/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_ART_METHOD_H_ #define ART_RUNTIME_ART_METHOD_H_ #include <cstddef> #include "base/bit_utils.h" #include "base/casts.h" #include "base/enums.h" #include "dex_file.h" #include "gc_root.h" #include "invoke_type.h" #include "method_reference.h" #include "modifiers.h" #include "mirror/dex_cache.h" #include "mirror/object.h" #include "obj_ptr.h" #include "read_barrier_option.h" #include "utils.h" namespace art { template<class T> class Handle; class ImtConflictTable; union JValue; class OatQuickMethodHeader; class ProfilingInfo; class ScopedObjectAccessAlreadyRunnable; class StringPiece; class ShadowFrame; namespace mirror { class Array; class Class; class IfTable; class PointerArray; } // namespace mirror class ArtMethod FINAL { public: static constexpr bool kCheckDeclaringClassState = kIsDebugBuild; // The runtime dex_method_index is kDexNoIndex. To lower dependencies, we use this // constexpr, and ensure that the value is correct in art_method.cc. static constexpr uint32_t kRuntimeMethodDexMethodIndex = 0xFFFFFFFF; ArtMethod() : access_flags_(0), dex_code_item_offset_(0), dex_method_index_(0), method_index_(0), hotness_count_(0) { } ArtMethod(ArtMethod* src, PointerSize image_pointer_size) { CopyFrom(src, image_pointer_size); } static ArtMethod* FromReflectedMethod(const ScopedObjectAccessAlreadyRunnable& soa, jobject jlr_method) REQUIRES_SHARED(Locks::mutator_lock_); template <ReadBarrierOption kReadBarrierOption = kWithReadBarrier> ALWAYS_INLINE mirror::Class* GetDeclaringClass() REQUIRES_SHARED(Locks::mutator_lock_); template <ReadBarrierOption kReadBarrierOption = kWithReadBarrier> ALWAYS_INLINE mirror::Class* GetDeclaringClassUnchecked() REQUIRES_SHARED(Locks::mutator_lock_); mirror::CompressedReference<mirror::Object>* GetDeclaringClassAddressWithoutBarrier() { return declaring_class_.AddressWithoutBarrier(); } void SetDeclaringClass(ObjPtr<mirror::Class> new_declaring_class) REQUIRES_SHARED(Locks::mutator_lock_); bool CASDeclaringClass(mirror::Class* expected_class, mirror::Class* desired_class) REQUIRES_SHARED(Locks::mutator_lock_); static MemberOffset DeclaringClassOffset() { return MemberOffset(OFFSETOF_MEMBER(ArtMethod, declaring_class_)); } // Note: GetAccessFlags acquires the mutator lock in debug mode to check that it is not called for // a proxy method. template <ReadBarrierOption kReadBarrierOption = kWithReadBarrier> uint32_t GetAccessFlags() { if (kCheckDeclaringClassState) { GetAccessFlagsDCheck<kReadBarrierOption>(); } return access_flags_.load(std::memory_order_relaxed); } // This version should only be called when it's certain there is no // concurrency so there is no need to guarantee atomicity. For example, // before the method is linked. void SetAccessFlags(uint32_t new_access_flags) { access_flags_.store(new_access_flags, std::memory_order_relaxed); } // This setter guarantees atomicity. void AddAccessFlags(uint32_t flag) { uint32_t old_access_flags; uint32_t new_access_flags; do { old_access_flags = access_flags_.load(std::memory_order_relaxed); new_access_flags = old_access_flags | flag; } while (!access_flags_.compare_exchange_weak(old_access_flags, new_access_flags)); } // This setter guarantees atomicity. void ClearAccessFlags(uint32_t flag) { uint32_t old_access_flags; uint32_t new_access_flags; do { old_access_flags = access_flags_.load(std::memory_order_relaxed); new_access_flags = old_access_flags & ~flag; } while (!access_flags_.compare_exchange_weak(old_access_flags, new_access_flags)); } // Approximate what kind of method call would be used for this method. InvokeType GetInvokeType() REQUIRES_SHARED(Locks::mutator_lock_); // Returns true if the method is declared public. bool IsPublic() { return (GetAccessFlags() & kAccPublic) != 0; } // Returns true if the method is declared private. bool IsPrivate() { return (GetAccessFlags() & kAccPrivate) != 0; } // Returns true if the method is declared static. bool IsStatic() { return (GetAccessFlags() & kAccStatic) != 0; } // Returns true if the method is a constructor according to access flags. bool IsConstructor() { return (GetAccessFlags() & kAccConstructor) != 0; } // Returns true if the method is a class initializer according to access flags. bool IsClassInitializer() { return IsConstructor() && IsStatic(); } // Returns true if the method is static, private, or a constructor. bool IsDirect() { return IsDirect(GetAccessFlags()); } static bool IsDirect(uint32_t access_flags) { constexpr uint32_t direct = kAccStatic | kAccPrivate | kAccConstructor; return (access_flags & direct) != 0; } // Returns true if the method is declared synchronized. bool IsSynchronized() { constexpr uint32_t synchonized = kAccSynchronized | kAccDeclaredSynchronized; return (GetAccessFlags() & synchonized) != 0; } bool IsFinal() { return (GetAccessFlags() & kAccFinal) != 0; } bool IsIntrinsic() { return (GetAccessFlags() & kAccIntrinsic) != 0; } ALWAYS_INLINE void SetIntrinsic(uint32_t intrinsic) REQUIRES_SHARED(Locks::mutator_lock_); uint32_t GetIntrinsic() { DCHECK(IsIntrinsic()); return (GetAccessFlags() >> POPCOUNT(kAccFlagsNotUsedByIntrinsic)) & kAccMaxIntrinsic; } bool IsCopied() { static_assert((kAccCopied & kAccFlagsNotUsedByIntrinsic) == kAccCopied, "kAccCopied conflicts with intrinsic modifier"); const bool copied = (GetAccessFlags() & kAccCopied) != 0; // (IsMiranda() || IsDefaultConflicting()) implies copied DCHECK(!(IsMiranda() || IsDefaultConflicting()) || copied) << "Miranda or default-conflict methods must always be copied."; return copied; } bool IsMiranda() { static_assert((kAccMiranda & kAccFlagsNotUsedByIntrinsic) == kAccMiranda, "kAccMiranda conflicts with intrinsic modifier"); return (GetAccessFlags() & kAccMiranda) != 0; } // Returns true if invoking this method will not throw an AbstractMethodError or // IncompatibleClassChangeError. bool IsInvokable() { return !IsAbstract() && !IsDefaultConflicting(); } bool IsCompilable() { if (IsIntrinsic()) { return true; } return (GetAccessFlags() & kAccCompileDontBother) == 0; } void SetDontCompile() { AddAccessFlags(kAccCompileDontBother); } // A default conflict method is a special sentinel method that stands for a conflict between // multiple default methods. It cannot be invoked, throwing an IncompatibleClassChangeError if one // attempts to do so. bool IsDefaultConflicting() { if (IsIntrinsic()) { return false; } return (GetAccessFlags() & kAccDefaultConflict) != 0u; } // This is set by the class linker. bool IsDefault() { static_assert((kAccDefault & kAccFlagsNotUsedByIntrinsic) == kAccDefault, "kAccDefault conflicts with intrinsic modifier"); return (GetAccessFlags() & kAccDefault) != 0; } bool IsObsolete() { return (GetAccessFlags() & kAccObsoleteMethod) != 0; } void SetIsObsolete() { AddAccessFlags(kAccObsoleteMethod); } template <ReadBarrierOption kReadBarrierOption = kWithReadBarrier> bool IsNative() { return (GetAccessFlags<kReadBarrierOption>() & kAccNative) != 0; } bool IsFastNative() { constexpr uint32_t mask = kAccFastNative | kAccNative; return (GetAccessFlags() & mask) == mask; } bool IsAbstract() { return (GetAccessFlags() & kAccAbstract) != 0; } bool IsSynthetic() { return (GetAccessFlags() & kAccSynthetic) != 0; } bool IsVarargs() { return (GetAccessFlags() & kAccVarargs) != 0; } bool IsProxyMethod() REQUIRES_SHARED(Locks::mutator_lock_); bool SkipAccessChecks() { return (GetAccessFlags() & kAccSkipAccessChecks) != 0; } void SetSkipAccessChecks() { AddAccessFlags(kAccSkipAccessChecks); } // Should this method be run in the interpreter and count locks (e.g., failed structured- // locking verification)? bool MustCountLocks() { if (IsIntrinsic()) { return false; } return (GetAccessFlags() & kAccMustCountLocks) != 0; } // Checks to see if the method was annotated with @dalvik.annotation.optimization.FastNative // -- Independent of kAccFastNative access flags. bool IsAnnotatedWithFastNative(); // Checks to see if the method was annotated with @dalvik.annotation.optimization.CriticalNative // -- Unrelated to the GC notion of "critical". bool IsAnnotatedWithCriticalNative(); // Returns true if this method could be overridden by a default method. bool IsOverridableByDefaultMethod() REQUIRES_SHARED(Locks::mutator_lock_); bool CheckIncompatibleClassChange(InvokeType type) REQUIRES_SHARED(Locks::mutator_lock_); // Throws the error that would result from trying to invoke this method (i.e. // IncompatibleClassChangeError or AbstractMethodError). Only call if !IsInvokable(); void ThrowInvocationTimeError() REQUIRES_SHARED(Locks::mutator_lock_); uint16_t GetMethodIndex() REQUIRES_SHARED(Locks::mutator_lock_); // Doesn't do erroneous / unresolved class checks. uint16_t GetMethodIndexDuringLinking() REQUIRES_SHARED(Locks::mutator_lock_); size_t GetVtableIndex() REQUIRES_SHARED(Locks::mutator_lock_) { return GetMethodIndex(); } void SetMethodIndex(uint16_t new_method_index) REQUIRES_SHARED(Locks::mutator_lock_) { // Not called within a transaction. method_index_ = new_method_index; } static MemberOffset DexMethodIndexOffset() { return OFFSET_OF_OBJECT_MEMBER(ArtMethod, dex_method_index_); } static MemberOffset MethodIndexOffset() { return OFFSET_OF_OBJECT_MEMBER(ArtMethod, method_index_); } uint32_t GetCodeItemOffset() { return dex_code_item_offset_; } void SetCodeItemOffset(uint32_t new_code_off) { // Not called within a transaction. dex_code_item_offset_ = new_code_off; } // Number of 32bit registers that would be required to hold all the arguments static size_t NumArgRegisters(const StringPiece& shorty); ALWAYS_INLINE uint32_t GetDexMethodIndexUnchecked() { return dex_method_index_; } ALWAYS_INLINE uint32_t GetDexMethodIndex() REQUIRES_SHARED(Locks::mutator_lock_); void SetDexMethodIndex(uint32_t new_idx) { // Not called within a transaction. dex_method_index_ = new_idx; } ALWAYS_INLINE ArtMethod** GetDexCacheResolvedMethods(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE ArtMethod* GetDexCacheResolvedMethod(uint16_t method_index, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE void SetDexCacheResolvedMethod(uint16_t method_index, ArtMethod* new_method, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE void SetDexCacheResolvedMethods(ArtMethod** new_dex_cache_methods, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); bool HasDexCacheResolvedMethods(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); bool HasSameDexCacheResolvedMethods(ArtMethod* other, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); bool HasSameDexCacheResolvedMethods(ArtMethod** other_cache, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Get the Class* from the type index into this method's dex cache. mirror::Class* GetClassFromTypeIndex(dex::TypeIndex type_idx, bool resolve) REQUIRES_SHARED(Locks::mutator_lock_); // Returns true if this method has the same name and signature of the other method. bool HasSameNameAndSignature(ArtMethod* other) REQUIRES_SHARED(Locks::mutator_lock_); // Find the method that this method overrides. ArtMethod* FindOverriddenMethod(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Find the method index for this method within other_dexfile. If this method isn't present then // return DexFile::kDexNoIndex. The name_and_signature_idx MUST refer to a MethodId with the same // name and signature in the other_dexfile, such as the method index used to resolve this method // in the other_dexfile. uint32_t FindDexMethodIndexInOtherDexFile(const DexFile& other_dexfile, uint32_t name_and_signature_idx) REQUIRES_SHARED(Locks::mutator_lock_); void Invoke(Thread* self, uint32_t* args, uint32_t args_size, JValue* result, const char* shorty) REQUIRES_SHARED(Locks::mutator_lock_); const void* GetEntryPointFromQuickCompiledCode() { return GetEntryPointFromQuickCompiledCodePtrSize(kRuntimePointerSize); } ALWAYS_INLINE const void* GetEntryPointFromQuickCompiledCodePtrSize(PointerSize pointer_size) { return GetNativePointer<const void*>( EntryPointFromQuickCompiledCodeOffset(pointer_size), pointer_size); } void SetEntryPointFromQuickCompiledCode(const void* entry_point_from_quick_compiled_code) { SetEntryPointFromQuickCompiledCodePtrSize(entry_point_from_quick_compiled_code, kRuntimePointerSize); } ALWAYS_INLINE void SetEntryPointFromQuickCompiledCodePtrSize( const void* entry_point_from_quick_compiled_code, PointerSize pointer_size) { SetNativePointer(EntryPointFromQuickCompiledCodeOffset(pointer_size), entry_point_from_quick_compiled_code, pointer_size); } // Registers the native method and returns the new entry point. NB The returned entry point might // be different from the native_method argument if some MethodCallback modifies it. const void* RegisterNative(const void* native_method, bool is_fast) REQUIRES_SHARED(Locks::mutator_lock_) WARN_UNUSED; void UnregisterNative() REQUIRES_SHARED(Locks::mutator_lock_); static MemberOffset DexCacheResolvedMethodsOffset(PointerSize pointer_size) { return MemberOffset(PtrSizedFieldsOffset(pointer_size) + OFFSETOF_MEMBER( PtrSizedFields, dex_cache_resolved_methods_) / sizeof(void*) * static_cast<size_t>(pointer_size)); } static MemberOffset DataOffset(PointerSize pointer_size) { return MemberOffset(PtrSizedFieldsOffset(pointer_size) + OFFSETOF_MEMBER( PtrSizedFields, data_) / sizeof(void*) * static_cast<size_t>(pointer_size)); } static MemberOffset EntryPointFromJniOffset(PointerSize pointer_size) { return DataOffset(pointer_size); } static MemberOffset EntryPointFromQuickCompiledCodeOffset(PointerSize pointer_size) { return MemberOffset(PtrSizedFieldsOffset(pointer_size) + OFFSETOF_MEMBER( PtrSizedFields, entry_point_from_quick_compiled_code_) / sizeof(void*) * static_cast<size_t>(pointer_size)); } ImtConflictTable* GetImtConflictTable(PointerSize pointer_size) { DCHECK(IsRuntimeMethod()); return reinterpret_cast<ImtConflictTable*>(GetDataPtrSize(pointer_size)); } ALWAYS_INLINE void SetImtConflictTable(ImtConflictTable* table, PointerSize pointer_size) { DCHECK(IsRuntimeMethod()); SetDataPtrSize(table, pointer_size); } ProfilingInfo* GetProfilingInfo(PointerSize pointer_size) { DCHECK(!IsNative()); return reinterpret_cast<ProfilingInfo*>(GetDataPtrSize(pointer_size)); } ALWAYS_INLINE void SetProfilingInfo(ProfilingInfo* info) { SetDataPtrSize(info, kRuntimePointerSize); } ALWAYS_INLINE void SetProfilingInfoPtrSize(ProfilingInfo* info, PointerSize pointer_size) { SetDataPtrSize(info, pointer_size); } static MemberOffset ProfilingInfoOffset() { DCHECK(IsImagePointerSize(kRuntimePointerSize)); return DataOffset(kRuntimePointerSize); } ALWAYS_INLINE bool HasSingleImplementation() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE void SetHasSingleImplementation(bool single_impl) { DCHECK(!IsIntrinsic()) << "conflict with intrinsic bits"; if (single_impl) { AddAccessFlags(kAccSingleImplementation); } else { ClearAccessFlags(kAccSingleImplementation); } } ArtMethod* GetSingleImplementation(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE void SetSingleImplementation(ArtMethod* method, PointerSize pointer_size) { DCHECK(!IsNative()); DCHECK(IsAbstract()); // Non-abstract method's single implementation is just itself. SetDataPtrSize(method, pointer_size); } void* GetEntryPointFromJni() { DCHECK(IsNative()); return GetEntryPointFromJniPtrSize(kRuntimePointerSize); } ALWAYS_INLINE void* GetEntryPointFromJniPtrSize(PointerSize pointer_size) { return GetDataPtrSize(pointer_size); } void SetEntryPointFromJni(const void* entrypoint) { DCHECK(IsNative()); SetEntryPointFromJniPtrSize(entrypoint, kRuntimePointerSize); } ALWAYS_INLINE void SetEntryPointFromJniPtrSize(const void* entrypoint, PointerSize pointer_size) { SetDataPtrSize(entrypoint, pointer_size); } ALWAYS_INLINE void* GetDataPtrSize(PointerSize pointer_size) { DCHECK(IsImagePointerSize(pointer_size)); return GetNativePointer<void*>(DataOffset(pointer_size), pointer_size); } ALWAYS_INLINE void SetDataPtrSize(const void* data, PointerSize pointer_size) { DCHECK(IsImagePointerSize(pointer_size)); SetNativePointer(DataOffset(pointer_size), data, pointer_size); } // Is this a CalleSaveMethod or ResolutionMethod and therefore doesn't adhere to normal // conventions for a method of managed code. Returns false for Proxy methods. ALWAYS_INLINE bool IsRuntimeMethod() { return dex_method_index_ == kRuntimeMethodDexMethodIndex;; } // Is this a hand crafted method used for something like describing callee saves? bool IsCalleeSaveMethod() REQUIRES_SHARED(Locks::mutator_lock_); bool IsResolutionMethod() REQUIRES_SHARED(Locks::mutator_lock_); bool IsImtUnimplementedMethod() REQUIRES_SHARED(Locks::mutator_lock_); MethodReference ToMethodReference() REQUIRES_SHARED(Locks::mutator_lock_) { return MethodReference(GetDexFile(), GetDexMethodIndex()); } // Find the catch block for the given exception type and dex_pc. When a catch block is found, // indicates whether the found catch block is responsible for clearing the exception or whether // a move-exception instruction is present. uint32_t FindCatchBlock(Handle<mirror::Class> exception_type, uint32_t dex_pc, bool* has_no_move_exception) REQUIRES_SHARED(Locks::mutator_lock_); // NO_THREAD_SAFETY_ANALYSIS since we don't know what the callback requires. template<ReadBarrierOption kReadBarrierOption = kWithReadBarrier, typename RootVisitorType> void VisitRoots(RootVisitorType& visitor, PointerSize pointer_size) NO_THREAD_SAFETY_ANALYSIS; const DexFile* GetDexFile() REQUIRES_SHARED(Locks::mutator_lock_); const char* GetDeclaringClassDescriptor() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE const char* GetShorty() REQUIRES_SHARED(Locks::mutator_lock_); const char* GetShorty(uint32_t* out_length) REQUIRES_SHARED(Locks::mutator_lock_); const Signature GetSignature() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE const char* GetName() REQUIRES_SHARED(Locks::mutator_lock_); mirror::String* GetNameAsString(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_); const DexFile::CodeItem* GetCodeItem() REQUIRES_SHARED(Locks::mutator_lock_); bool IsResolvedTypeIdx(dex::TypeIndex type_idx) REQUIRES_SHARED(Locks::mutator_lock_); int32_t GetLineNumFromDexPC(uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_); const DexFile::ProtoId& GetPrototype() REQUIRES_SHARED(Locks::mutator_lock_); const DexFile::TypeList* GetParameterTypeList() REQUIRES_SHARED(Locks::mutator_lock_); const char* GetDeclaringClassSourceFile() REQUIRES_SHARED(Locks::mutator_lock_); uint16_t GetClassDefIndex() REQUIRES_SHARED(Locks::mutator_lock_); const DexFile::ClassDef& GetClassDef() REQUIRES_SHARED(Locks::mutator_lock_); const char* GetReturnTypeDescriptor() REQUIRES_SHARED(Locks::mutator_lock_); const char* GetTypeDescriptorFromTypeIdx(dex::TypeIndex type_idx) REQUIRES_SHARED(Locks::mutator_lock_); // May cause thread suspension due to GetClassFromTypeIdx calling ResolveType this caused a large // number of bugs at call sites. mirror::Class* GetReturnType(bool resolve) REQUIRES_SHARED(Locks::mutator_lock_); mirror::ClassLoader* GetClassLoader() REQUIRES_SHARED(Locks::mutator_lock_); template <ReadBarrierOption kReadBarrierOption = kWithReadBarrier> mirror::DexCache* GetDexCache() REQUIRES_SHARED(Locks::mutator_lock_); mirror::DexCache* GetObsoleteDexCache() REQUIRES_SHARED(Locks::mutator_lock_); ALWAYS_INLINE ArtMethod* GetInterfaceMethodIfProxy(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); ArtMethod* GetNonObsoleteMethod() REQUIRES_SHARED(Locks::mutator_lock_); // May cause thread suspension due to class resolution. bool EqualParameters(Handle<mirror::ObjectArray<mirror::Class>> params) REQUIRES_SHARED(Locks::mutator_lock_); // Size of an instance of this native class. static size_t Size(PointerSize pointer_size) { return PtrSizedFieldsOffset(pointer_size) + (sizeof(PtrSizedFields) / sizeof(void*)) * static_cast<size_t>(pointer_size); } // Alignment of an instance of this native class. static size_t Alignment(PointerSize pointer_size) { // The ArtMethod alignment is the same as image pointer size. This differs from // alignof(ArtMethod) if cross-compiling with pointer_size != sizeof(void*). return static_cast<size_t>(pointer_size); } void CopyFrom(ArtMethod* src, PointerSize image_pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Note, hotness_counter_ updates are non-atomic but it doesn't need to be precise. Also, // given that the counter is only 16 bits wide we can expect wrap-around in some // situations. Consumers of hotness_count_ must be able to deal with that. uint16_t IncrementCounter() { return ++hotness_count_; } void ClearCounter() { hotness_count_ = 0; } void SetCounter(int16_t hotness_count) { hotness_count_ = hotness_count; } uint16_t GetCounter() const { return hotness_count_; } const uint8_t* GetQuickenedInfo(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Returns the method header for the compiled code containing 'pc'. Note that runtime // methods will return null for this method, as they are not oat based. const OatQuickMethodHeader* GetOatQuickMethodHeader(uintptr_t pc) REQUIRES_SHARED(Locks::mutator_lock_); // Get compiled code for the method, return null if no code exists. const void* GetOatMethodQuickCode(PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Returns whether the method has any compiled code, JIT or AOT. bool HasAnyCompiledCode() REQUIRES_SHARED(Locks::mutator_lock_); // Returns a human-readable signature for 'm'. Something like "a.b.C.m" or // "a.b.C.m(II)V" (depending on the value of 'with_signature'). static std::string PrettyMethod(ArtMethod* m, bool with_signature = true) REQUIRES_SHARED(Locks::mutator_lock_); std::string PrettyMethod(bool with_signature = true) REQUIRES_SHARED(Locks::mutator_lock_); // Returns the JNI native function name for the non-overloaded method 'm'. std::string JniShortName() REQUIRES_SHARED(Locks::mutator_lock_); // Returns the JNI native function name for the overloaded method 'm'. std::string JniLongName() REQUIRES_SHARED(Locks::mutator_lock_); // Update heap objects and non-entrypoint pointers by the passed in visitor for image relocation. // Does not use read barrier. template <typename Visitor> ALWAYS_INLINE void UpdateObjectsForImageRelocation(const Visitor& visitor, PointerSize pointer_size) REQUIRES_SHARED(Locks::mutator_lock_); // Update entry points by passing them through the visitor. template <ReadBarrierOption kReadBarrierOption = kWithReadBarrier, typename Visitor> ALWAYS_INLINE void UpdateEntrypoints(const Visitor& visitor, PointerSize pointer_size); protected: // Field order required by test "ValidateFieldOrderOfJavaCppUnionClasses". // The class we are a part of. GcRoot<mirror::Class> declaring_class_; // Access flags; low 16 bits are defined by spec. // Getting and setting this flag needs to be atomic when concurrency is // possible, e.g. after this method's class is linked. Such as when setting // verifier flags and single-implementation flag. std::atomic<std::uint32_t> access_flags_; /* Dex file fields. The defining dex file is available via declaring_class_->dex_cache_ */ // Offset to the CodeItem. uint32_t dex_code_item_offset_; // Index into method_ids of the dex file associated with this method. uint32_t dex_method_index_; /* End of dex file fields. */ // Entry within a dispatch table for this method. For static/direct methods the index is into // the declaringClass.directMethods, for virtual methods the vtable and for interface methods the // ifTable. uint16_t method_index_; // The hotness we measure for this method. Managed by the interpreter. Not atomic, as we allow // missing increments: if the method is hot, we will see it eventually. uint16_t hotness_count_; // Fake padding field gets inserted here. // Must be the last fields in the method. struct PtrSizedFields { // Short cuts to declaring_class_->dex_cache_ member for fast compiled code access. ArtMethod** dex_cache_resolved_methods_; // Pointer to JNI function registered to this method, or a function to resolve the JNI function, // or the profiling data for non-native methods, or an ImtConflictTable, or the // single-implementation of an abstract/interface method. void* data_; // Method dispatch from quick compiled code invokes this pointer which may cause bridging into // the interpreter. void* entry_point_from_quick_compiled_code_; } ptr_sized_fields_; private: uint16_t FindObsoleteDexClassDefIndex() REQUIRES_SHARED(Locks::mutator_lock_); // If `lookup_in_resolved_boot_classes` is true, look up any of the // method's annotations' classes in the bootstrap class loader's // resolved types; otherwise, resolve them as a side effect. bool IsAnnotatedWith(jclass klass, uint32_t visibility, bool lookup_in_resolved_boot_classes); static constexpr size_t PtrSizedFieldsOffset(PointerSize pointer_size) { // Round up to pointer size for padding field. Tested in art_method.cc. return RoundUp(offsetof(ArtMethod, hotness_count_) + sizeof(hotness_count_), static_cast<size_t>(pointer_size)); } // Compare given pointer size to the image pointer size. static bool IsImagePointerSize(PointerSize pointer_size); template<typename T> ALWAYS_INLINE T GetNativePointer(MemberOffset offset, PointerSize pointer_size) const { static_assert(std::is_pointer<T>::value, "T must be a pointer type"); const auto addr = reinterpret_cast<uintptr_t>(this) + offset.Uint32Value(); if (pointer_size == PointerSize::k32) { return reinterpret_cast<T>(*reinterpret_cast<const uint32_t*>(addr)); } else { auto v = *reinterpret_cast<const uint64_t*>(addr); return reinterpret_cast<T>(dchecked_integral_cast<uintptr_t>(v)); } } template<typename T> ALWAYS_INLINE void SetNativePointer(MemberOffset offset, T new_value, PointerSize pointer_size) { static_assert(std::is_pointer<T>::value, "T must be a pointer type"); const auto addr = reinterpret_cast<uintptr_t>(this) + offset.Uint32Value(); if (pointer_size == PointerSize::k32) { uintptr_t ptr = reinterpret_cast<uintptr_t>(new_value); *reinterpret_cast<uint32_t*>(addr) = dchecked_integral_cast<uint32_t>(ptr); } else { *reinterpret_cast<uint64_t*>(addr) = reinterpret_cast<uintptr_t>(new_value); } } template <ReadBarrierOption kReadBarrierOption> void GetAccessFlagsDCheck(); DISALLOW_COPY_AND_ASSIGN(ArtMethod); // Need to use CopyFrom to deal with 32 vs 64 bits. }; class MethodCallback { public: virtual ~MethodCallback() {} virtual void RegisterNativeMethod(ArtMethod* method, const void* original_implementation, /*out*/void** new_implementation) REQUIRES_SHARED(Locks::mutator_lock_) = 0; }; } // namespace art #endif // ART_RUNTIME_ART_METHOD_H_