSpaces(); image_file_location_oat_checksum_ = image_spaces[0]->GetImageHeader().GetOatChecksum(); image_file_location_oat_data_begin_ = reinterpret_cast<uintptr_t>(image_spaces[0]->GetImageHeader().GetOatDataBegin()); image_patch_delta_ = image_spaces[0]->GetImageHeader().GetPatchDelta(); // Store the boot image filename(s). std::vector<std::string> image_filenames; for (const gc::space::ImageSpace* image_space : image_spaces) { image_filenames.push_back(image_space->GetImageFilename()); } std::string image_file_location = android::base::Join(image_filenames, ':'); if (!image_file_location.empty()) { key_value_store_->Put(OatHeader::kImageLocationKey, image_file_location); } } else { image_file_location_oat_checksum_ = 0u; image_file_location_oat_data_begin_ = 0u; image_patch_delta_ = 0; } // Open dex files for class path. std::vector<std::string> class_path_locations = GetClassPathLocations(runtime_->GetClassPathString()); OpenClassPathFiles(class_path_locations, &class_path_files_, &opened_oat_files_, runtime_->GetInstructionSet(), classpath_dir_); // Store the classpath we have right now. std::vector<const DexFile*> class_path_files = MakeNonOwningPointerVector(class_path_files_); std::string encoded_class_path; if (class_path_locations.size() == 1 && class_path_locations[0] == OatFile::kSpecialSharedLibrary) { // When passing the special shared library as the classpath, it is the only path. encoded_class_path = OatFile::kSpecialSharedLibrary; } else { encoded_class_path = OatFile::EncodeDexFileDependencies(class_path_files, classpath_dir_); } key_value_store_->Put(OatHeader::kClassPathKey, encoded_class_path); } // Now that we have finalized key_value_store_, start writing the oat file. { TimingLogger::ScopedTiming t_dex("Writing and opening dex files", timings_); rodata_.reserve(oat_writers_.size()); for (size_t i = 0, size = oat_writers_.size(); i != size; ++i) { rodata_.push_back(elf_writers_[i]->StartRoData()); // Unzip or copy dex files straight to the oat file. std::unique_ptr<MemMap> opened_dex_files_map; std::vector<std::unique_ptr<const DexFile>> opened_dex_files; // No need to verify the dex file for: // 1) Dexlayout since it does the verification. It also may not pass the verification since // we don't update the dex checksum. // 2) when we have a vdex file, which means it was already verified. const bool verify = !DoDexLayoutOptimizations() && (input_vdex_file_ == nullptr); if (!oat_writers_[i]->WriteAndOpenDexFiles( kIsVdexEnabled ? vdex_files_[i].get() : oat_files_[i].get(), rodata_.back(), instruction_set_, instruction_set_features_.get(), key_value_store_.get(), verify, update_input_vdex_, &opened_dex_files_map, &opened_dex_files)) { return dex2oat::ReturnCode::kOther; } dex_files_per_oat_file_.push_back(MakeNonOwningPointerVector(opened_dex_files)); if (opened_dex_files_map != nullptr) { opened_dex_files_maps_.push_back(std::move(opened_dex_files_map)); for (std::unique_ptr<const DexFile>& dex_file : opened_dex_files) { dex_file_oat_index_map_.emplace(dex_file.get(), i); opened_dex_files_.push_back(std::move(dex_file)); } } else { DCHECK(opened_dex_files.empty()); } } } dex_files_ = MakeNonOwningPointerVector(opened_dex_files_); // We had to postpone the swap decision till now, as this is the point when we actually // know about the dex files we're going to use. // Make sure that we didn't create the driver, yet. CHECK(driver_ == nullptr); // If we use a swap file, ensure we are above the threshold to make it necessary. if (swap_fd_ != -1) { if (!UseSwap(IsBootImage(), dex_files_)) { close(swap_fd_); swap_fd_ = -1; VLOG(compiler) << "Decided to run without swap."; } else { LOG(INFO) << "Large app, accepted running with swap."; } } // Note that dex2oat won't close the swap_fd_. The compiler driver's swap space will do that. // If we need to downgrade the compiler-filter for size reasons, do that check now. if (!IsBootImage() && IsVeryLarge(dex_files_)) { if (!CompilerFilter::IsAsGoodAs(CompilerFilter::kExtract, compiler_options_->GetCompilerFilter())) { LOG(INFO) << "Very large app, downgrading to extract."; // Note: this change won't be reflected in the key-value store, as that had to be // finalized before loading the dex files. This setup is currently required // to get the size from the DexFile objects. // TODO: refactor. b/29790079 compiler_options_->SetCompilerFilter(CompilerFilter::kExtract); } } if (IsBootImage()) { // For boot image, pass opened dex files to the Runtime::Create(). // Note: Runtime acquires ownership of these dex files. runtime_options.Set(RuntimeArgumentMap::BootClassPathDexList, &opened_dex_files_); if (!CreateRuntime(std::move(runtime_options))) { return dex2oat::ReturnCode::kOther; } } // If we're doing the image, override the compiler filter to force full compilation. Must be // done ahead of WellKnownClasses::Init that causes verification. Note: doesn't force // compilation of class initializers. // Whilst we're in native take the opportunity to initialize well known classes. Thread* self = Thread::Current(); WellKnownClasses::Init(self->GetJniEnv()); ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); if (!IsBootImage()) { constexpr bool kSaveDexInput = false; if (kSaveDexInput) { SaveDexInput(); } // Handle and ClassLoader creation needs to come after Runtime::Create. ScopedObjectAccess soa(self); // Classpath: first the class-path given. std::vector<const DexFile*> class_path_files = MakeNonOwningPointerVector(class_path_files_); // Then the dex files we'll compile. Thus we'll resolve the class-path first. class_path_files.insert(class_path_files.end(), dex_files_.begin(), dex_files_.end()); class_loader_ = class_linker->CreatePathClassLoader(self, class_path_files); } // Ensure opened dex files are writable for dex-to-dex transformations. for (const std::unique_ptr<MemMap>& map : opened_dex_files_maps_) { if (!map->Protect(PROT_READ | PROT_WRITE)) { PLOG(ERROR) << "Failed to make .dex files writeable."; return dex2oat::ReturnCode::kOther; } } // Ensure that the dex caches stay live since we don't want class unloading // to occur during compilation. for (const auto& dex_file : dex_files_) { ScopedObjectAccess soa(self); dex_caches_.push_back(soa.AddLocalReference<jobject>( class_linker->RegisterDexFile(*dex_file, soa.Decode<mirror::ClassLoader>(class_loader_).Ptr()))); if (dex_caches_.back() == nullptr) { soa.Self()->AssertPendingException(); soa.Self()->ClearException(); PLOG(ERROR) << "Failed to register dex file."; return dex2oat::ReturnCode::kOther; } // Pre-register dex files so that we can access verification results without locks during // compilation and verification. verification_results_->AddDexFile(dex_file); } return dex2oat::ReturnCode::kNoFailure; } // If we need to keep the oat file open for the image writer. bool ShouldKeepOatFileOpen() const { return IsImage() && oat_fd_ != kInvalidFd; } // Create and invoke the compiler driver. This will compile all the dex files. void Compile() { TimingLogger::ScopedTiming t("dex2oat Compile", timings_); compiler_phases_timings_.reset(new CumulativeLogger("compilation times")); // Find the dex files we should not inline from. std::vector<std::string> no_inline_filters; Split(no_inline_from_string_, ',', &no_inline_filters); // For now, on the host always have core-oj removed. const std::string core_oj = "core-oj"; if (!kIsTargetBuild && !ContainsElement(no_inline_filters, core_oj)) { no_inline_filters.push_back(core_oj); } if (!no_inline_filters.empty()) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); std::vector<const DexFile*> class_path_files = MakeNonOwningPointerVector(class_path_files_); std::vector<const std::vector<const DexFile*>*> dex_file_vectors = { &class_linker->GetBootClassPath(), &class_path_files, &dex_files_ }; for (const std::vector<const DexFile*>* dex_file_vector : dex_file_vectors) { for (const DexFile* dex_file : *dex_file_vector) { for (const std::string& filter : no_inline_filters) { // Use dex_file->GetLocation() rather than dex_file->GetBaseLocation(). This // allows tests to specify <test-dexfile>:classes2.dex if needed but if the // base location passes the StartsWith() test, so do all extra locations. std::string dex_location = dex_file->GetLocation(); if (filter.find('/') == std::string::npos) { // The filter does not contain the path. Remove the path from dex_location as well. size_t last_slash = dex_file->GetLocation().rfind('/'); if (last_slash != std::string::npos) { dex_location = dex_location.substr(last_slash + 1); } } if (android::base::StartsWith(dex_location, filter.c_str())) { VLOG(compiler) << "Disabling inlining from " << dex_file->GetLocation(); no_inline_from_dex_files_.push_back(dex_file); break; } } } } if (!no_inline_from_dex_files_.empty()) { compiler_options_->no_inline_from_ = &no_inline_from_dex_files_; } } driver_.reset(new CompilerDriver(compiler_options_.get(), verification_results_.get(), compiler_kind_, instruction_set_, instruction_set_features_.get(), image_classes_.release(), compiled_classes_.release(), compiled_methods_.release(), thread_count_, dump_stats_, dump_passes_, compiler_phases_timings_.get(), swap_fd_, profile_compilation_info_.get())); driver_->SetDexFilesForOatFile(dex_files_); driver_->CompileAll(class_loader_, dex_files_, input_vdex_file_.get(), timings_); } // Notes on the interleaving of creating the images and oat files to // ensure the references between the two are correct. // // Currently we have a memory layout that looks something like this: // // +--------------+ // | images | // +--------------+ // | oat files | // +--------------+ // | alloc spaces | // +--------------+ // // There are several constraints on the loading of the images and oat files. // // 1. The images are expected to be loaded at an absolute address and // contain Objects with absolute pointers within the images. // // 2. There are absolute pointers from Methods in the images to their // code in the oat files. // // 3. There are absolute pointers from the code in the oat files to Methods // in the images. // // 4. There are absolute pointers from code in the oat files to other code // in the oat files. // // To get this all correct, we go through several steps. // // 1. We prepare offsets for all data in the oat files and calculate // the oat data size and code size. During this stage, we also set // oat code offsets in methods for use by the image writer. // // 2. We prepare offsets for the objects in the images and calculate // the image sizes. // // 3. We create the oat files. Originally this was just our own proprietary // file but now it is contained within an ELF dynamic object (aka an .so // file). Since we know the image sizes and oat data sizes and code sizes we // can prepare the ELF headers and we then know the ELF memory segment // layout and we can now resolve all references. The compiler provides // LinkerPatch information in each CompiledMethod and we resolve these, // using the layout information and image object locations provided by // image writer, as we're writing the method code. // // 4. We create the image files. They need to know where the oat files // will be loaded after itself. Originally oat files were simply // memory mapped so we could predict where their contents were based // on the file size. Now that they are ELF files, we need to inspect // the ELF files to understand the in memory segment layout including // where the oat header is located within. // TODO: We could just remember this information from step 3. // // 5. We fixup the ELF program headers so that dlopen will try to // load the .so at the desired location at runtime by offsetting the // Elf32_Phdr.p_vaddr values by the desired base address. // TODO: Do this in step 3. We already know the layout there. // // Steps 1.-3. are done by the CreateOatFile() above, steps 4.-5. // are done by the CreateImageFile() below. // Write out the generated code part. Calls the OatWriter and ElfBuilder. Also prepares the // ImageWriter, if necessary. // Note: Flushing (and closing) the file is the caller's responsibility, except for the failure // case (when the file will be explicitly erased). bool WriteOutputFiles() { TimingLogger::ScopedTiming t("dex2oat Oat", timings_); // Sync the data to the file, in case we did dex2dex transformations. for (const std::unique_ptr<MemMap>& map : opened_dex_files_maps_) { if (!map->Sync()) { PLOG(ERROR) << "Failed to Sync() dex2dex output. Map: " << map->GetName(); return false; } } if (IsImage()) { if (IsAppImage() && image_base_ == 0) { gc::Heap* const heap = Runtime::Current()->GetHeap(); for (gc::space::ImageSpace* image_space : heap->GetBootImageSpaces()) { image_base_ = std::max(image_base_, RoundUp( reinterpret_cast<uintptr_t>(image_space->GetImageHeader().GetOatFileEnd()), kPageSize)); } // The non moving space is right after the oat file. Put the preferred app image location // right after the non moving space so that we ideally get a continuous immune region for // the GC. // Use the default non moving space capacity since dex2oat does not have a separate non- // moving space. This means the runtime's non moving space space size will be as large // as the growth limit for dex2oat, but smaller in the zygote. const size_t non_moving_space_capacity = gc::Heap::kDefaultNonMovingSpaceCapacity; image_base_ += non_moving_space_capacity; VLOG(compiler) << "App image base=" << reinterpret_cast<void*>(image_base_); } image_writer_.reset(new ImageWriter(*driver_, image_base_, compiler_options_->GetCompilePic(), IsAppImage(), image_storage_mode_, oat_filenames_, dex_file_oat_index_map_)); // We need to prepare method offsets in the image address space for direct method patching. TimingLogger::ScopedTiming t2("dex2oat Prepare image address space", timings_); if (!image_writer_->PrepareImageAddressSpace()) { LOG(ERROR) << "Failed to prepare image address space."; return false; } } // Initialize the writers with the compiler driver, image writer, and their // dex files. The writers were created without those being there yet. for (size_t i = 0, size = oat_files_.size(); i != size; ++i) { std::unique_ptr<OatWriter>& oat_writer = oat_writers_[i]; std::vector<const DexFile*>& dex_files = dex_files_per_oat_file_[i]; oat_writer->Initialize(driver_.get(), image_writer_.get(), dex_files); } { TimingLogger::ScopedTiming t2("dex2oat Write VDEX", timings_); DCHECK(IsBootImage() || oat_files_.size() == 1u); verifier::VerifierDeps* verifier_deps = callbacks_->GetVerifierDeps(); for (size_t i = 0, size = oat_files_.size(); i != size; ++i) { File* vdex_file = vdex_files_[i].get(); std::unique_ptr<BufferedOutputStream> vdex_out( MakeUnique<BufferedOutputStream>(MakeUnique<FileOutputStream>(vdex_file))); if (!oat_writers_[i]->WriteVerifierDeps(vdex_out.get(), verifier_deps)) { LOG(ERROR) << "Failed to write verifier dependencies into VDEX " << vdex_file->GetPath(); return false; } if (!oat_writers_[i]->WriteQuickeningInfo(vdex_out.get())) { LOG(ERROR) << "Failed to write quickening info into VDEX " << vdex_file->GetPath(); return false; } // VDEX finalized, seek back to the beginning and write checksums and the header. if (!oat_writers_[i]->WriteChecksumsAndVdexHeader(vdex_out.get())) { LOG(ERROR) << "Failed to write vdex header into VDEX " << vdex_file->GetPath(); return false; } } } { TimingLogger::ScopedTiming t2("dex2oat Write ELF", timings_); linker::MultiOatRelativePatcher patcher(instruction_set_, instruction_set_features_.get()); for (size_t i = 0, size = oat_files_.size(); i != size; ++i) { std::unique_ptr<ElfWriter>& elf_writer = elf_writers_[i]; std::unique_ptr<OatWriter>& oat_writer = oat_writers_[i]; oat_writer->PrepareLayout(&patcher); size_t rodata_size = oat_writer->GetOatHeader().GetExecutableOffset(); size_t text_size = oat_writer->GetOatSize() - rodata_size; elf_writer->PrepareDynamicSection(rodata_size, text_size, oat_writer->GetBssSize(), oat_writer->GetBssRootsOffset()); if (IsImage()) { // Update oat layout. DCHECK(image_writer_ != nullptr); DCHECK_LT(i, oat_filenames_.size()); image_writer_->UpdateOatFileLayout(i, elf_writer->GetLoadedSize(), oat_writer->GetOatDataOffset(), oat_writer->GetOatSize()); } if (IsBootImage()) { // Have the image_file_location_oat_checksum_ for boot oat files // depend on the contents of all the boot oat files. This way only // the primary image checksum needs to be checked to determine // whether any of the images are out of date. image_file_location_oat_checksum_ ^= oat_writer->GetOatHeader().GetChecksum(); } } for (size_t i = 0, size = oat_files_.size(); i != size; ++i) { std::unique_ptr<File>& oat_file = oat_files_[i]; std::unique_ptr<ElfWriter>& elf_writer = elf_writers_[i]; std::unique_ptr<OatWriter>& oat_writer = oat_writers_[i]; oat_writer->AddMethodDebugInfos(debug::MakeTrampolineInfos(oat_writer->GetOatHeader())); // We need to mirror the layout of the ELF file in the compressed debug-info. // Therefore PrepareDebugInfo() relies on the SetLoadedSectionSizes() call further above. elf_writer->PrepareDebugInfo(oat_writer->GetMethodDebugInfo()); OutputStream*& rodata = rodata_[i]; DCHECK(rodata != nullptr); if (!oat_writer->WriteRodata(rodata)) { LOG(ERROR) << "Failed to write .rodata section to the ELF file " << oat_file->GetPath(); return false; } elf_writer->EndRoData(rodata); rodata = nullptr; OutputStream* text = elf_writer->StartText(); if (!oat_writer->WriteCode(text)) { LOG(ERROR) << "Failed to write .text section to the ELF file " << oat_file->GetPath(); return false; } elf_writer->EndText(text); if (!oat_writer->WriteHeader(elf_writer->GetStream(), image_file_location_oat_checksum_, image_file_location_oat_data_begin_, image_patch_delta_)) { LOG(ERROR) << "Failed to write oat header to the ELF file " << oat_file->GetPath(); return false; } if (IsImage()) { // Update oat header information. DCHECK(image_writer_ != nullptr); DCHECK_LT(i, oat_filenames_.size()); image_writer_->UpdateOatFileHeader(i, oat_writer->GetOatHeader()); } elf_writer->WriteDynamicSection(); elf_writer->WriteDebugInfo(oat_writer->GetMethodDebugInfo()); if (!elf_writer->End()) { LOG(ERROR) << "Failed to write ELF file " << oat_file->GetPath(); return false; } if (!FlushOutputFile(&vdex_files_[i]) || !FlushOutputFile(&oat_files_[i])) { return false; } VLOG(compiler) << "Oat file written successfully: " << oat_filenames_[i]; oat_writer.reset(); elf_writer.reset(); } } return true; } // If we are compiling an image, invoke the image creation routine. Else just skip. bool HandleImage() { if (IsImage()) { TimingLogger::ScopedTiming t("dex2oat ImageWriter", timings_); if (!CreateImageFile()) { return false; } VLOG(compiler) << "Images written successfully"; } return true; } // Create a copy from stripped to unstripped. bool CopyStrippedToUnstripped() { for (size_t i = 0; i < oat_unstripped_.size(); ++i) { // If we don't want to strip in place, copy from stripped location to unstripped location. // We need to strip after image creation because FixupElf needs to use .strtab. if (strcmp(oat_unstripped_[i], oat_filenames_[i]) != 0) { // If the oat file is still open, flush it. if (oat_files_[i].get() != nullptr && oat_files_[i]->IsOpened()) { if (!FlushCloseOutputFile(&oat_files_[i])) { return false; } } TimingLogger::ScopedTiming t("dex2oat OatFile copy", timings_); std::unique_ptr<File> in(OS::OpenFileForReading(oat_filenames_[i])); std::unique_ptr<File> out(OS::CreateEmptyFile(oat_unstripped_[i])); int64_t in_length = in->GetLength(); if (in_length < 0) { PLOG(ERROR) << "Failed to get the length of oat file: " << in->GetPath(); return false; } if (!out->Copy(in.get(), 0, in_length)) { PLOG(ERROR) << "Failed to copy oat file to file: " << out->GetPath(); return false; } if (out->FlushCloseOrErase() != 0) { PLOG(ERROR) << "Failed to flush and close copied oat file: " << oat_unstripped_[i]; return false; } VLOG(compiler) << "Oat file copied successfully (unstripped): " << oat_unstripped_[i]; } } return true; } bool FlushOutputFile(std::unique_ptr<File>* file) { if (file->get() != nullptr) { if (file->get()->Flush() != 0) { PLOG(ERROR) << "Failed to flush output file: " << file->get()->GetPath(); return false; } } return true; } bool FlushCloseOutputFile(std::unique_ptr<File>* file) { if (file->get() != nullptr) { std::unique_ptr<File> tmp(file->release()); if (tmp->FlushCloseOrErase() != 0) { PLOG(ERROR) << "Failed to flush and close output file: " << tmp->GetPath(); return false; } } return true; } bool FlushOutputFiles() { TimingLogger::ScopedTiming t2("dex2oat Flush Output Files", timings_); for (auto& files : { &vdex_files_, &oat_files_ }) { for (size_t i = 0; i < files->size(); ++i) { if (!FlushOutputFile(&(*files)[i])) { return false; } } } return true; } bool FlushCloseOutputFiles() { bool result = true; for (auto& files : { &vdex_files_, &oat_files_ }) { for (size_t i = 0; i < files->size(); ++i) { result &= FlushCloseOutputFile(&(*files)[i]); } } return result; } void DumpTiming() { if (dump_timing_ || (dump_slow_timing_ && timings_->GetTotalNs() > MsToNs(1000))) { LOG(INFO) << Dumpable<TimingLogger>(*timings_); } if (dump_passes_) { LOG(INFO) << Dumpable<CumulativeLogger>(*driver_->GetTimingsLogger()); } } bool IsImage() const { return IsAppImage() || IsBootImage(); } bool IsAppImage() const { return compiler_options_->IsAppImage(); } bool IsBootImage() const { return compiler_options_->IsBootImage(); } bool IsHost() const { return is_host_; } bool UseProfile() const { return profile_file_fd_ != -1 || !profile_file_.empty(); } bool DoProfileGuidedOptimizations() const { return UseProfile(); } bool DoDexLayoutOptimizations() const { return DoProfileGuidedOptimizations(); } bool LoadProfile() { DCHECK(UseProfile()); // TODO(calin): We should be using the runtime arena pool (instead of the // default profile arena). However the setup logic is messy and needs // cleaning up before that (e.g. the oat writers are created before the // runtime). profile_compilation_info_.reset(new ProfileCompilationInfo()); ScopedFlock flock; bool success = true; std::string error; if (profile_file_fd_ != -1) { // The file doesn't need to be flushed so don't check the usage. // Pass a bogus path so that we can easily attribute any reported error. File file(profile_file_fd_, "profile", /*check_usage*/ false, /*read_only_mode*/ true); if (flock.Init(&file, &error)) { success = profile_compilation_info_->Load(profile_file_fd_); } } else if (profile_file_ != "") { if (flock.Init(profile_file_.c_str(), O_RDONLY, /* block */ true, &error)) { success = profile_compilation_info_->Load(flock.GetFile()->Fd()); } } if (!error.empty()) { LOG(WARNING) << "Cannot lock profiles: " << error; } if (!success) { profile_compilation_info_.reset(nullptr); } return success; } private: bool UseSwap(bool is_image, const std::vector<const DexFile*>& dex_files) { if (is_image) { // Don't use swap, we know generation should succeed, and we don't want to slow it down. return false; } if (dex_files.size() < min_dex_files_for_swap_) { // If there are less dex files than the threshold, assume it's gonna be fine. return false; } size_t dex_files_size = 0; for (const auto* dex_file : dex_files) { dex_files_size += dex_file->GetHeader().file_size_; } return dex_files_size >= min_dex_file_cumulative_size_for_swap_; } bool IsVeryLarge(std::vector<const DexFile*>& dex_files) { size_t dex_files_size = 0; for (const auto* dex_file : dex_files) { dex_files_size += dex_file->GetHeader().file_size_; } return dex_files_size >= very_large_threshold_; } std::vector<std::string> GetClassPathLocations(const std::string& class_path) { // This function is used only for apps and for an app we have exactly one oat file. DCHECK(!IsBootImage()); DCHECK_EQ(oat_writers_.size(), 1u); std::vector<std::string> dex_files_canonical_locations; for (const char* location : oat_writers_[0]->GetSourceLocations()) { dex_files_canonical_locations.push_back(DexFile::GetDexCanonicalLocation(location)); } std::vector<std::string> parsed; Split(class_path, ':', &parsed); auto kept_it = std::remove_if(parsed.begin(), parsed.end(), [dex_files_canonical_locations](const std::string& location) { return ContainsElement(dex_files_canonical_locations, DexFile::GetDexCanonicalLocation(location.c_str())); }); parsed.erase(kept_it, parsed.end()); return parsed; } // Opens requested class path files and appends them to opened_dex_files. If the dex files have // been stripped, this opens them from their oat files and appends them to opened_oat_files. static void OpenClassPathFiles(std::vector<std::string>& class_path_locations, std::vector<std::unique_ptr<const DexFile>>* opened_dex_files, std::vector<std::unique_ptr<OatFile>>* opened_oat_files, InstructionSet isa, std::string& classpath_dir) { DCHECK(opened_dex_files != nullptr) << "OpenClassPathFiles dex out-param is nullptr"; DCHECK(opened_oat_files != nullptr) << "OpenClassPathFiles oat out-param is nullptr"; for (std::string& location : class_path_locations) { // Stop early if we detect the special shared library, which may be passed as the classpath // for dex2oat when we want to skip the shared libraries check. if (location == OatFile::kSpecialSharedLibrary) { break; } // If path is relative, append it to the provided base directory. if (!classpath_dir.empty() && location[0] != '/') { location = classpath_dir + '/' + location; } static constexpr bool kVerifyChecksum = true; std::string error_msg; if (!DexFile::Open( location.c_str(), location.c_str(), kVerifyChecksum, &error_msg, opened_dex_files)) { // If we fail to open the dex file because it's been stripped, try to open the dex file // from its corresponding oat file. OatFileAssistant oat_file_assistant(location.c_str(), isa, false); std::unique_ptr<OatFile> oat_file(oat_file_assistant.GetBestOatFile()); if (oat_file == nullptr) { LOG(WARNING) << "Failed to open dex file and associated oat file for '" << location << "': " << error_msg; } else { std::vector<std::unique_ptr<const DexFile>> oat_dex_files = oat_file_assistant.LoadDexFiles(*oat_file, location.c_str()); opened_oat_files->push_back(std::move(oat_file)); opened_dex_files->insert(opened_dex_files->end(), std::make_move_iterator(oat_dex_files.begin()), std::make_move_iterator(oat_dex_files.end())); } } } } bool PrepareImageClasses() { // If --image-classes was specified, calculate the full list of classes to include in the image. if (image_classes_filename_ != nullptr) { image_classes_ = ReadClasses(image_classes_zip_filename_, image_classes_filename_, "image"); if (image_classes_ == nullptr) { return false; } } else if (IsBootImage()) { image_classes_.reset(new std::unordered_set<std::string>); } return true; } bool PrepareCompiledClasses() { // If --compiled-classes was specified, calculate the full list of classes to compile in the // image. if (compiled_classes_filename_ != nullptr) { compiled_classes_ = ReadClasses(compiled_classes_zip_filename_, compiled_classes_filename_, "compiled"); if (compiled_classes_ == nullptr) { return false; } } else { compiled_classes_.reset(nullptr); // By default compile everything. } return true; } static std::unique_ptr<std::unordered_set<std::string>> ReadClasses(const char* zip_filename, const char* classes_filename, const char* tag) { std::unique_ptr<std::unordered_set<std::string>> classes; std::string error_msg; if (zip_filename != nullptr) { classes.reset(ReadImageClassesFromZip(zip_filename, classes_filename, &error_msg)); } else { classes.reset(ReadImageClassesFromFile(classes_filename)); } if (classes == nullptr) { LOG(ERROR) << "Failed to create list of " << tag << " classes from '" << classes_filename << "': " << error_msg; } return classes; } bool PrepareCompiledMethods() { // If --compiled-methods was specified, read the methods to compile from the given file(s). if (compiled_methods_filename_ != nullptr) { std::string error_msg; if (compiled_methods_zip_filename_ != nullptr) { compiled_methods_.reset(ReadCommentedInputFromZip<std::unordered_set<std::string>>( compiled_methods_zip_filename_, compiled_methods_filename_, nullptr, // No post-processing. &error_msg)); } else { compiled_methods_.reset(ReadCommentedInputFromFile<std::unordered_set<std::string>>( compiled_methods_filename_, nullptr)); // No post-processing. } if (compiled_methods_.get() == nullptr) { LOG(ERROR) << "Failed to create list of compiled methods from '" << compiled_methods_filename_ << "': " << error_msg; return false; } } else { compiled_methods_.reset(nullptr); // By default compile everything. } return true; } void PruneNonExistentDexFiles() { DCHECK_EQ(dex_filenames_.size(), dex_locations_.size()); size_t kept = 0u; for (size_t i = 0, size = dex_filenames_.size(); i != size; ++i) { if (!OS::FileExists(dex_filenames_[i])) { LOG(WARNING) << "Skipping non-existent dex file '" << dex_filenames_[i] << "'"; } else { dex_filenames_[kept] = dex_filenames_[i]; dex_locations_[kept] = dex_locations_[i]; ++kept; } } dex_filenames_.resize(kept); dex_locations_.resize(kept); } bool AddDexFileSources() { TimingLogger::ScopedTiming t2("AddDexFileSources", timings_); if (input_vdex_file_ != nullptr) { DCHECK_EQ(oat_writers_.size(), 1u); const std::string& name = zip_location_.empty() ? dex_locations_[0] : zip_location_; DCHECK(!name.empty()); if (!oat_writers_[0]->AddVdexDexFilesSource(*input_vdex_file_.get(), name.c_str())) { return false; } } else if (zip_fd_ != -1) { DCHECK_EQ(oat_writers_.size(), 1u); if (!oat_writers_[0]->AddZippedDexFilesSource(File(zip_fd_, /* check_usage */ false), zip_location_.c_str())) { return false; } } else if (oat_writers_.size() > 1u) { // Multi-image. DCHECK_EQ(oat_writers_.size(), dex_filenames_.size()); DCHECK_EQ(oat_writers_.size(), dex_locations_.size()); for (size_t i = 0, size = oat_writers_.size(); i != size; ++i) { if (!oat_writers_[i]->AddDexFileSource(dex_filenames_[i], dex_locations_[i])) { return false; } } } else { DCHECK_EQ(oat_writers_.size(), 1u); DCHECK_EQ(dex_filenames_.size(), dex_locations_.size()); DCHECK_NE(dex_filenames_.size(), 0u); for (size_t i = 0; i != dex_filenames_.size(); ++i) { if (!oat_writers_[0]->AddDexFileSource(dex_filenames_[i], dex_locations_[i])) { return false; } } } return true; } void CreateOatWriters() { TimingLogger::ScopedTiming t2("CreateOatWriters", timings_); elf_writers_.reserve(oat_files_.size()); oat_writers_.reserve(oat_files_.size()); for (const std::unique_ptr<File>& oat_file : oat_files_) { elf_writers_.emplace_back(CreateElfWriterQuick(instruction_set_, instruction_set_features_.get(), compiler_options_.get(), oat_file.get())); elf_writers_.back()->Start(); const bool do_dexlayout = DoDexLayoutOptimizations(); oat_writers_.emplace_back(new OatWriter( IsBootImage(), timings_, do_dexlayout ? profile_compilation_info_.get() : nullptr)); } } void SaveDexInput() { for (size_t i = 0; i < dex_files_.size(); ++i) { const DexFile* dex_file = dex_files_[i]; std::string tmp_file_name(StringPrintf("/data/local/tmp/dex2oat.%d.%zd.dex", getpid(), i)); std::unique_ptr<File> tmp_file(OS::CreateEmptyFile(tmp_file_name.c_str())); if (tmp_file.get() == nullptr) { PLOG(ERROR) << "Failed to open file " << tmp_file_name << ". Try: adb shell chmod 777 /data/local/tmp"; continue; } // This is just dumping files for debugging. Ignore errors, and leave remnants. UNUSED(tmp_file->WriteFully(dex_file->Begin(), dex_file->Size())); UNUSED(tmp_file->Flush()); UNUSED(tmp_file->Close()); LOG(INFO) << "Wrote input to " << tmp_file_name; } } bool PrepareRuntimeOptions(RuntimeArgumentMap* runtime_options) { RuntimeOptions raw_options; if (boot_image_filename_.empty()) { std::string boot_class_path = "-Xbootclasspath:"; boot_class_path += android::base::Join(dex_filenames_, ':'); raw_options.push_back(std::make_pair(boot_class_path, nullptr)); std::string boot_class_path_locations = "-Xbootclasspath-locations:"; boot_class_path_locations += android::base::Join(dex_locations_, ':'); raw_options.push_back(std::make_pair(boot_class_path_locations, nullptr)); } else { std::string boot_image_option = "-Ximage:"; boot_image_option += boot_image_filename_; raw_options.push_back(std::make_pair(boot_image_option, nullptr)); } for (size_t i = 0; i < runtime_args_.size(); i++) { raw_options.push_back(std::make_pair(runtime_args_[i], nullptr)); } raw_options.push_back(std::make_pair("compilercallbacks", callbacks_.get())); raw_options.push_back( std::make_pair("imageinstructionset", GetInstructionSetString(instruction_set_))); // Only allow no boot image for the runtime if we're compiling one. When we compile an app, // we don't want fallback mode, it will abort as we do not push a boot classpath (it might // have been stripped in preopting, anyways). if (!IsBootImage()) { raw_options.push_back(std::make_pair("-Xno-dex-file-fallback", nullptr)); } // Disable libsigchain. We don't don't need it during compilation and it prevents us // from getting a statically linked version of dex2oat (because of dlsym and RTLD_NEXT). raw_options.push_back(std::make_pair("-Xno-sig-chain", nullptr)); // Disable Hspace compaction to save heap size virtual space. // Only need disable Hspace for OOM becasue background collector is equal to // foreground collector by default for dex2oat. raw_options.push_back(std::make_pair("-XX:DisableHSpaceCompactForOOM", nullptr)); if (compiler_options_->IsForceDeterminism()) { // If we're asked to be deterministic, ensure non-concurrent GC for determinism. // // Note that with read barriers, this option is ignored, because Runtime::Init // overrides the foreground GC to be gc::kCollectorTypeCC when instantiating // gc::Heap. This is fine, as concurrent GC requests are not honored in dex2oat, // which uses an unstarted runtime. raw_options.push_back(std::make_pair("-Xgc:nonconcurrent", nullptr)); // The default LOS implementation (map) is not deterministic. So disable it. raw_options.push_back(std::make_pair("-XX:LargeObjectSpace=disabled", nullptr)); // We also need to turn off the nonmoving space. For that, we need to disable HSpace // compaction (done above) and ensure that neither foreground nor background collectors // are concurrent. // // Likewise, this option is ignored with read barriers because Runtime::Init // overrides the background GC to be gc::kCollectorTypeCCBackground, but that's // fine too, for the same reason (see above). raw_options.push_back(std::make_pair("-XX:BackgroundGC=nonconcurrent", nullptr)); // To make identity hashcode deterministic, set a known seed. mirror::Object::SetHashCodeSeed(987654321U); } if (!Runtime::ParseOptions(raw_options, false, runtime_options)) { LOG(ERROR) << "Failed to parse runtime options"; return false; } return true; } // Create a runtime necessary for compilation. bool CreateRuntime(RuntimeArgumentMap&& runtime_options) { TimingLogger::ScopedTiming t_runtime("Create runtime", timings_); if (!Runtime::Create(std::move(runtime_options))) { LOG(ERROR) << "Failed to create runtime"; return false; } // Runtime::Init will rename this thread to be "main". Prefer "dex2oat" so that "top" and // "ps -a" don't change to non-descript "main." SetThreadName(kIsDebugBuild ? "dex2oatd" : "dex2oat"); runtime_.reset(Runtime::Current()); runtime_->SetInstructionSet(instruction_set_); for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) { Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i); if (!runtime_->HasCalleeSaveMethod(type)) { runtime_->SetCalleeSaveMethod(runtime_->CreateCalleeSaveMethod(), type); } } runtime_->GetClassLinker()->FixupDexCaches(runtime_->GetResolutionMethod()); // Initialize maps for unstarted runtime. This needs to be here, as running clinits needs this // set up. interpreter::UnstartedRuntime::Initialize(); runtime_->GetClassLinker()->RunRootClinits(); // Runtime::Create acquired the mutator_lock_ that is normally given away when we // Runtime::Start, give it away now so that we don't starve GC. Thread* self = Thread::Current(); self->TransitionFromRunnableToSuspended(kNative); return true; } // Let the ImageWriter write the image files. If we do not compile PIC, also fix up the oat files. bool CreateImageFile() REQUIRES(!Locks::mutator_lock_) { CHECK(image_writer_ != nullptr); if (!IsBootImage()) { CHECK(image_filenames_.empty()); image_filenames_.push_back(app_image_file_name_.c_str()); } if (!image_writer_->Write(app_image_fd_, image_filenames_, oat_filenames_)) { LOG(ERROR) << "Failure during image file creation"; return false; } // We need the OatDataBegin entries. dchecked_vector<uintptr_t> oat_data_begins; for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) { oat_data_begins.push_back(image_writer_->GetOatDataBegin(i)); } // Destroy ImageWriter before doing FixupElf. image_writer_.reset(); for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) { const char* oat_filename = oat_filenames_[i]; // Do not fix up the ELF file if we are --compile-pic or compiling the app image if (!compiler_options_->GetCompilePic() && IsBootImage()) { std::unique_ptr<File> oat_file(OS::OpenFileReadWrite(oat_filename)); if (oat_file.get() == nullptr) { PLOG(ERROR) << "Failed to open ELF file: " << oat_filename; return false; } if (!ElfWriter::Fixup(oat_file.get(), oat_data_begins[i])) { oat_file->Erase(); LOG(ERROR) << "Failed to fixup ELF file " << oat_file->GetPath(); return false; } if (oat_file->FlushCloseOrErase()) { PLOG(ERROR) << "Failed to flush and close fixed ELF file " << oat_file->GetPath(); return false; } } } return true; } // Reads the class names (java.lang.Object) and returns a set of descriptors (Ljava/lang/Object;) static std::unordered_set<std::string>* ReadImageClassesFromFile( const char* image_classes_filename) { std::function<std::string(const char*)> process = DotToDescriptor; return ReadCommentedInputFromFile<std::unordered_set<std::string>>(image_classes_filename, &process); } // Reads the class names (java.lang.Object) and returns a set of descriptors (Ljava/lang/Object;) static std::unordered_set<std::string>* ReadImageClassesFromZip( const char* zip_filename, const char* image_classes_filename, std::string* error_msg) { std::function<std::string(const char*)> process = DotToDescriptor; return ReadCommentedInputFromZip<std::unordered_set<std::string>>(zip_filename, image_classes_filename, &process, error_msg); } // Read lines from the given file, dropping comments and empty lines. Post-process each line with // the given function. template <typename T> static T* ReadCommentedInputFromFile( const char* input_filename, std::function<std::string(const char*)>* process) { std::unique_ptr<std::ifstream> input_file(new std::ifstream(input_filename, std::ifstream::in)); if (input_file.get() == nullptr) { LOG(ERROR) << "Failed to open input file " << input_filename; return nullptr; } std::unique_ptr<T> result( ReadCommentedInputStream<T>(*input_file, process)); input_file->close(); return result.release(); } // Read lines from the given file from the given zip file, dropping comments and empty lines. // Post-process each line with the given function. template <typename T> static T* ReadCommentedInputFromZip( const char* zip_filename, const char* input_filename, std::function<std::string(const char*)>* process, std::string* error_msg) { std::unique_ptr<ZipArchive> zip_archive(ZipArchive::Open(zip_filename, error_msg)); if (zip_archive.get() == nullptr) { return nullptr; } std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(input_filename, error_msg)); if (zip_entry.get() == nullptr) { *error_msg = StringPrintf("Failed to find '%s' within '%s': %s", input_filename, zip_filename, error_msg->c_str()); return nullptr; } std::unique_ptr<MemMap> input_file(zip_entry->ExtractToMemMap(zip_filename, input_filename, error_msg)); if (input_file.get() == nullptr) { *error_msg = StringPrintf("Failed to extract '%s' from '%s': %s", input_filename, zip_filename, error_msg->c_str()); return nullptr; } const std::string input_string(reinterpret_cast<char*>(input_file->Begin()), input_file->Size()); std::istringstream input_stream(input_string); return ReadCommentedInputStream<T>(input_stream, process); } // Read lines from the given stream, dropping comments and empty lines. Post-process each line // with the given function. template <typename T> static T* ReadCommentedInputStream( std::istream& in_stream, std::function<std::string(const char*)>* process) { std::unique_ptr<T> output(new T()); while (in_stream.good()) { std::string dot; std::getline(in_stream, dot); if (android::base::StartsWith(dot, "#") || dot.empty()) { continue; } if (process != nullptr) { std::string descriptor((*process)(dot.c_str())); output->insert(output->end(), descriptor); } else { output->insert(output->end(), dot); } } return output.release(); } void LogCompletionTime() { // Note: when creation of a runtime fails, e.g., when trying to compile an app but when there // is no image, there won't be a Runtime::Current(). // Note: driver creation can fail when loading an invalid dex file. LOG(INFO) << "dex2oat took " << PrettyDuration(NanoTime() - start_ns_) << " (" << PrettyDuration(ProcessCpuNanoTime() - start_cputime_ns_) << " cpu)" << " (threads: " << thread_count_ << ") " << ((Runtime::Current() != nullptr && driver_ != nullptr) ? driver_->GetMemoryUsageString(kIsDebugBuild || VLOG_IS_ON(compiler)) : ""); } std::string StripIsaFrom(const char* image_filename, InstructionSet isa) { std::string res(image_filename); size_t last_slash = res.rfind('/'); if (last_slash == std::string::npos || last_slash == 0) { return res; } size_t penultimate_slash = res.rfind('/', last_slash - 1); if (penultimate_slash == std::string::npos) { return res; } // Check that the string in-between is the expected one. if (res.substr(penultimate_slash + 1, last_slash - penultimate_slash - 1) != GetInstructionSetString(isa)) { LOG(WARNING) << "Unexpected string when trying to strip isa: " << res; return res; } return res.substr(0, penultimate_slash) + res.substr(last_slash); } std::unique_ptr<CompilerOptions> compiler_options_; Compiler::Kind compiler_kind_; InstructionSet instruction_set_; std::unique_ptr<const InstructionSetFeatures> instruction_set_features_; uint32_t image_file_location_oat_checksum_; uintptr_t image_file_location_oat_data_begin_; int32_t image_patch_delta_; std::unique_ptr<SafeMap<std::string, std::string> > key_value_store_; std::unique_ptr<VerificationResults> verification_results_; std::unique_ptr<QuickCompilerCallbacks> callbacks_; std::unique_ptr<Runtime> runtime_; // Ownership for the class path files. std::vector<std::unique_ptr<const DexFile>> class_path_files_; size_t thread_count_; uint64_t start_ns_; uint64_t start_cputime_ns_; std::unique_ptr<WatchDog> watchdog_; std::vector<std::unique_ptr<File>> oat_files_; std::vector<std::unique_ptr<File>> vdex_files_; std::string oat_location_; std::vector<const char*> oat_filenames_; std::vector<const char*> oat_unstripped_; int oat_fd_; int input_vdex_fd_; int output_vdex_fd_; std::string input_vdex_; std::string output_vdex_; std::unique_ptr<VdexFile> input_vdex_file_; std::vector<const char*> dex_filenames_; std::vector<const char*> dex_locations_; int zip_fd_; std::string zip_location_; std::string boot_image_filename_; std::vector<const char*> runtime_args_; std::vector<const char*> image_filenames_; uintptr_t image_base_; const char* image_classes_zip_filename_; const char* image_classes_filename_; ImageHeader::StorageMode image_storage_mode_; const char* compiled_classes_zip_filename_; const char* compiled_classes_filename_; const char* compiled_methods_zip_filename_; const char* compiled_methods_filename_; const char* passes_to_run_filename_; std::unique_ptr<std::unordered_set<std::string>> image_classes_; std::unique_ptr<std::unordered_set<std::string>> compiled_classes_; std::unique_ptr<std::unordered_set<std::string>> compiled_methods_; std::unique_ptr<std::vector<std::string>> passes_to_run_; bool multi_image_; bool is_host_; std::string android_root_; // Dex files we are compiling, does not include the class path dex files. std::vector<const DexFile*> dex_files_; std::string no_inline_from_string_; std::vector<jobject> dex_caches_; jobject class_loader_; std::vector<std::unique_ptr<ElfWriter>> elf_writers_; std::vector<std::unique_ptr<OatWriter>> oat_writers_; std::vector<OutputStream*> rodata_; std::vector<std::unique_ptr<OutputStream>> vdex_out_; std::unique_ptr<ImageWriter> image_writer_; std::unique_ptr<CompilerDriver> driver_; std::vector<std::unique_ptr<MemMap>> opened_dex_files_maps_; std::vector<std::unique_ptr<OatFile>> opened_oat_files_; std::vector<std::unique_ptr<const DexFile>> opened_dex_files_; std::vector<const DexFile*> no_inline_from_dex_files_; std::vector<std::string> verbose_methods_; bool dump_stats_; bool dump_passes_; bool dump_timing_; bool dump_slow_timing_; std::string swap_file_name_; int swap_fd_; size_t min_dex_files_for_swap_ = kDefaultMinDexFilesForSwap; size_t min_dex_file_cumulative_size_for_swap_ = kDefaultMinDexFileCumulativeSizeForSwap; size_t very_large_threshold_ = std::numeric_limits<size_t>::max(); std::string app_image_file_name_; int app_image_fd_; std::string profile_file_; int profile_file_fd_; std::unique_ptr<ProfileCompilationInfo> profile_compilation_info_; TimingLogger* timings_; std::unique_ptr<CumulativeLogger> compiler_phases_timings_; std::vector<std::vector<const DexFile*>> dex_files_per_oat_file_; std::unordered_map<const DexFile*, size_t> dex_file_oat_index_map_; // Backing storage. std::vector<std::string> char_backing_storage_; // See CompilerOptions.force_determinism_. bool force_determinism_; // Directory of relative classpaths. std::string classpath_dir_; // Whether the given input vdex is also the output. bool update_input_vdex_ = false; DISALLOW_IMPLICIT_CONSTRUCTORS(Dex2Oat); }; static void b13564922() { #if defined(__linux__) && defined(__arm__) int major, minor; struct utsname uts; if (uname(&uts) != -1 && sscanf(uts.release, "%d.%d", &major, &minor) == 2 && ((major < 3) || ((major == 3) && (minor < 4)))) { // Kernels before 3.4 don't handle the ASLR well and we can run out of address // space (http://b/13564922). Work around the issue by inhibiting further mmap() randomization. int old_personality = personality(0xffffffff); if ((old_personality & ADDR_NO_RANDOMIZE) == 0) { int new_personality = personality(old_personality | ADDR_NO_RANDOMIZE); if (new_personality == -1) { LOG(WARNING) << "personality(. | ADDR_NO_RANDOMIZE) failed."; } } } #endif } static dex2oat::ReturnCode CompileImage(Dex2Oat& dex2oat) { dex2oat.LoadClassProfileDescriptors(); dex2oat.Compile(); if (!dex2oat.WriteOutputFiles()) { dex2oat.EraseOutputFiles(); return dex2oat::ReturnCode::kOther; } // Flush boot.oat. We always expect the output file by name, and it will be re-opened from the // unstripped name. Do not close the file if we are compiling the image with an oat fd since the // image writer will require this fd to generate the image. if (dex2oat.ShouldKeepOatFileOpen()) { if (!dex2oat.FlushOutputFiles()) { dex2oat.EraseOutputFiles(); return dex2oat::ReturnCode::kOther; } } else if (!dex2oat.FlushCloseOutputFiles()) { return dex2oat::ReturnCode::kOther; } // Creates the boot.art and patches the oat files. if (!dex2oat.HandleImage()) { return dex2oat::ReturnCode::kOther; } // When given --host, finish early without stripping. if (dex2oat.IsHost()) { if (!dex2oat.FlushCloseOutputFiles()) { return dex2oat::ReturnCode::kOther; } dex2oat.DumpTiming(); return dex2oat::ReturnCode::kNoFailure; } // Copy stripped to unstripped location, if necessary. if (!dex2oat.CopyStrippedToUnstripped()) { return dex2oat::ReturnCode::kOther; } // FlushClose again, as stripping might have re-opened the oat files. if (!dex2oat.FlushCloseOutputFiles()) { return dex2oat::ReturnCode::kOther; } dex2oat.DumpTiming(); return dex2oat::ReturnCode::kNoFailure; } static dex2oat::ReturnCode CompileApp(Dex2Oat& dex2oat) { dex2oat.Compile(); if (!dex2oat.WriteOutputFiles()) { dex2oat.EraseOutputFiles(); return dex2oat::ReturnCode::kOther; } // Do not close the oat files here. We might have gotten the output file by file descriptor, // which we would lose. // When given --host, finish early without stripping. if (dex2oat.IsHost()) { if (!dex2oat.FlushCloseOutputFiles()) { return dex2oat::ReturnCode::kOther; } dex2oat.DumpTiming(); return dex2oat::ReturnCode::kNoFailure; } // Copy stripped to unstripped location, if necessary. This will implicitly flush & close the // stripped versions. If this is given, we expect to be able to open writable files by name. if (!dex2oat.CopyStrippedToUnstripped()) { return dex2oat::ReturnCode::kOther; } // Flush and close the files. if (!dex2oat.FlushCloseOutputFiles()) { return dex2oat::ReturnCode::kOther; } dex2oat.DumpTiming(); return dex2oat::ReturnCode::kNoFailure; } static dex2oat::ReturnCode Dex2oat(int argc, char** argv) { b13564922(); TimingLogger timings("compiler", false, false); // Allocate `dex2oat` on the heap instead of on the stack, as Clang // might produce a stack frame too large for this function or for // functions inlining it (such as main), that would not fit the // requirements of the `-Wframe-larger-than` option. std::unique_ptr<Dex2Oat> dex2oat = MakeUnique<Dex2Oat>(&timings); // Parse arguments. Argument mistakes will lead to exit(EXIT_FAILURE) in UsageError. dex2oat->ParseArgs(argc, argv); // If needed, process profile information for profile guided compilation. // This operation involves I/O. if (dex2oat->UseProfile()) { if (!dex2oat->LoadProfile()) { LOG(ERROR) << "Failed to process profile file"; return dex2oat::ReturnCode::kOther; } } art::MemMap::Init(); // For ZipEntry::ExtractToMemMap, and vdex. // Check early that the result of compilation can be written if (!dex2oat->OpenFile()) { return dex2oat::ReturnCode::kOther; } // Print the complete line when any of the following is true: // 1) Debug build // 2) Compiling an image // 3) Compiling with --host // 4) Compiling on the host (not a target build) // Otherwise, print a stripped command line. if (kIsDebugBuild || dex2oat->IsBootImage() || dex2oat->IsHost() || !kIsTargetBuild) { LOG(INFO) << CommandLine(); } else { LOG(INFO) << StrippedCommandLine(); } dex2oat::ReturnCode setup_code = dex2oat->Setup(); if (setup_code != dex2oat::ReturnCode::kNoFailure) { dex2oat->EraseOutputFiles(); return setup_code; } // Helps debugging on device. Can be used to determine which dalvikvm instance invoked a dex2oat // instance. Used by tools/bisection_search/bisection_search.py. VLOG(compiler) << "Running dex2oat (parent PID = " << getppid() << ")"; dex2oat::ReturnCode result; if (dex2oat->IsImage()) { result = CompileImage(*dex2oat); } else { result = CompileApp(*dex2oat); } dex2oat->Shutdown(); return result; } } // namespace art int main(int argc, char** argv) { int result = static_cast<int>(art::Dex2oat(argc, argv)); // Everything was done, do an explicit exit here to avoid running Runtime destructors that take // time (bug 10645725) unless we're a debug build or running on valgrind. Note: The Dex2Oat class // should not destruct the runtime in this case. if (!art::kIsDebugBuild && (RUNNING_ON_MEMORY_TOOL == 0)) { _exit(result); } return result; }