/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "interpreter_common.h" #include <cmath> #include "base/enums.h" #include "debugger.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "jit/jit.h" #include "jvalue.h" #include "method_handles.h" #include "method_handles-inl.h" #include "mirror/array-inl.h" #include "mirror/class.h" #include "mirror/emulated_stack_frame.h" #include "mirror/method_handle_impl-inl.h" #include "reflection.h" #include "reflection-inl.h" #include "stack.h" #include "well_known_classes.h" namespace art { namespace interpreter { void ThrowNullPointerExceptionFromInterpreter() { ThrowNullPointerExceptionFromDexPC(); } template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check> bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) { const bool is_static = (find_type == StaticObjectRead) || (find_type == StaticPrimitiveRead); const uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c(); ArtField* f = FindFieldFromCode<find_type, do_access_check>(field_idx, shadow_frame.GetMethod(), self, Primitive::ComponentSize(field_type)); if (UNLIKELY(f == nullptr)) { CHECK(self->IsExceptionPending()); return false; } ObjPtr<mirror::Object> obj; if (is_static) { obj = f->GetDeclaringClass(); } else { obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data)); if (UNLIKELY(obj == nullptr)) { ThrowNullPointerExceptionForFieldAccess(f, true); return false; } } JValue result; DoFieldGetCommon<field_type>(self, shadow_frame, obj, f, &result); uint32_t vregA = is_static ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data); switch (field_type) { case Primitive::kPrimBoolean: shadow_frame.SetVReg(vregA, result.GetZ()); break; case Primitive::kPrimByte: shadow_frame.SetVReg(vregA, result.GetB()); break; case Primitive::kPrimChar: shadow_frame.SetVReg(vregA, result.GetC()); break; case Primitive::kPrimShort: shadow_frame.SetVReg(vregA, result.GetS()); break; case Primitive::kPrimInt: shadow_frame.SetVReg(vregA, result.GetI()); break; case Primitive::kPrimLong: shadow_frame.SetVRegLong(vregA, result.GetJ()); break; case Primitive::kPrimNot: shadow_frame.SetVRegReference(vregA, result.GetL()); break; default: LOG(FATAL) << "Unreachable: " << field_type; UNREACHABLE(); } return true; } // Explicitly instantiate all DoFieldGet functions. #define EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, _do_check) \ template bool DoFieldGet<_find_type, _field_type, _do_check>(Thread* self, \ ShadowFrame& shadow_frame, \ const Instruction* inst, \ uint16_t inst_data) #define EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(_find_type, _field_type) \ EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, false); \ EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, true); // iget-XXX EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimBoolean) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimByte) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimChar) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimShort) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimInt) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimLong) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstanceObjectRead, Primitive::kPrimNot) // sget-XXX EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimBoolean) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimByte) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimChar) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimShort) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimInt) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimLong) EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticObjectRead, Primitive::kPrimNot) #undef EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL #undef EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL // Handles iget-quick, iget-wide-quick and iget-object-quick instructions. // Returns true on success, otherwise throws an exception and returns false. template<Primitive::Type field_type> bool DoIGetQuick(ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) { ObjPtr<mirror::Object> obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data)); if (UNLIKELY(obj == nullptr)) { // We lost the reference to the field index so we cannot get a more // precised exception message. ThrowNullPointerExceptionFromDexPC(); return false; } MemberOffset field_offset(inst->VRegC_22c()); // Report this field access to instrumentation if needed. Since we only have the offset of // the field from the base of the object, we need to look for it first. instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); if (UNLIKELY(instrumentation->HasFieldReadListeners())) { ArtField* f = ArtField::FindInstanceFieldWithOffset(obj->GetClass(), field_offset.Uint32Value()); DCHECK(f != nullptr); DCHECK(!f->IsStatic()); StackHandleScope<1> hs(Thread::Current()); // Save obj in case the instrumentation event has thread suspension. HandleWrapperObjPtr<mirror::Object> h = hs.NewHandleWrapper(&obj); instrumentation->FieldReadEvent(Thread::Current(), obj.Ptr(), shadow_frame.GetMethod(), shadow_frame.GetDexPC(), f); } // Note: iget-x-quick instructions are only for non-volatile fields. const uint32_t vregA = inst->VRegA_22c(inst_data); switch (field_type) { case Primitive::kPrimInt: shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetField32(field_offset))); break; case Primitive::kPrimBoolean: shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldBoolean(field_offset))); break; case Primitive::kPrimByte: shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldByte(field_offset))); break; case Primitive::kPrimChar: shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldChar(field_offset))); break; case Primitive::kPrimShort: shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldShort(field_offset))); break; case Primitive::kPrimLong: shadow_frame.SetVRegLong(vregA, static_cast<int64_t>(obj->GetField64(field_offset))); break; case Primitive::kPrimNot: shadow_frame.SetVRegReference(vregA, obj->GetFieldObject<mirror::Object>(field_offset)); break; default: LOG(FATAL) << "Unreachable: " << field_type; UNREACHABLE(); } return true; } // Explicitly instantiate all DoIGetQuick functions. #define EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(_field_type) \ template bool DoIGetQuick<_field_type>(ShadowFrame& shadow_frame, const Instruction* inst, \ uint16_t inst_data) EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimInt); // iget-quick. EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimBoolean); // iget-boolean-quick. EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimByte); // iget-byte-quick. EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimChar); // iget-char-quick. EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimShort); // iget-short-quick. EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimLong); // iget-wide-quick. EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimNot); // iget-object-quick. #undef EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL template<Primitive::Type field_type> static JValue GetFieldValue(const ShadowFrame& shadow_frame, uint32_t vreg) REQUIRES_SHARED(Locks::mutator_lock_) { JValue field_value; switch (field_type) { case Primitive::kPrimBoolean: field_value.SetZ(static_cast<uint8_t>(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimByte: field_value.SetB(static_cast<int8_t>(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimChar: field_value.SetC(static_cast<uint16_t>(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimShort: field_value.SetS(static_cast<int16_t>(shadow_frame.GetVReg(vreg))); break; case Primitive::kPrimInt: field_value.SetI(shadow_frame.GetVReg(vreg)); break; case Primitive::kPrimLong: field_value.SetJ(shadow_frame.GetVRegLong(vreg)); break; case Primitive::kPrimNot: field_value.SetL(shadow_frame.GetVRegReference(vreg)); break; default: LOG(FATAL) << "Unreachable: " << field_type; UNREACHABLE(); } return field_value; } template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check, bool transaction_active> bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) { const bool do_assignability_check = do_access_check; bool is_static = (find_type == StaticObjectWrite) || (find_type == StaticPrimitiveWrite); uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c(); ArtField* f = FindFieldFromCode<find_type, do_access_check>(field_idx, shadow_frame.GetMethod(), self, Primitive::ComponentSize(field_type)); if (UNLIKELY(f == nullptr)) { CHECK(self->IsExceptionPending()); return false; } ObjPtr<mirror::Object> obj; if (is_static) { obj = f->GetDeclaringClass(); } else { obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data)); if (UNLIKELY(obj == nullptr)) { ThrowNullPointerExceptionForFieldAccess(f, false); return false; } } uint32_t vregA = is_static ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data); JValue value = GetFieldValue<field_type>(shadow_frame, vregA); return DoFieldPutCommon<field_type, do_assignability_check, transaction_active>(self, shadow_frame, obj, f, value); } // Explicitly instantiate all DoFieldPut functions. #define EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, _do_check, _transaction_active) \ template bool DoFieldPut<_find_type, _field_type, _do_check, _transaction_active>(Thread* self, \ const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) #define EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(_find_type, _field_type) \ EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, false, false); \ EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, true, false); \ EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, false, true); \ EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, true, true); // iput-XXX EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimBoolean) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimByte) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimChar) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimShort) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimInt) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimLong) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstanceObjectWrite, Primitive::kPrimNot) // sput-XXX EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimBoolean) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimByte) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimChar) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimShort) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimInt) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimLong) EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticObjectWrite, Primitive::kPrimNot) #undef EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL #undef EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL template<Primitive::Type field_type, bool transaction_active> bool DoIPutQuick(const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) { ObjPtr<mirror::Object> obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data)); if (UNLIKELY(obj == nullptr)) { // We lost the reference to the field index so we cannot get a more // precised exception message. ThrowNullPointerExceptionFromDexPC(); return false; } MemberOffset field_offset(inst->VRegC_22c()); const uint32_t vregA = inst->VRegA_22c(inst_data); // Report this field modification to instrumentation if needed. Since we only have the offset of // the field from the base of the object, we need to look for it first. instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); if (UNLIKELY(instrumentation->HasFieldWriteListeners())) { ArtField* f = ArtField::FindInstanceFieldWithOffset(obj->GetClass(), field_offset.Uint32Value()); DCHECK(f != nullptr); DCHECK(!f->IsStatic()); JValue field_value = GetFieldValue<field_type>(shadow_frame, vregA); StackHandleScope<1> hs(Thread::Current()); // Save obj in case the instrumentation event has thread suspension. HandleWrapperObjPtr<mirror::Object> h = hs.NewHandleWrapper(&obj); instrumentation->FieldWriteEvent(Thread::Current(), obj.Ptr(), shadow_frame.GetMethod(), shadow_frame.GetDexPC(), f, field_value); } // Note: iput-x-quick instructions are only for non-volatile fields. switch (field_type) { case Primitive::kPrimBoolean: obj->SetFieldBoolean<transaction_active>(field_offset, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimByte: obj->SetFieldByte<transaction_active>(field_offset, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimChar: obj->SetFieldChar<transaction_active>(field_offset, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimShort: obj->SetFieldShort<transaction_active>(field_offset, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimInt: obj->SetField32<transaction_active>(field_offset, shadow_frame.GetVReg(vregA)); break; case Primitive::kPrimLong: obj->SetField64<transaction_active>(field_offset, shadow_frame.GetVRegLong(vregA)); break; case Primitive::kPrimNot: obj->SetFieldObject<transaction_active>(field_offset, shadow_frame.GetVRegReference(vregA)); break; default: LOG(FATAL) << "Unreachable: " << field_type; UNREACHABLE(); } return true; } // Explicitly instantiate all DoIPutQuick functions. #define EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, _transaction_active) \ template bool DoIPutQuick<_field_type, _transaction_active>(const ShadowFrame& shadow_frame, \ const Instruction* inst, \ uint16_t inst_data) #define EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(_field_type) \ EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, false); \ EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, true); EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimInt) // iput-quick. EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimBoolean) // iput-boolean-quick. EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimByte) // iput-byte-quick. EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimChar) // iput-char-quick. EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimShort) // iput-short-quick. EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimLong) // iput-wide-quick. EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimNot) // iput-object-quick. #undef EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL #undef EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL // We accept a null Instrumentation* meaning we must not report anything to the instrumentation. uint32_t FindNextInstructionFollowingException( Thread* self, ShadowFrame& shadow_frame, uint32_t dex_pc, const instrumentation::Instrumentation* instrumentation) { self->VerifyStack(); StackHandleScope<2> hs(self); Handle<mirror::Throwable> exception(hs.NewHandle(self->GetException())); if (instrumentation != nullptr && instrumentation->HasExceptionCaughtListeners() && self->IsExceptionThrownByCurrentMethod(exception.Get())) { instrumentation->ExceptionCaughtEvent(self, exception.Get()); } bool clear_exception = false; uint32_t found_dex_pc = shadow_frame.GetMethod()->FindCatchBlock( hs.NewHandle(exception->GetClass()), dex_pc, &clear_exception); if (found_dex_pc == DexFile::kDexNoIndex && instrumentation != nullptr) { // Exception is not caught by the current method. We will unwind to the // caller. Notify any instrumentation listener. instrumentation->MethodUnwindEvent(self, shadow_frame.GetThisObject(), shadow_frame.GetMethod(), dex_pc); } else { // Exception is caught in the current method. We will jump to the found_dex_pc. if (clear_exception) { self->ClearException(); } } return found_dex_pc; } void UnexpectedOpcode(const Instruction* inst, const ShadowFrame& shadow_frame) { LOG(FATAL) << "Unexpected instruction: " << inst->DumpString(shadow_frame.GetMethod()->GetDexFile()); UNREACHABLE(); } void AbortTransactionF(Thread* self, const char* fmt, ...) { va_list args; va_start(args, fmt); AbortTransactionV(self, fmt, args); va_end(args); } void AbortTransactionV(Thread* self, const char* fmt, va_list args) { CHECK(Runtime::Current()->IsActiveTransaction()); // Constructs abort message. std::string abort_msg; android::base::StringAppendV(&abort_msg, fmt, args); // Throws an exception so we can abort the transaction and rollback every change. Runtime::Current()->AbortTransactionAndThrowAbortError(self, abort_msg); } // START DECLARATIONS : // // These additional declarations are required because clang complains // about ALWAYS_INLINE (-Werror, -Wgcc-compat) in definitions. // template <bool is_range, bool do_assignability_check> static ALWAYS_INLINE bool DoCallCommon(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame, JValue* result, uint16_t number_of_inputs, uint32_t (&arg)[Instruction::kMaxVarArgRegs], uint32_t vregC) REQUIRES_SHARED(Locks::mutator_lock_); template <bool is_range> ALWAYS_INLINE void CopyRegisters(ShadowFrame& caller_frame, ShadowFrame* callee_frame, const uint32_t (&arg)[Instruction::kMaxVarArgRegs], const size_t first_src_reg, const size_t first_dest_reg, const size_t num_regs) REQUIRES_SHARED(Locks::mutator_lock_); // END DECLARATIONS. void ArtInterpreterToCompiledCodeBridge(Thread* self, ArtMethod* caller, const DexFile::CodeItem* code_item, ShadowFrame* shadow_frame, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* method = shadow_frame->GetMethod(); // Ensure static methods are initialized. if (method->IsStatic()) { ObjPtr<mirror::Class> declaringClass = method->GetDeclaringClass(); if (UNLIKELY(!declaringClass->IsInitialized())) { self->PushShadowFrame(shadow_frame); StackHandleScope<1> hs(self); Handle<mirror::Class> h_class(hs.NewHandle(declaringClass)); if (UNLIKELY(!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true))) { self->PopShadowFrame(); DCHECK(self->IsExceptionPending()); return; } self->PopShadowFrame(); CHECK(h_class->IsInitializing()); // Reload from shadow frame in case the method moved, this is faster than adding a handle. method = shadow_frame->GetMethod(); } } uint16_t arg_offset = (code_item == nullptr) ? 0 : code_item->registers_size_ - code_item->ins_size_; jit::Jit* jit = Runtime::Current()->GetJit(); if (jit != nullptr && caller != nullptr) { jit->NotifyInterpreterToCompiledCodeTransition(self, caller); } method->Invoke(self, shadow_frame->GetVRegArgs(arg_offset), (shadow_frame->NumberOfVRegs() - arg_offset) * sizeof(uint32_t), result, method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty()); } void SetStringInitValueToAllAliases(ShadowFrame* shadow_frame, uint16_t this_obj_vreg, JValue result) REQUIRES_SHARED(Locks::mutator_lock_) { ObjPtr<mirror::Object> existing = shadow_frame->GetVRegReference(this_obj_vreg); if (existing == nullptr) { // If it's null, we come from compiled code that was deoptimized. Nothing to do, // as the compiler verified there was no alias. // Set the new string result of the StringFactory. shadow_frame->SetVRegReference(this_obj_vreg, result.GetL()); return; } // Set the string init result into all aliases. for (uint32_t i = 0, e = shadow_frame->NumberOfVRegs(); i < e; ++i) { if (shadow_frame->GetVRegReference(i) == existing) { DCHECK_EQ(shadow_frame->GetVRegReference(i), reinterpret_cast<mirror::Object*>(shadow_frame->GetVReg(i))); shadow_frame->SetVRegReference(i, result.GetL()); DCHECK_EQ(shadow_frame->GetVRegReference(i), reinterpret_cast<mirror::Object*>(shadow_frame->GetVReg(i))); } } } template<bool is_range> bool DoInvokePolymorphic(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { // Invoke-polymorphic instructions always take a receiver. i.e, they are never static. const uint32_t vRegC = (is_range) ? inst->VRegC_4rcc() : inst->VRegC_45cc(); const int invoke_method_idx = (is_range) ? inst->VRegB_4rcc() : inst->VRegB_45cc(); // Initialize |result| to 0 as this is the default return value for // polymorphic invocations of method handle types with void return // and provides sane return result in error cases. result->SetJ(0); // The invoke_method_idx here is the name of the signature polymorphic method that // was symbolically invoked in bytecode (say MethodHandle.invoke or MethodHandle.invokeExact) // and not the method that we'll dispatch to in the end. StackHandleScope<5> hs(self); Handle<mirror::MethodHandle> method_handle(hs.NewHandle( ObjPtr<mirror::MethodHandle>::DownCast( MakeObjPtr(shadow_frame.GetVRegReference(vRegC))))); if (UNLIKELY(method_handle == nullptr)) { // Note that the invoke type is kVirtual here because a call to a signature // polymorphic method is shaped like a virtual call at the bytecode level. ThrowNullPointerExceptionForMethodAccess(invoke_method_idx, InvokeType::kVirtual); return false; } // The vRegH value gives the index of the proto_id associated with this // signature polymorphic call site. const uint32_t callsite_proto_id = (is_range) ? inst->VRegH_4rcc() : inst->VRegH_45cc(); // Call through to the classlinker and ask it to resolve the static type associated // with the callsite. This information is stored in the dex cache so it's // guaranteed to be fast after the first resolution. ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); Handle<mirror::Class> caller_class(hs.NewHandle(shadow_frame.GetMethod()->GetDeclaringClass())); Handle<mirror::MethodType> callsite_type(hs.NewHandle(class_linker->ResolveMethodType( caller_class->GetDexFile(), callsite_proto_id, hs.NewHandle<mirror::DexCache>(caller_class->GetDexCache()), hs.NewHandle<mirror::ClassLoader>(caller_class->GetClassLoader())))); // This implies we couldn't resolve one or more types in this method handle. if (UNLIKELY(callsite_type == nullptr)) { CHECK(self->IsExceptionPending()); return false; } ArtMethod* invoke_method = class_linker->ResolveMethod<ClassLinker::kForceICCECheck>(self, invoke_method_idx, shadow_frame.GetMethod(), kVirtual); // There is a common dispatch method for method handles that takes // arguments either from a range or an array of arguments depending // on whether the DEX instruction is invoke-polymorphic/range or // invoke-polymorphic. The array here is for the latter. uint32_t args[Instruction::kMaxVarArgRegs] = {}; if (is_range) { // VRegC is the register holding the method handle. Arguments passed // to the method handle's target do not include the method handle. uint32_t first_arg = inst->VRegC_4rcc() + 1; return DoInvokePolymorphic<is_range>(self, invoke_method, shadow_frame, method_handle, callsite_type, args /* unused */, first_arg, result); } else { // Get the register arguments for the invoke. inst->GetVarArgs(args, inst_data); // Drop the first register which is the method handle performing the invoke. memmove(args, args + 1, sizeof(args[0]) * (Instruction::kMaxVarArgRegs - 1)); args[Instruction::kMaxVarArgRegs - 1] = 0; return DoInvokePolymorphic<is_range>(self, invoke_method, shadow_frame, method_handle, callsite_type, args, args[0], result); } } static ObjPtr<mirror::CallSite> InvokeBootstrapMethod(Thread* self, ShadowFrame& shadow_frame, uint32_t call_site_idx) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* referrer = shadow_frame.GetMethod(); const DexFile* dex_file = referrer->GetDexFile(); const DexFile::CallSiteIdItem& csi = dex_file->GetCallSiteId(call_site_idx); StackHandleScope<9> hs(self); Handle<mirror::ClassLoader> class_loader(hs.NewHandle(referrer->GetClassLoader())); Handle<mirror::DexCache> dex_cache(hs.NewHandle(referrer->GetDexCache())); CallSiteArrayValueIterator it(*dex_file, csi); uint32_t method_handle_idx = static_cast<uint32_t>(it.GetJavaValue().i); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); Handle<mirror::MethodHandle> bootstrap(hs.NewHandle(class_linker->ResolveMethodHandle(method_handle_idx, referrer))); if (bootstrap.IsNull()) { DCHECK(self->IsExceptionPending()); return nullptr; } Handle<mirror::MethodType> bootstrap_method_type = hs.NewHandle(bootstrap->GetMethodType()); it.Next(); DCHECK_EQ(static_cast<size_t>(bootstrap->GetMethodType()->GetPTypes()->GetLength()), it.Size()); const size_t num_bootstrap_vregs = bootstrap->GetMethodType()->NumberOfVRegs(); // Set-up a shadow frame for invoking the bootstrap method handle. ShadowFrameAllocaUniquePtr bootstrap_frame = CREATE_SHADOW_FRAME(num_bootstrap_vregs, nullptr, referrer, shadow_frame.GetDexPC()); ScopedStackedShadowFramePusher pusher( self, bootstrap_frame.get(), StackedShadowFrameType::kShadowFrameUnderConstruction); size_t vreg = 0; // The first parameter is a MethodHandles lookup instance. { Handle<mirror::Class> lookup_class(hs.NewHandle(bootstrap->GetTargetClass())); ObjPtr<mirror::MethodHandlesLookup> lookup = mirror::MethodHandlesLookup::Create(self, lookup_class); if (lookup.IsNull()) { DCHECK(self->IsExceptionPending()); return nullptr; } bootstrap_frame->SetVRegReference(vreg++, lookup.Ptr()); } // The second parameter is the name to lookup. { dex::StringIndex name_idx(static_cast<uint32_t>(it.GetJavaValue().i)); ObjPtr<mirror::String> name = class_linker->ResolveString(*dex_file, name_idx, dex_cache); if (name.IsNull()) { DCHECK(self->IsExceptionPending()); return nullptr; } bootstrap_frame->SetVRegReference(vreg++, name.Ptr()); } it.Next(); // The third parameter is the method type associated with the name. uint32_t method_type_idx = static_cast<uint32_t>(it.GetJavaValue().i); Handle<mirror::MethodType> method_type(hs.NewHandle(class_linker->ResolveMethodType(*dex_file, method_type_idx, dex_cache, class_loader))); if (method_type.IsNull()) { DCHECK(self->IsExceptionPending()); return nullptr; } bootstrap_frame->SetVRegReference(vreg++, method_type.Get()); it.Next(); // Append remaining arguments (if any). while (it.HasNext()) { const jvalue& jvalue = it.GetJavaValue(); switch (it.GetValueType()) { case EncodedArrayValueIterator::ValueType::kBoolean: case EncodedArrayValueIterator::ValueType::kByte: case EncodedArrayValueIterator::ValueType::kChar: case EncodedArrayValueIterator::ValueType::kShort: case EncodedArrayValueIterator::ValueType::kInt: bootstrap_frame->SetVReg(vreg, jvalue.i); vreg += 1; break; case EncodedArrayValueIterator::ValueType::kLong: bootstrap_frame->SetVRegLong(vreg, jvalue.j); vreg += 2; break; case EncodedArrayValueIterator::ValueType::kFloat: bootstrap_frame->SetVRegFloat(vreg, jvalue.f); vreg += 1; break; case EncodedArrayValueIterator::ValueType::kDouble: bootstrap_frame->SetVRegDouble(vreg, jvalue.d); vreg += 2; break; case EncodedArrayValueIterator::ValueType::kMethodType: { uint32_t idx = static_cast<uint32_t>(jvalue.i); ObjPtr<mirror::MethodType> ref = class_linker->ResolveMethodType(*dex_file, idx, dex_cache, class_loader); if (ref.IsNull()) { DCHECK(self->IsExceptionPending()); return nullptr; } bootstrap_frame->SetVRegReference(vreg, ref.Ptr()); vreg += 1; break; } case EncodedArrayValueIterator::ValueType::kMethodHandle: { uint32_t idx = static_cast<uint32_t>(jvalue.i); ObjPtr<mirror::MethodHandle> ref = class_linker->ResolveMethodHandle(idx, referrer); if (ref.IsNull()) { DCHECK(self->IsExceptionPending()); return nullptr; } bootstrap_frame->SetVRegReference(vreg, ref.Ptr()); vreg += 1; break; } case EncodedArrayValueIterator::ValueType::kString: { dex::StringIndex idx(static_cast<uint32_t>(jvalue.i)); ObjPtr<mirror::String> ref = class_linker->ResolveString(*dex_file, idx, dex_cache); if (ref.IsNull()) { DCHECK(self->IsExceptionPending()); return nullptr; } bootstrap_frame->SetVRegReference(vreg, ref.Ptr()); vreg += 1; break; } case EncodedArrayValueIterator::ValueType::kType: { dex::TypeIndex idx(static_cast<uint32_t>(jvalue.i)); ObjPtr<mirror::Class> ref = class_linker->ResolveType(*dex_file, idx, dex_cache, class_loader); if (ref.IsNull()) { DCHECK(self->IsExceptionPending()); return nullptr; } bootstrap_frame->SetVRegReference(vreg, ref.Ptr()); vreg += 1; break; } case EncodedArrayValueIterator::ValueType::kNull: bootstrap_frame->SetVRegReference(vreg, nullptr); vreg += 1; break; case EncodedArrayValueIterator::ValueType::kField: case EncodedArrayValueIterator::ValueType::kMethod: case EncodedArrayValueIterator::ValueType::kEnum: case EncodedArrayValueIterator::ValueType::kArray: case EncodedArrayValueIterator::ValueType::kAnnotation: // Unreachable based on current EncodedArrayValueIterator::Next(). UNREACHABLE(); } it.Next(); } // Invoke the bootstrap method handle. JValue result; // This array of arguments is unused. DoInvokePolymorphic() operates on either a // an argument array or a range, but always takes an array argument. uint32_t args_unused[Instruction::kMaxVarArgRegs]; ArtMethod* invoke_exact = jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact); bool invoke_success = DoInvokePolymorphic<true /* is_range */>(self, invoke_exact, *bootstrap_frame, bootstrap, bootstrap_method_type, args_unused, 0, &result); if (!invoke_success) { DCHECK(self->IsExceptionPending()); return nullptr; } Handle<mirror::Object> object(hs.NewHandle(result.GetL())); // Check the result is not null. if (UNLIKELY(object.IsNull())) { ThrowNullPointerException("CallSite == null"); return nullptr; } // Check the result type is a subclass of CallSite. if (UNLIKELY(!object->InstanceOf(mirror::CallSite::StaticClass()))) { ThrowClassCastException(object->GetClass(), mirror::CallSite::StaticClass()); return nullptr; } Handle<mirror::CallSite> call_site = hs.NewHandle(ObjPtr<mirror::CallSite>::DownCast(ObjPtr<mirror::Object>(result.GetL()))); // Check the call site target is not null as we're going to invoke it. Handle<mirror::MethodHandle> target = hs.NewHandle(call_site->GetTarget()); if (UNLIKELY(target.IsNull())) { ThrowNullPointerException("CallSite target == null"); return nullptr; } // Check the target method type matches the method type requested. if (UNLIKELY(!target->GetMethodType()->IsExactMatch(method_type.Get()))) { ThrowWrongMethodTypeException(target->GetMethodType(), method_type.Get()); return nullptr; } return call_site.Get(); } template<bool is_range> bool DoInvokeCustom(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) REQUIRES_SHARED(Locks::mutator_lock_) { // invoke-custom is not supported in transactions. In transactions // there is a limited set of types supported. invoke-custom allows // running arbitrary code and instantiating arbitrary types. CHECK(!Runtime::Current()->IsActiveTransaction()); StackHandleScope<4> hs(self); Handle<mirror::DexCache> dex_cache(hs.NewHandle(shadow_frame.GetMethod()->GetDexCache())); const uint32_t call_site_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c(); MutableHandle<mirror::CallSite> call_site(hs.NewHandle(dex_cache->GetResolvedCallSite(call_site_idx))); if (call_site.IsNull()) { call_site.Assign(InvokeBootstrapMethod(self, shadow_frame, call_site_idx)); if (UNLIKELY(call_site.IsNull())) { CHECK(self->IsExceptionPending()); ThrowWrappedBootstrapMethodError("Exception from call site #%u bootstrap method", call_site_idx); result->SetJ(0); return false; } mirror::CallSite* winning_call_site = dex_cache->SetResolvedCallSite(call_site_idx, call_site.Get()); call_site.Assign(winning_call_site); } // CallSite.java checks the re-assignment of the call site target // when mutating call site targets. We only check the target is // non-null and has the right type during bootstrap method execution. Handle<mirror::MethodHandle> target = hs.NewHandle(call_site->GetTarget()); Handle<mirror::MethodType> target_method_type = hs.NewHandle(target->GetMethodType()); DCHECK_EQ(static_cast<size_t>(inst->VRegA()), target_method_type->NumberOfVRegs()); uint32_t args[Instruction::kMaxVarArgRegs]; if (is_range) { args[0] = inst->VRegC_3rc(); } else { inst->GetVarArgs(args, inst_data); } ArtMethod* invoke_exact = jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact); return DoInvokePolymorphic<is_range>(self, invoke_exact, shadow_frame, target, target_method_type, args, args[0], result); } template <bool is_range> inline void CopyRegisters(ShadowFrame& caller_frame, ShadowFrame* callee_frame, const uint32_t (&arg)[Instruction::kMaxVarArgRegs], const size_t first_src_reg, const size_t first_dest_reg, const size_t num_regs) { if (is_range) { const size_t dest_reg_bound = first_dest_reg + num_regs; for (size_t src_reg = first_src_reg, dest_reg = first_dest_reg; dest_reg < dest_reg_bound; ++dest_reg, ++src_reg) { AssignRegister(callee_frame, caller_frame, dest_reg, src_reg); } } else { DCHECK_LE(num_regs, arraysize(arg)); for (size_t arg_index = 0; arg_index < num_regs; ++arg_index) { AssignRegister(callee_frame, caller_frame, first_dest_reg + arg_index, arg[arg_index]); } } } template <bool is_range, bool do_assignability_check> static inline bool DoCallCommon(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame, JValue* result, uint16_t number_of_inputs, uint32_t (&arg)[Instruction::kMaxVarArgRegs], uint32_t vregC) { bool string_init = false; // Replace calls to String.<init> with equivalent StringFactory call. if (UNLIKELY(called_method->GetDeclaringClass()->IsStringClass() && called_method->IsConstructor())) { called_method = WellKnownClasses::StringInitToStringFactory(called_method); string_init = true; } // Compute method information. const DexFile::CodeItem* code_item = called_method->GetCodeItem(); // Number of registers for the callee's call frame. uint16_t num_regs; if (LIKELY(code_item != nullptr)) { num_regs = code_item->registers_size_; DCHECK_EQ(string_init ? number_of_inputs - 1 : number_of_inputs, code_item->ins_size_); } else { DCHECK(called_method->IsNative() || called_method->IsProxyMethod()); num_regs = number_of_inputs; } // Hack for String init: // // Rewrite invoke-x java.lang.String.<init>(this, a, b, c, ...) into: // invoke-x StringFactory(a, b, c, ...) // by effectively dropping the first virtual register from the invoke. // // (at this point the ArtMethod has already been replaced, // so we just need to fix-up the arguments) // // Note that FindMethodFromCode in entrypoint_utils-inl.h was also special-cased // to handle the compiler optimization of replacing `this` with null without // throwing NullPointerException. uint32_t string_init_vreg_this = is_range ? vregC : arg[0]; if (UNLIKELY(string_init)) { DCHECK_GT(num_regs, 0u); // As the method is an instance method, there should be at least 1. // The new StringFactory call is static and has one fewer argument. if (code_item == nullptr) { DCHECK(called_method->IsNative() || called_method->IsProxyMethod()); num_regs--; } // else ... don't need to change num_regs since it comes up from the string_init's code item number_of_inputs--; // Rewrite the var-args, dropping the 0th argument ("this") for (uint32_t i = 1; i < arraysize(arg); ++i) { arg[i - 1] = arg[i]; } arg[arraysize(arg) - 1] = 0; // Rewrite the non-var-arg case vregC++; // Skips the 0th vreg in the range ("this"). } // Parameter registers go at the end of the shadow frame. DCHECK_GE(num_regs, number_of_inputs); size_t first_dest_reg = num_regs - number_of_inputs; DCHECK_NE(first_dest_reg, (size_t)-1); // Allocate shadow frame on the stack. const char* old_cause = self->StartAssertNoThreadSuspension("DoCallCommon"); ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr = CREATE_SHADOW_FRAME(num_regs, &shadow_frame, called_method, /* dex pc */ 0); ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get(); // Initialize new shadow frame by copying the registers from the callee shadow frame. if (do_assignability_check) { // Slow path. // We might need to do class loading, which incurs a thread state change to kNative. So // register the shadow frame as under construction and allow suspension again. ScopedStackedShadowFramePusher pusher( self, new_shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction); self->EndAssertNoThreadSuspension(old_cause); // ArtMethod here is needed to check type information of the call site against the callee. // Type information is retrieved from a DexFile/DexCache for that respective declared method. // // As a special case for proxy methods, which are not dex-backed, // we have to retrieve type information from the proxy's method // interface method instead (which is dex backed since proxies are never interfaces). ArtMethod* method = new_shadow_frame->GetMethod()->GetInterfaceMethodIfProxy(kRuntimePointerSize); // We need to do runtime check on reference assignment. We need to load the shorty // to get the exact type of each reference argument. const DexFile::TypeList* params = method->GetParameterTypeList(); uint32_t shorty_len = 0; const char* shorty = method->GetShorty(&shorty_len); // Handle receiver apart since it's not part of the shorty. size_t dest_reg = first_dest_reg; size_t arg_offset = 0; if (!method->IsStatic()) { size_t receiver_reg = is_range ? vregC : arg[0]; new_shadow_frame->SetVRegReference(dest_reg, shadow_frame.GetVRegReference(receiver_reg)); ++dest_reg; ++arg_offset; DCHECK(!string_init); // All StringFactory methods are static. } // Copy the caller's invoke-* arguments into the callee's parameter registers. for (uint32_t shorty_pos = 0; dest_reg < num_regs; ++shorty_pos, ++dest_reg, ++arg_offset) { // Skip the 0th 'shorty' type since it represents the return type. DCHECK_LT(shorty_pos + 1, shorty_len) << "for shorty '" << shorty << "'"; const size_t src_reg = (is_range) ? vregC + arg_offset : arg[arg_offset]; switch (shorty[shorty_pos + 1]) { // Handle Object references. 1 virtual register slot. case 'L': { ObjPtr<mirror::Object> o = shadow_frame.GetVRegReference(src_reg); if (do_assignability_check && o != nullptr) { const dex::TypeIndex type_idx = params->GetTypeItem(shorty_pos).type_idx_; ObjPtr<mirror::Class> arg_type = method->GetDexCache()->GetResolvedType(type_idx); if (arg_type == nullptr) { StackHandleScope<1> hs(self); // Preserve o since it is used below and GetClassFromTypeIndex may cause thread // suspension. HandleWrapperObjPtr<mirror::Object> h = hs.NewHandleWrapper(&o); arg_type = method->GetClassFromTypeIndex(type_idx, true /* resolve */); if (arg_type == nullptr) { CHECK(self->IsExceptionPending()); return false; } } if (!o->VerifierInstanceOf(arg_type)) { // This should never happen. std::string temp1, temp2; self->ThrowNewExceptionF("Ljava/lang/InternalError;", "Invoking %s with bad arg %d, type '%s' not instance of '%s'", new_shadow_frame->GetMethod()->GetName(), shorty_pos, o->GetClass()->GetDescriptor(&temp1), arg_type->GetDescriptor(&temp2)); return false; } } new_shadow_frame->SetVRegReference(dest_reg, o.Ptr()); break; } // Handle doubles and longs. 2 consecutive virtual register slots. case 'J': case 'D': { uint64_t wide_value = (static_cast<uint64_t>(shadow_frame.GetVReg(src_reg + 1)) << BitSizeOf<uint32_t>()) | static_cast<uint32_t>(shadow_frame.GetVReg(src_reg)); new_shadow_frame->SetVRegLong(dest_reg, wide_value); // Skip the next virtual register slot since we already used it. ++dest_reg; ++arg_offset; break; } // Handle all other primitives that are always 1 virtual register slot. default: new_shadow_frame->SetVReg(dest_reg, shadow_frame.GetVReg(src_reg)); break; } } } else { if (is_range) { DCHECK_EQ(num_regs, first_dest_reg + number_of_inputs); } CopyRegisters<is_range>(shadow_frame, new_shadow_frame, arg, vregC, first_dest_reg, number_of_inputs); self->EndAssertNoThreadSuspension(old_cause); } PerformCall(self, code_item, shadow_frame.GetMethod(), first_dest_reg, new_shadow_frame, result); if (string_init && !self->IsExceptionPending()) { SetStringInitValueToAllAliases(&shadow_frame, string_init_vreg_this, *result); } return !self->IsExceptionPending(); } template<bool is_range, bool do_assignability_check> bool DoCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data, JValue* result) { // Argument word count. const uint16_t number_of_inputs = (is_range) ? inst->VRegA_3rc(inst_data) : inst->VRegA_35c(inst_data); // TODO: find a cleaner way to separate non-range and range information without duplicating // code. uint32_t arg[Instruction::kMaxVarArgRegs] = {}; // only used in invoke-XXX. uint32_t vregC = 0; if (is_range) { vregC = inst->VRegC_3rc(); } else { vregC = inst->VRegC_35c(); inst->GetVarArgs(arg, inst_data); } return DoCallCommon<is_range, do_assignability_check>( called_method, self, shadow_frame, result, number_of_inputs, arg, vregC); } template <bool is_range, bool do_access_check, bool transaction_active> bool DoFilledNewArray(const Instruction* inst, const ShadowFrame& shadow_frame, Thread* self, JValue* result) { DCHECK(inst->Opcode() == Instruction::FILLED_NEW_ARRAY || inst->Opcode() == Instruction::FILLED_NEW_ARRAY_RANGE); const int32_t length = is_range ? inst->VRegA_3rc() : inst->VRegA_35c(); if (!is_range) { // Checks FILLED_NEW_ARRAY's length does not exceed 5 arguments. CHECK_LE(length, 5); } if (UNLIKELY(length < 0)) { ThrowNegativeArraySizeException(length); return false; } uint16_t type_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c(); ObjPtr<mirror::Class> array_class = ResolveVerifyAndClinit(dex::TypeIndex(type_idx), shadow_frame.GetMethod(), self, false, do_access_check); if (UNLIKELY(array_class == nullptr)) { DCHECK(self->IsExceptionPending()); return false; } CHECK(array_class->IsArrayClass()); ObjPtr<mirror::Class> component_class = array_class->GetComponentType(); const bool is_primitive_int_component = component_class->IsPrimitiveInt(); if (UNLIKELY(component_class->IsPrimitive() && !is_primitive_int_component)) { if (component_class->IsPrimitiveLong() || component_class->IsPrimitiveDouble()) { ThrowRuntimeException("Bad filled array request for type %s", component_class->PrettyDescriptor().c_str()); } else { self->ThrowNewExceptionF("Ljava/lang/InternalError;", "Found type %s; filled-new-array not implemented for anything but 'int'", component_class->PrettyDescriptor().c_str()); } return false; } ObjPtr<mirror::Object> new_array = mirror::Array::Alloc<true>( self, array_class, length, array_class->GetComponentSizeShift(), Runtime::Current()->GetHeap()->GetCurrentAllocator()); if (UNLIKELY(new_array == nullptr)) { self->AssertPendingOOMException(); return false; } uint32_t arg[Instruction::kMaxVarArgRegs]; // only used in filled-new-array. uint32_t vregC = 0; // only used in filled-new-array-range. if (is_range) { vregC = inst->VRegC_3rc(); } else { inst->GetVarArgs(arg); } for (int32_t i = 0; i < length; ++i) { size_t src_reg = is_range ? vregC + i : arg[i]; if (is_primitive_int_component) { new_array->AsIntArray()->SetWithoutChecks<transaction_active>( i, shadow_frame.GetVReg(src_reg)); } else { new_array->AsObjectArray<mirror::Object>()->SetWithoutChecks<transaction_active>( i, shadow_frame.GetVRegReference(src_reg)); } } result->SetL(new_array); return true; } // TODO: Use ObjPtr here. template<typename T> static void RecordArrayElementsInTransactionImpl(mirror::PrimitiveArray<T>* array, int32_t count) REQUIRES_SHARED(Locks::mutator_lock_) { Runtime* runtime = Runtime::Current(); for (int32_t i = 0; i < count; ++i) { runtime->RecordWriteArray(array, i, array->GetWithoutChecks(i)); } } void RecordArrayElementsInTransaction(ObjPtr<mirror::Array> array, int32_t count) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(Runtime::Current()->IsActiveTransaction()); DCHECK(array != nullptr); DCHECK_LE(count, array->GetLength()); Primitive::Type primitive_component_type = array->GetClass()->GetComponentType()->GetPrimitiveType(); switch (primitive_component_type) { case Primitive::kPrimBoolean: RecordArrayElementsInTransactionImpl(array->AsBooleanArray(), count); break; case Primitive::kPrimByte: RecordArrayElementsInTransactionImpl(array->AsByteArray(), count); break; case Primitive::kPrimChar: RecordArrayElementsInTransactionImpl(array->AsCharArray(), count); break; case Primitive::kPrimShort: RecordArrayElementsInTransactionImpl(array->AsShortArray(), count); break; case Primitive::kPrimInt: RecordArrayElementsInTransactionImpl(array->AsIntArray(), count); break; case Primitive::kPrimFloat: RecordArrayElementsInTransactionImpl(array->AsFloatArray(), count); break; case Primitive::kPrimLong: RecordArrayElementsInTransactionImpl(array->AsLongArray(), count); break; case Primitive::kPrimDouble: RecordArrayElementsInTransactionImpl(array->AsDoubleArray(), count); break; default: LOG(FATAL) << "Unsupported primitive type " << primitive_component_type << " in fill-array-data"; break; } } // Explicit DoCall template function declarations. #define EXPLICIT_DO_CALL_TEMPLATE_DECL(_is_range, _do_assignability_check) \ template REQUIRES_SHARED(Locks::mutator_lock_) \ bool DoCall<_is_range, _do_assignability_check>(ArtMethod* method, Thread* self, \ ShadowFrame& shadow_frame, \ const Instruction* inst, uint16_t inst_data, \ JValue* result) EXPLICIT_DO_CALL_TEMPLATE_DECL(false, false); EXPLICIT_DO_CALL_TEMPLATE_DECL(false, true); EXPLICIT_DO_CALL_TEMPLATE_DECL(true, false); EXPLICIT_DO_CALL_TEMPLATE_DECL(true, true); #undef EXPLICIT_DO_CALL_TEMPLATE_DECL // Explicit DoInvokeCustom template function declarations. #define EXPLICIT_DO_INVOKE_CUSTOM_TEMPLATE_DECL(_is_range) \ template REQUIRES_SHARED(Locks::mutator_lock_) \ bool DoInvokeCustom<_is_range>( \ Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, \ uint16_t inst_data, JValue* result) EXPLICIT_DO_INVOKE_CUSTOM_TEMPLATE_DECL(false); EXPLICIT_DO_INVOKE_CUSTOM_TEMPLATE_DECL(true); #undef EXPLICIT_DO_INVOKE_CUSTOM_TEMPLATE_DECL // Explicit DoInvokePolymorphic template function declarations. #define EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(_is_range) \ template REQUIRES_SHARED(Locks::mutator_lock_) \ bool DoInvokePolymorphic<_is_range>( \ Thread* self, ShadowFrame& shadow_frame, const Instruction* inst, \ uint16_t inst_data, JValue* result) EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(false); EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(true); #undef EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL // Explicit DoFilledNewArray template function declarations. #define EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(_is_range_, _check, _transaction_active) \ template REQUIRES_SHARED(Locks::mutator_lock_) \ bool DoFilledNewArray<_is_range_, _check, _transaction_active>(const Instruction* inst, \ const ShadowFrame& shadow_frame, \ Thread* self, JValue* result) #define EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(_transaction_active) \ EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(false, false, _transaction_active); \ EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(false, true, _transaction_active); \ EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(true, false, _transaction_active); \ EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(true, true, _transaction_active) EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(false); EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(true); #undef EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL #undef EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL } // namespace interpreter } // namespace art