/* * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "jit_code_cache.h" #include <sstream> #include "art_method-inl.h" #include "base/enums.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/time_utils.h" #include "cha.h" #include "debugger_interface.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "gc/accounting/bitmap-inl.h" #include "gc/scoped_gc_critical_section.h" #include "jit/jit.h" #include "jit/profiling_info.h" #include "linear_alloc.h" #include "mem_map.h" #include "oat_file-inl.h" #include "scoped_thread_state_change-inl.h" #include "thread_list.h" namespace art { namespace jit { static constexpr int kProtAll = PROT_READ | PROT_WRITE | PROT_EXEC; static constexpr int kProtData = PROT_READ | PROT_WRITE; static constexpr int kProtCode = PROT_READ | PROT_EXEC; static constexpr size_t kCodeSizeLogThreshold = 50 * KB; static constexpr size_t kStackMapSizeLogThreshold = 50 * KB; #define CHECKED_MPROTECT(memory, size, prot) \ do { \ int rc = mprotect(memory, size, prot); \ if (UNLIKELY(rc != 0)) { \ errno = rc; \ PLOG(FATAL) << "Failed to mprotect jit code cache"; \ } \ } while (false) \ JitCodeCache* JitCodeCache::Create(size_t initial_capacity, size_t max_capacity, bool generate_debug_info, std::string* error_msg) { ScopedTrace trace(__PRETTY_FUNCTION__); CHECK_GE(max_capacity, initial_capacity); // Generating debug information is mostly for using the 'perf' tool, which does // not work with ashmem. bool use_ashmem = !generate_debug_info; // With 'perf', we want a 1-1 mapping between an address and a method. bool garbage_collect_code = !generate_debug_info; // We need to have 32 bit offsets from method headers in code cache which point to things // in the data cache. If the maps are more than 4G apart, having multiple maps wouldn't work. // Ensure we're below 1 GB to be safe. if (max_capacity > 1 * GB) { std::ostringstream oss; oss << "Maxium code cache capacity is limited to 1 GB, " << PrettySize(max_capacity) << " is too big"; *error_msg = oss.str(); return nullptr; } std::string error_str; // Map name specific for android_os_Debug.cpp accounting. // Map in low 4gb to simplify accessing root tables for x86_64. // We could do PC-relative addressing to avoid this problem, but that // would require reserving code and data area before submitting, which // means more windows for the code memory to be RWX. MemMap* data_map = MemMap::MapAnonymous( "data-code-cache", nullptr, max_capacity, kProtAll, /* low_4gb */ true, /* reuse */ false, &error_str, use_ashmem); if (data_map == nullptr) { std::ostringstream oss; oss << "Failed to create read write execute cache: " << error_str << " size=" << max_capacity; *error_msg = oss.str(); return nullptr; } // Align both capacities to page size, as that's the unit mspaces use. initial_capacity = RoundDown(initial_capacity, 2 * kPageSize); max_capacity = RoundDown(max_capacity, 2 * kPageSize); // Data cache is 1 / 2 of the map. // TODO: Make this variable? size_t data_size = max_capacity / 2; size_t code_size = max_capacity - data_size; DCHECK_EQ(code_size + data_size, max_capacity); uint8_t* divider = data_map->Begin() + data_size; MemMap* code_map = data_map->RemapAtEnd(divider, "jit-code-cache", kProtAll, &error_str, use_ashmem); if (code_map == nullptr) { std::ostringstream oss; oss << "Failed to create read write execute cache: " << error_str << " size=" << max_capacity; *error_msg = oss.str(); return nullptr; } DCHECK_EQ(code_map->Begin(), divider); data_size = initial_capacity / 2; code_size = initial_capacity - data_size; DCHECK_EQ(code_size + data_size, initial_capacity); return new JitCodeCache( code_map, data_map, code_size, data_size, max_capacity, garbage_collect_code); } JitCodeCache::JitCodeCache(MemMap* code_map, MemMap* data_map, size_t initial_code_capacity, size_t initial_data_capacity, size_t max_capacity, bool garbage_collect_code) : lock_("Jit code cache", kJitCodeCacheLock), lock_cond_("Jit code cache condition variable", lock_), collection_in_progress_(false), code_map_(code_map), data_map_(data_map), max_capacity_(max_capacity), current_capacity_(initial_code_capacity + initial_data_capacity), code_end_(initial_code_capacity), data_end_(initial_data_capacity), last_collection_increased_code_cache_(false), last_update_time_ns_(0), garbage_collect_code_(garbage_collect_code), used_memory_for_data_(0), used_memory_for_code_(0), number_of_compilations_(0), number_of_osr_compilations_(0), number_of_collections_(0), histogram_stack_map_memory_use_("Memory used for stack maps", 16), histogram_code_memory_use_("Memory used for compiled code", 16), histogram_profiling_info_memory_use_("Memory used for profiling info", 16), is_weak_access_enabled_(true), inline_cache_cond_("Jit inline cache condition variable", lock_) { DCHECK_GE(max_capacity, initial_code_capacity + initial_data_capacity); code_mspace_ = create_mspace_with_base(code_map_->Begin(), code_end_, false /*locked*/); data_mspace_ = create_mspace_with_base(data_map_->Begin(), data_end_, false /*locked*/); if (code_mspace_ == nullptr || data_mspace_ == nullptr) { PLOG(FATAL) << "create_mspace_with_base failed"; } SetFootprintLimit(current_capacity_); CHECKED_MPROTECT(code_map_->Begin(), code_map_->Size(), kProtCode); CHECKED_MPROTECT(data_map_->Begin(), data_map_->Size(), kProtData); VLOG(jit) << "Created jit code cache: initial data size=" << PrettySize(initial_data_capacity) << ", initial code size=" << PrettySize(initial_code_capacity); } bool JitCodeCache::ContainsPc(const void* ptr) const { return code_map_->Begin() <= ptr && ptr < code_map_->End(); } bool JitCodeCache::ContainsMethod(ArtMethod* method) { MutexLock mu(Thread::Current(), lock_); for (auto& it : method_code_map_) { if (it.second == method) { return true; } } return false; } class ScopedCodeCacheWrite : ScopedTrace { public: explicit ScopedCodeCacheWrite(MemMap* code_map, bool only_for_tlb_shootdown = false) : ScopedTrace("ScopedCodeCacheWrite"), code_map_(code_map), only_for_tlb_shootdown_(only_for_tlb_shootdown) { ScopedTrace trace("mprotect all"); CHECKED_MPROTECT( code_map_->Begin(), only_for_tlb_shootdown_ ? kPageSize : code_map_->Size(), kProtAll); } ~ScopedCodeCacheWrite() { ScopedTrace trace("mprotect code"); CHECKED_MPROTECT( code_map_->Begin(), only_for_tlb_shootdown_ ? kPageSize : code_map_->Size(), kProtCode); } private: MemMap* const code_map_; // If we're using ScopedCacheWrite only for TLB shootdown, we limit the scope of mprotect to // one page. const bool only_for_tlb_shootdown_; DISALLOW_COPY_AND_ASSIGN(ScopedCodeCacheWrite); }; uint8_t* JitCodeCache::CommitCode(Thread* self, ArtMethod* method, uint8_t* stack_map, uint8_t* method_info, uint8_t* roots_data, size_t frame_size_in_bytes, size_t core_spill_mask, size_t fp_spill_mask, const uint8_t* code, size_t code_size, size_t data_size, bool osr, Handle<mirror::ObjectArray<mirror::Object>> roots, bool has_should_deoptimize_flag, const ArenaSet<ArtMethod*>& cha_single_implementation_list) { uint8_t* result = CommitCodeInternal(self, method, stack_map, method_info, roots_data, frame_size_in_bytes, core_spill_mask, fp_spill_mask, code, code_size, data_size, osr, roots, has_should_deoptimize_flag, cha_single_implementation_list); if (result == nullptr) { // Retry. GarbageCollectCache(self); result = CommitCodeInternal(self, method, stack_map, method_info, roots_data, frame_size_in_bytes, core_spill_mask, fp_spill_mask, code, code_size, data_size, osr, roots, has_should_deoptimize_flag, cha_single_implementation_list); } return result; } bool JitCodeCache::WaitForPotentialCollectionToComplete(Thread* self) { bool in_collection = false; while (collection_in_progress_) { in_collection = true; lock_cond_.Wait(self); } return in_collection; } static uintptr_t FromCodeToAllocation(const void* code) { size_t alignment = GetInstructionSetAlignment(kRuntimeISA); return reinterpret_cast<uintptr_t>(code) - RoundUp(sizeof(OatQuickMethodHeader), alignment); } static uint32_t ComputeRootTableSize(uint32_t number_of_roots) { return sizeof(uint32_t) + number_of_roots * sizeof(GcRoot<mirror::Object>); } static uint32_t GetNumberOfRoots(const uint8_t* stack_map) { // The length of the table is stored just before the stack map (and therefore at the end of // the table itself), in order to be able to fetch it from a `stack_map` pointer. return reinterpret_cast<const uint32_t*>(stack_map)[-1]; } static void FillRootTableLength(uint8_t* roots_data, uint32_t length) { // Store the length of the table at the end. This will allow fetching it from a `stack_map` // pointer. reinterpret_cast<uint32_t*>(roots_data)[length] = length; } static const uint8_t* FromStackMapToRoots(const uint8_t* stack_map_data) { return stack_map_data - ComputeRootTableSize(GetNumberOfRoots(stack_map_data)); } static void FillRootTable(uint8_t* roots_data, Handle<mirror::ObjectArray<mirror::Object>> roots) REQUIRES_SHARED(Locks::mutator_lock_) { GcRoot<mirror::Object>* gc_roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data); const uint32_t length = roots->GetLength(); // Put all roots in `roots_data`. for (uint32_t i = 0; i < length; ++i) { ObjPtr<mirror::Object> object = roots->Get(i); if (kIsDebugBuild) { // Ensure the string is strongly interned. b/32995596 if (object->IsString()) { ObjPtr<mirror::String> str = reinterpret_cast<mirror::String*>(object.Ptr()); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); CHECK(class_linker->GetInternTable()->LookupStrong(Thread::Current(), str) != nullptr); } } gc_roots[i] = GcRoot<mirror::Object>(object); } } static uint8_t* GetRootTable(const void* code_ptr, uint32_t* number_of_roots = nullptr) { OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); uint8_t* data = method_header->GetOptimizedCodeInfoPtr(); uint32_t roots = GetNumberOfRoots(data); if (number_of_roots != nullptr) { *number_of_roots = roots; } return data - ComputeRootTableSize(roots); } // Use a sentinel for marking entries in the JIT table that have been cleared. // This helps diagnosing in case the compiled code tries to wrongly access such // entries. static mirror::Class* const weak_sentinel = reinterpret_cast<mirror::Class*>(0x1); // Helper for the GC to process a weak class in a JIT root table. static inline void ProcessWeakClass(GcRoot<mirror::Class>* root_ptr, IsMarkedVisitor* visitor, mirror::Class* update) REQUIRES_SHARED(Locks::mutator_lock_) { // This does not need a read barrier because this is called by GC. mirror::Class* cls = root_ptr->Read<kWithoutReadBarrier>(); if (cls != nullptr && cls != weak_sentinel) { DCHECK((cls->IsClass<kDefaultVerifyFlags, kWithoutReadBarrier>())); // Look at the classloader of the class to know if it has been unloaded. // This does not need a read barrier because this is called by GC. mirror::Object* class_loader = cls->GetClassLoader<kDefaultVerifyFlags, kWithoutReadBarrier>(); if (class_loader == nullptr || visitor->IsMarked(class_loader) != nullptr) { // The class loader is live, update the entry if the class has moved. mirror::Class* new_cls = down_cast<mirror::Class*>(visitor->IsMarked(cls)); // Note that new_object can be null for CMS and newly allocated objects. if (new_cls != nullptr && new_cls != cls) { *root_ptr = GcRoot<mirror::Class>(new_cls); } } else { // The class loader is not live, clear the entry. *root_ptr = GcRoot<mirror::Class>(update); } } } void JitCodeCache::SweepRootTables(IsMarkedVisitor* visitor) { MutexLock mu(Thread::Current(), lock_); for (const auto& entry : method_code_map_) { uint32_t number_of_roots = 0; uint8_t* roots_data = GetRootTable(entry.first, &number_of_roots); GcRoot<mirror::Object>* roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data); for (uint32_t i = 0; i < number_of_roots; ++i) { // This does not need a read barrier because this is called by GC. mirror::Object* object = roots[i].Read<kWithoutReadBarrier>(); if (object == nullptr || object == weak_sentinel) { // entry got deleted in a previous sweep. } else if (object->IsString<kDefaultVerifyFlags, kWithoutReadBarrier>()) { mirror::Object* new_object = visitor->IsMarked(object); // We know the string is marked because it's a strongly-interned string that // is always alive. The IsMarked implementation of the CMS collector returns // null for newly allocated objects, but we know those haven't moved. Therefore, // only update the entry if we get a different non-null string. // TODO: Do not use IsMarked for j.l.Class, and adjust once we move this method // out of the weak access/creation pause. b/32167580 if (new_object != nullptr && new_object != object) { DCHECK(new_object->IsString()); roots[i] = GcRoot<mirror::Object>(new_object); } } else { ProcessWeakClass( reinterpret_cast<GcRoot<mirror::Class>*>(&roots[i]), visitor, weak_sentinel); } } } // Walk over inline caches to clear entries containing unloaded classes. for (ProfilingInfo* info : profiling_infos_) { for (size_t i = 0; i < info->number_of_inline_caches_; ++i) { InlineCache* cache = &info->cache_[i]; for (size_t j = 0; j < InlineCache::kIndividualCacheSize; ++j) { ProcessWeakClass(&cache->classes_[j], visitor, nullptr); } } } } void JitCodeCache::FreeCode(const void* code_ptr) { uintptr_t allocation = FromCodeToAllocation(code_ptr); // Notify native debugger that we are about to remove the code. // It does nothing if we are not using native debugger. DeleteJITCodeEntryForAddress(reinterpret_cast<uintptr_t>(code_ptr)); FreeData(GetRootTable(code_ptr)); FreeCode(reinterpret_cast<uint8_t*>(allocation)); } void JitCodeCache::FreeAllMethodHeaders( const std::unordered_set<OatQuickMethodHeader*>& method_headers) { { MutexLock mu(Thread::Current(), *Locks::cha_lock_); Runtime::Current()->GetClassHierarchyAnalysis() ->RemoveDependentsWithMethodHeaders(method_headers); } // We need to remove entries in method_headers from CHA dependencies // first since once we do FreeCode() below, the memory can be reused // so it's possible for the same method_header to start representing // different compile code. MutexLock mu(Thread::Current(), lock_); ScopedCodeCacheWrite scc(code_map_.get()); for (const OatQuickMethodHeader* method_header : method_headers) { FreeCode(method_header->GetCode()); } } void JitCodeCache::RemoveMethodsIn(Thread* self, const LinearAlloc& alloc) { ScopedTrace trace(__PRETTY_FUNCTION__); // We use a set to first collect all method_headers whose code need to be // removed. We need to free the underlying code after we remove CHA dependencies // for entries in this set. And it's more efficient to iterate through // the CHA dependency map just once with an unordered_set. std::unordered_set<OatQuickMethodHeader*> method_headers; { MutexLock mu(self, lock_); // We do not check if a code cache GC is in progress, as this method comes // with the classlinker_classes_lock_ held, and suspending ourselves could // lead to a deadlock. { ScopedCodeCacheWrite scc(code_map_.get()); for (auto it = method_code_map_.begin(); it != method_code_map_.end();) { if (alloc.ContainsUnsafe(it->second)) { method_headers.insert(OatQuickMethodHeader::FromCodePointer(it->first)); it = method_code_map_.erase(it); } else { ++it; } } } for (auto it = osr_code_map_.begin(); it != osr_code_map_.end();) { if (alloc.ContainsUnsafe(it->first)) { // Note that the code has already been pushed to method_headers in the loop // above and is going to be removed in FreeCode() below. it = osr_code_map_.erase(it); } else { ++it; } } for (auto it = profiling_infos_.begin(); it != profiling_infos_.end();) { ProfilingInfo* info = *it; if (alloc.ContainsUnsafe(info->GetMethod())) { info->GetMethod()->SetProfilingInfo(nullptr); FreeData(reinterpret_cast<uint8_t*>(info)); it = profiling_infos_.erase(it); } else { ++it; } } } FreeAllMethodHeaders(method_headers); } bool JitCodeCache::IsWeakAccessEnabled(Thread* self) const { return kUseReadBarrier ? self->GetWeakRefAccessEnabled() : is_weak_access_enabled_.LoadSequentiallyConsistent(); } void JitCodeCache::WaitUntilInlineCacheAccessible(Thread* self) { if (IsWeakAccessEnabled(self)) { return; } ScopedThreadSuspension sts(self, kWaitingWeakGcRootRead); MutexLock mu(self, lock_); while (!IsWeakAccessEnabled(self)) { inline_cache_cond_.Wait(self); } } void JitCodeCache::BroadcastForInlineCacheAccess() { Thread* self = Thread::Current(); MutexLock mu(self, lock_); inline_cache_cond_.Broadcast(self); } void JitCodeCache::AllowInlineCacheAccess() { DCHECK(!kUseReadBarrier); is_weak_access_enabled_.StoreSequentiallyConsistent(true); BroadcastForInlineCacheAccess(); } void JitCodeCache::DisallowInlineCacheAccess() { DCHECK(!kUseReadBarrier); is_weak_access_enabled_.StoreSequentiallyConsistent(false); } void JitCodeCache::CopyInlineCacheInto(const InlineCache& ic, Handle<mirror::ObjectArray<mirror::Class>> array) { WaitUntilInlineCacheAccessible(Thread::Current()); // Note that we don't need to lock `lock_` here, the compiler calling // this method has already ensured the inline cache will not be deleted. for (size_t in_cache = 0, in_array = 0; in_cache < InlineCache::kIndividualCacheSize; ++in_cache) { mirror::Class* object = ic.classes_[in_cache].Read(); if (object != nullptr) { array->Set(in_array++, object); } } } uint8_t* JitCodeCache::CommitCodeInternal(Thread* self, ArtMethod* method, uint8_t* stack_map, uint8_t* method_info, uint8_t* roots_data, size_t frame_size_in_bytes, size_t core_spill_mask, size_t fp_spill_mask, const uint8_t* code, size_t code_size, size_t data_size, bool osr, Handle<mirror::ObjectArray<mirror::Object>> roots, bool has_should_deoptimize_flag, const ArenaSet<ArtMethod*>& cha_single_implementation_list) { DCHECK(stack_map != nullptr); size_t alignment = GetInstructionSetAlignment(kRuntimeISA); // Ensure the header ends up at expected instruction alignment. size_t header_size = RoundUp(sizeof(OatQuickMethodHeader), alignment); size_t total_size = header_size + code_size; OatQuickMethodHeader* method_header = nullptr; uint8_t* code_ptr = nullptr; uint8_t* memory = nullptr; { ScopedThreadSuspension sts(self, kSuspended); MutexLock mu(self, lock_); WaitForPotentialCollectionToComplete(self); { ScopedCodeCacheWrite scc(code_map_.get()); memory = AllocateCode(total_size); if (memory == nullptr) { return nullptr; } code_ptr = memory + header_size; std::copy(code, code + code_size, code_ptr); method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); new (method_header) OatQuickMethodHeader( code_ptr - stack_map, code_ptr - method_info, frame_size_in_bytes, core_spill_mask, fp_spill_mask, code_size); // Flush caches before we remove write permission because some ARMv8 Qualcomm kernels may // trigger a segfault if a page fault occurs when requesting a cache maintenance operation. // This is a kernel bug that we need to work around until affected devices (e.g. Nexus 5X and // 6P) stop being supported or their kernels are fixed. // // For reference, this behavior is caused by this commit: // https://android.googlesource.com/kernel/msm/+/3fbe6bc28a6b9939d0650f2f17eb5216c719950c FlushInstructionCache(reinterpret_cast<char*>(code_ptr), reinterpret_cast<char*>(code_ptr + code_size)); DCHECK(!Runtime::Current()->IsAotCompiler()); if (has_should_deoptimize_flag) { method_header->SetHasShouldDeoptimizeFlag(); } } number_of_compilations_++; } // We need to update the entry point in the runnable state for the instrumentation. { // Need cha_lock_ for checking all single-implementation flags and register // dependencies. MutexLock cha_mu(self, *Locks::cha_lock_); bool single_impl_still_valid = true; for (ArtMethod* single_impl : cha_single_implementation_list) { if (!single_impl->HasSingleImplementation()) { // We simply discard the compiled code. Clear the // counter so that it may be recompiled later. Hopefully the // class hierarchy will be more stable when compilation is retried. single_impl_still_valid = false; method->ClearCounter(); break; } } // Discard the code if any single-implementation assumptions are now invalid. if (!single_impl_still_valid) { VLOG(jit) << "JIT discarded jitted code due to invalid single-implementation assumptions."; return nullptr; } DCHECK(cha_single_implementation_list.empty() || !Runtime::Current()->IsJavaDebuggable()) << "Should not be using cha on debuggable apps/runs!"; for (ArtMethod* single_impl : cha_single_implementation_list) { Runtime::Current()->GetClassHierarchyAnalysis()->AddDependency( single_impl, method, method_header); } // The following needs to be guarded by cha_lock_ also. Otherwise it's // possible that the compiled code is considered invalidated by some class linking, // but below we still make the compiled code valid for the method. MutexLock mu(self, lock_); // Fill the root table before updating the entry point. DCHECK_EQ(FromStackMapToRoots(stack_map), roots_data); DCHECK_LE(roots_data, stack_map); FillRootTable(roots_data, roots); { // Flush data cache, as compiled code references literals in it. // We also need a TLB shootdown to act as memory barrier across cores. ScopedCodeCacheWrite ccw(code_map_.get(), /* only_for_tlb_shootdown */ true); FlushDataCache(reinterpret_cast<char*>(roots_data), reinterpret_cast<char*>(roots_data + data_size)); } method_code_map_.Put(code_ptr, method); if (osr) { number_of_osr_compilations_++; osr_code_map_.Put(method, code_ptr); } else { Runtime::Current()->GetInstrumentation()->UpdateMethodsCode( method, method_header->GetEntryPoint()); } if (collection_in_progress_) { // We need to update the live bitmap if there is a GC to ensure it sees this new // code. GetLiveBitmap()->AtomicTestAndSet(FromCodeToAllocation(code_ptr)); } last_update_time_ns_.StoreRelease(NanoTime()); VLOG(jit) << "JIT added (osr=" << std::boolalpha << osr << std::noboolalpha << ") " << ArtMethod::PrettyMethod(method) << "@" << method << " ccache_size=" << PrettySize(CodeCacheSizeLocked()) << ": " << " dcache_size=" << PrettySize(DataCacheSizeLocked()) << ": " << reinterpret_cast<const void*>(method_header->GetEntryPoint()) << "," << reinterpret_cast<const void*>(method_header->GetEntryPoint() + method_header->GetCodeSize()); histogram_code_memory_use_.AddValue(code_size); if (code_size > kCodeSizeLogThreshold) { LOG(INFO) << "JIT allocated " << PrettySize(code_size) << " for compiled code of " << ArtMethod::PrettyMethod(method); } } return reinterpret_cast<uint8_t*>(method_header); } size_t JitCodeCache::CodeCacheSize() { MutexLock mu(Thread::Current(), lock_); return CodeCacheSizeLocked(); } // This notifies the code cache that the given method has been redefined and that it should remove // any cached information it has on the method. All threads must be suspended before calling this // method. The compiled code for the method (if there is any) must not be in any threads call stack. void JitCodeCache::NotifyMethodRedefined(ArtMethod* method) { MutexLock mu(Thread::Current(), lock_); if (method->IsNative()) { return; } ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); if (info != nullptr) { auto profile = std::find(profiling_infos_.begin(), profiling_infos_.end(), info); DCHECK(profile != profiling_infos_.end()); profiling_infos_.erase(profile); } method->SetProfilingInfo(nullptr); ScopedCodeCacheWrite ccw(code_map_.get()); for (auto code_iter = method_code_map_.begin(); code_iter != method_code_map_.end();) { if (code_iter->second == method) { FreeCode(code_iter->first); code_iter = method_code_map_.erase(code_iter); continue; } ++code_iter; } auto code_map = osr_code_map_.find(method); if (code_map != osr_code_map_.end()) { osr_code_map_.erase(code_map); } } // This invalidates old_method. Once this function returns one can no longer use old_method to // execute code unless it is fixed up. This fixup will happen later in the process of installing a // class redefinition. // TODO We should add some info to ArtMethod to note that 'old_method' has been invalidated and // shouldn't be used since it is no longer logically in the jit code cache. // TODO We should add DCHECKS that validate that the JIT is paused when this method is entered. void JitCodeCache::MoveObsoleteMethod(ArtMethod* old_method, ArtMethod* new_method) { // Native methods have no profiling info and need no special handling from the JIT code cache. if (old_method->IsNative()) { return; } MutexLock mu(Thread::Current(), lock_); // Update ProfilingInfo to the new one and remove it from the old_method. if (old_method->GetProfilingInfo(kRuntimePointerSize) != nullptr) { DCHECK_EQ(old_method->GetProfilingInfo(kRuntimePointerSize)->GetMethod(), old_method); ProfilingInfo* info = old_method->GetProfilingInfo(kRuntimePointerSize); old_method->SetProfilingInfo(nullptr); // Since the JIT should be paused and all threads suspended by the time this is called these // checks should always pass. DCHECK(!info->IsInUseByCompiler()); new_method->SetProfilingInfo(info); info->method_ = new_method; } // Update method_code_map_ to point to the new method. for (auto& it : method_code_map_) { if (it.second == old_method) { it.second = new_method; } } // Update osr_code_map_ to point to the new method. auto code_map = osr_code_map_.find(old_method); if (code_map != osr_code_map_.end()) { osr_code_map_.Put(new_method, code_map->second); osr_code_map_.erase(old_method); } } size_t JitCodeCache::CodeCacheSizeLocked() { return used_memory_for_code_; } size_t JitCodeCache::DataCacheSize() { MutexLock mu(Thread::Current(), lock_); return DataCacheSizeLocked(); } size_t JitCodeCache::DataCacheSizeLocked() { return used_memory_for_data_; } void JitCodeCache::ClearData(Thread* self, uint8_t* stack_map_data, uint8_t* roots_data) { DCHECK_EQ(FromStackMapToRoots(stack_map_data), roots_data); MutexLock mu(self, lock_); FreeData(reinterpret_cast<uint8_t*>(roots_data)); } size_t JitCodeCache::ReserveData(Thread* self, size_t stack_map_size, size_t method_info_size, size_t number_of_roots, ArtMethod* method, uint8_t** stack_map_data, uint8_t** method_info_data, uint8_t** roots_data) { size_t table_size = ComputeRootTableSize(number_of_roots); size_t size = RoundUp(stack_map_size + method_info_size + table_size, sizeof(void*)); uint8_t* result = nullptr; { ScopedThreadSuspension sts(self, kSuspended); MutexLock mu(self, lock_); WaitForPotentialCollectionToComplete(self); result = AllocateData(size); } if (result == nullptr) { // Retry. GarbageCollectCache(self); ScopedThreadSuspension sts(self, kSuspended); MutexLock mu(self, lock_); WaitForPotentialCollectionToComplete(self); result = AllocateData(size); } MutexLock mu(self, lock_); histogram_stack_map_memory_use_.AddValue(size); if (size > kStackMapSizeLogThreshold) { LOG(INFO) << "JIT allocated " << PrettySize(size) << " for stack maps of " << ArtMethod::PrettyMethod(method); } if (result != nullptr) { *roots_data = result; *stack_map_data = result + table_size; *method_info_data = *stack_map_data + stack_map_size; FillRootTableLength(*roots_data, number_of_roots); return size; } else { *roots_data = nullptr; *stack_map_data = nullptr; *method_info_data = nullptr; return 0; } } class MarkCodeVisitor FINAL : public StackVisitor { public: MarkCodeVisitor(Thread* thread_in, JitCodeCache* code_cache_in) : StackVisitor(thread_in, nullptr, StackVisitor::StackWalkKind::kSkipInlinedFrames), code_cache_(code_cache_in), bitmap_(code_cache_->GetLiveBitmap()) {} bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader(); if (method_header == nullptr) { return true; } const void* code = method_header->GetCode(); if (code_cache_->ContainsPc(code)) { // Use the atomic set version, as multiple threads are executing this code. bitmap_->AtomicTestAndSet(FromCodeToAllocation(code)); } return true; } private: JitCodeCache* const code_cache_; CodeCacheBitmap* const bitmap_; }; class MarkCodeClosure FINAL : public Closure { public: MarkCodeClosure(JitCodeCache* code_cache, Barrier* barrier) : code_cache_(code_cache), barrier_(barrier) {} void Run(Thread* thread) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { ScopedTrace trace(__PRETTY_FUNCTION__); DCHECK(thread == Thread::Current() || thread->IsSuspended()); MarkCodeVisitor visitor(thread, code_cache_); visitor.WalkStack(); if (kIsDebugBuild) { // The stack walking code queries the side instrumentation stack if it // sees an instrumentation exit pc, so the JIT code of methods in that stack // must have been seen. We sanity check this below. for (const instrumentation::InstrumentationStackFrame& frame : *thread->GetInstrumentationStack()) { // The 'method_' in InstrumentationStackFrame is the one that has return_pc_ in // its stack frame, it is not the method owning return_pc_. We just pass null to // LookupMethodHeader: the method is only checked against in debug builds. OatQuickMethodHeader* method_header = code_cache_->LookupMethodHeader(frame.return_pc_, nullptr); if (method_header != nullptr) { const void* code = method_header->GetCode(); CHECK(code_cache_->GetLiveBitmap()->Test(FromCodeToAllocation(code))); } } } barrier_->Pass(Thread::Current()); } private: JitCodeCache* const code_cache_; Barrier* const barrier_; }; void JitCodeCache::NotifyCollectionDone(Thread* self) { collection_in_progress_ = false; lock_cond_.Broadcast(self); } void JitCodeCache::SetFootprintLimit(size_t new_footprint) { size_t per_space_footprint = new_footprint / 2; DCHECK(IsAlignedParam(per_space_footprint, kPageSize)); DCHECK_EQ(per_space_footprint * 2, new_footprint); mspace_set_footprint_limit(data_mspace_, per_space_footprint); { ScopedCodeCacheWrite scc(code_map_.get()); mspace_set_footprint_limit(code_mspace_, per_space_footprint); } } bool JitCodeCache::IncreaseCodeCacheCapacity() { if (current_capacity_ == max_capacity_) { return false; } // Double the capacity if we're below 1MB, or increase it by 1MB if // we're above. if (current_capacity_ < 1 * MB) { current_capacity_ *= 2; } else { current_capacity_ += 1 * MB; } if (current_capacity_ > max_capacity_) { current_capacity_ = max_capacity_; } if (!kIsDebugBuild || VLOG_IS_ON(jit)) { LOG(INFO) << "Increasing code cache capacity to " << PrettySize(current_capacity_); } SetFootprintLimit(current_capacity_); return true; } void JitCodeCache::MarkCompiledCodeOnThreadStacks(Thread* self) { Barrier barrier(0); size_t threads_running_checkpoint = 0; MarkCodeClosure closure(this, &barrier); threads_running_checkpoint = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure); // Now that we have run our checkpoint, move to a suspended state and wait // for other threads to run the checkpoint. ScopedThreadSuspension sts(self, kSuspended); if (threads_running_checkpoint != 0) { barrier.Increment(self, threads_running_checkpoint); } } bool JitCodeCache::ShouldDoFullCollection() { if (current_capacity_ == max_capacity_) { // Always do a full collection when the code cache is full. return true; } else if (current_capacity_ < kReservedCapacity) { // Always do partial collection when the code cache size is below the reserved // capacity. return false; } else if (last_collection_increased_code_cache_) { // This time do a full collection. return true; } else { // This time do a partial collection. return false; } } void JitCodeCache::GarbageCollectCache(Thread* self) { ScopedTrace trace(__FUNCTION__); if (!garbage_collect_code_) { MutexLock mu(self, lock_); IncreaseCodeCacheCapacity(); return; } // Wait for an existing collection, or let everyone know we are starting one. { ScopedThreadSuspension sts(self, kSuspended); MutexLock mu(self, lock_); if (WaitForPotentialCollectionToComplete(self)) { return; } else { number_of_collections_++; live_bitmap_.reset(CodeCacheBitmap::Create( "code-cache-bitmap", reinterpret_cast<uintptr_t>(code_map_->Begin()), reinterpret_cast<uintptr_t>(code_map_->Begin() + current_capacity_ / 2))); collection_in_progress_ = true; } } TimingLogger logger("JIT code cache timing logger", true, VLOG_IS_ON(jit)); { TimingLogger::ScopedTiming st("Code cache collection", &logger); bool do_full_collection = false; { MutexLock mu(self, lock_); do_full_collection = ShouldDoFullCollection(); } if (!kIsDebugBuild || VLOG_IS_ON(jit)) { LOG(INFO) << "Do " << (do_full_collection ? "full" : "partial") << " code cache collection, code=" << PrettySize(CodeCacheSize()) << ", data=" << PrettySize(DataCacheSize()); } DoCollection(self, /* collect_profiling_info */ do_full_collection); if (!kIsDebugBuild || VLOG_IS_ON(jit)) { LOG(INFO) << "After code cache collection, code=" << PrettySize(CodeCacheSize()) << ", data=" << PrettySize(DataCacheSize()); } { MutexLock mu(self, lock_); // Increase the code cache only when we do partial collections. // TODO: base this strategy on how full the code cache is? if (do_full_collection) { last_collection_increased_code_cache_ = false; } else { last_collection_increased_code_cache_ = true; IncreaseCodeCacheCapacity(); } bool next_collection_will_be_full = ShouldDoFullCollection(); // Start polling the liveness of compiled code to prepare for the next full collection. if (next_collection_will_be_full) { // Save the entry point of methods we have compiled, and update the entry // point of those methods to the interpreter. If the method is invoked, the // interpreter will update its entry point to the compiled code and call it. for (ProfilingInfo* info : profiling_infos_) { const void* entry_point = info->GetMethod()->GetEntryPointFromQuickCompiledCode(); if (ContainsPc(entry_point)) { info->SetSavedEntryPoint(entry_point); // Don't call Instrumentation::UpdateMethods, as it can check the declaring // class of the method. We may be concurrently running a GC which makes accessing // the class unsafe. We know it is OK to bypass the instrumentation as we've just // checked that the current entry point is JIT compiled code. info->GetMethod()->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); } } DCHECK(CheckLiveCompiledCodeHasProfilingInfo()); } live_bitmap_.reset(nullptr); NotifyCollectionDone(self); } } Runtime::Current()->GetJit()->AddTimingLogger(logger); } void JitCodeCache::RemoveUnmarkedCode(Thread* self) { ScopedTrace trace(__FUNCTION__); std::unordered_set<OatQuickMethodHeader*> method_headers; { MutexLock mu(self, lock_); ScopedCodeCacheWrite scc(code_map_.get()); // Iterate over all compiled code and remove entries that are not marked. for (auto it = method_code_map_.begin(); it != method_code_map_.end();) { const void* code_ptr = it->first; uintptr_t allocation = FromCodeToAllocation(code_ptr); if (GetLiveBitmap()->Test(allocation)) { ++it; } else { method_headers.insert(OatQuickMethodHeader::FromCodePointer(it->first)); it = method_code_map_.erase(it); } } } FreeAllMethodHeaders(method_headers); } void JitCodeCache::DoCollection(Thread* self, bool collect_profiling_info) { ScopedTrace trace(__FUNCTION__); { MutexLock mu(self, lock_); if (collect_profiling_info) { // Clear the profiling info of methods that do not have compiled code as entrypoint. // Also remove the saved entry point from the ProfilingInfo objects. for (ProfilingInfo* info : profiling_infos_) { const void* ptr = info->GetMethod()->GetEntryPointFromQuickCompiledCode(); if (!ContainsPc(ptr) && !info->IsInUseByCompiler()) { info->GetMethod()->SetProfilingInfo(nullptr); } if (info->GetSavedEntryPoint() != nullptr) { info->SetSavedEntryPoint(nullptr); // We are going to move this method back to interpreter. Clear the counter now to // give it a chance to be hot again. info->GetMethod()->ClearCounter(); } } } else if (kIsDebugBuild) { // Sanity check that the profiling infos do not have a dangling entry point. for (ProfilingInfo* info : profiling_infos_) { DCHECK(info->GetSavedEntryPoint() == nullptr); } } // Mark compiled code that are entrypoints of ArtMethods. Compiled code that is not // an entry point is either: // - an osr compiled code, that will be removed if not in a thread call stack. // - discarded compiled code, that will be removed if not in a thread call stack. for (const auto& it : method_code_map_) { ArtMethod* method = it.second; const void* code_ptr = it.first; const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); if (method_header->GetEntryPoint() == method->GetEntryPointFromQuickCompiledCode()) { GetLiveBitmap()->AtomicTestAndSet(FromCodeToAllocation(code_ptr)); } } // Empty osr method map, as osr compiled code will be deleted (except the ones // on thread stacks). osr_code_map_.clear(); } // Run a checkpoint on all threads to mark the JIT compiled code they are running. MarkCompiledCodeOnThreadStacks(self); // At this point, mutator threads are still running, and entrypoints of methods can // change. We do know they cannot change to a code cache entry that is not marked, // therefore we can safely remove those entries. RemoveUnmarkedCode(self); if (collect_profiling_info) { ScopedThreadSuspension sts(self, kSuspended); MutexLock mu(self, lock_); // Free all profiling infos of methods not compiled nor being compiled. auto profiling_kept_end = std::remove_if(profiling_infos_.begin(), profiling_infos_.end(), [this] (ProfilingInfo* info) NO_THREAD_SAFETY_ANALYSIS { const void* ptr = info->GetMethod()->GetEntryPointFromQuickCompiledCode(); // We have previously cleared the ProfilingInfo pointer in the ArtMethod in the hope // that the compiled code would not get revived. As mutator threads run concurrently, // they may have revived the compiled code, and now we are in the situation where // a method has compiled code but no ProfilingInfo. // We make sure compiled methods have a ProfilingInfo object. It is needed for // code cache collection. if (ContainsPc(ptr) && info->GetMethod()->GetProfilingInfo(kRuntimePointerSize) == nullptr) { info->GetMethod()->SetProfilingInfo(info); } else if (info->GetMethod()->GetProfilingInfo(kRuntimePointerSize) != info) { // No need for this ProfilingInfo object anymore. FreeData(reinterpret_cast<uint8_t*>(info)); return true; } return false; }); profiling_infos_.erase(profiling_kept_end, profiling_infos_.end()); DCHECK(CheckLiveCompiledCodeHasProfilingInfo()); } } bool JitCodeCache::CheckLiveCompiledCodeHasProfilingInfo() { ScopedTrace trace(__FUNCTION__); // Check that methods we have compiled do have a ProfilingInfo object. We would // have memory leaks of compiled code otherwise. for (const auto& it : method_code_map_) { ArtMethod* method = it.second; if (method->GetProfilingInfo(kRuntimePointerSize) == nullptr) { const void* code_ptr = it.first; const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); if (method_header->GetEntryPoint() == method->GetEntryPointFromQuickCompiledCode()) { // If the code is not dead, then we have a problem. Note that this can even // happen just after a collection, as mutator threads are running in parallel // and could deoptimize an existing compiled code. return false; } } } return true; } OatQuickMethodHeader* JitCodeCache::LookupMethodHeader(uintptr_t pc, ArtMethod* method) { static_assert(kRuntimeISA != kThumb2, "kThumb2 cannot be a runtime ISA"); if (kRuntimeISA == kArm) { // On Thumb-2, the pc is offset by one. --pc; } if (!ContainsPc(reinterpret_cast<const void*>(pc))) { return nullptr; } MutexLock mu(Thread::Current(), lock_); if (method_code_map_.empty()) { return nullptr; } auto it = method_code_map_.lower_bound(reinterpret_cast<const void*>(pc)); --it; const void* code_ptr = it->first; OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); if (!method_header->Contains(pc)) { return nullptr; } if (kIsDebugBuild && method != nullptr) { // When we are walking the stack to redefine classes and creating obsolete methods it is // possible that we might have updated the method_code_map by making this method obsolete in a // previous frame. Therefore we should just check that the non-obsolete version of this method // is the one we expect. We change to the non-obsolete versions in the error message since the // obsolete version of the method might not be fully initialized yet. This situation can only // occur when we are in the process of allocating and setting up obsolete methods. Otherwise // method and it->second should be identical. (See runtime/openjdkjvmti/ti_redefine.cc for more // information.) DCHECK_EQ(it->second->GetNonObsoleteMethod(), method->GetNonObsoleteMethod()) << ArtMethod::PrettyMethod(method->GetNonObsoleteMethod()) << " " << ArtMethod::PrettyMethod(it->second->GetNonObsoleteMethod()) << " " << std::hex << pc; } return method_header; } OatQuickMethodHeader* JitCodeCache::LookupOsrMethodHeader(ArtMethod* method) { MutexLock mu(Thread::Current(), lock_); auto it = osr_code_map_.find(method); if (it == osr_code_map_.end()) { return nullptr; } return OatQuickMethodHeader::FromCodePointer(it->second); } ProfilingInfo* JitCodeCache::AddProfilingInfo(Thread* self, ArtMethod* method, const std::vector<uint32_t>& entries, bool retry_allocation) // No thread safety analysis as we are using TryLock/Unlock explicitly. NO_THREAD_SAFETY_ANALYSIS { ProfilingInfo* info = nullptr; if (!retry_allocation) { // If we are allocating for the interpreter, just try to lock, to avoid // lock contention with the JIT. if (lock_.ExclusiveTryLock(self)) { info = AddProfilingInfoInternal(self, method, entries); lock_.ExclusiveUnlock(self); } } else { { MutexLock mu(self, lock_); info = AddProfilingInfoInternal(self, method, entries); } if (info == nullptr) { GarbageCollectCache(self); MutexLock mu(self, lock_); info = AddProfilingInfoInternal(self, method, entries); } } return info; } ProfilingInfo* JitCodeCache::AddProfilingInfoInternal(Thread* self ATTRIBUTE_UNUSED, ArtMethod* method, const std::vector<uint32_t>& entries) { size_t profile_info_size = RoundUp( sizeof(ProfilingInfo) + sizeof(InlineCache) * entries.size(), sizeof(void*)); // Check whether some other thread has concurrently created it. ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); if (info != nullptr) { return info; } uint8_t* data = AllocateData(profile_info_size); if (data == nullptr) { return nullptr; } info = new (data) ProfilingInfo(method, entries); // Make sure other threads see the data in the profiling info object before the // store in the ArtMethod's ProfilingInfo pointer. QuasiAtomic::ThreadFenceRelease(); method->SetProfilingInfo(info); profiling_infos_.push_back(info); histogram_profiling_info_memory_use_.AddValue(profile_info_size); return info; } // NO_THREAD_SAFETY_ANALYSIS as this is called from mspace code, at which point the lock // is already held. void* JitCodeCache::MoreCore(const void* mspace, intptr_t increment) NO_THREAD_SAFETY_ANALYSIS { if (code_mspace_ == mspace) { size_t result = code_end_; code_end_ += increment; return reinterpret_cast<void*>(result + code_map_->Begin()); } else { DCHECK_EQ(data_mspace_, mspace); size_t result = data_end_; data_end_ += increment; return reinterpret_cast<void*>(result + data_map_->Begin()); } } void JitCodeCache::GetProfiledMethods(const std::set<std::string>& dex_base_locations, std::vector<ProfileMethodInfo>& methods) { ScopedTrace trace(__FUNCTION__); MutexLock mu(Thread::Current(), lock_); uint16_t jit_compile_threshold = Runtime::Current()->GetJITOptions()->GetCompileThreshold(); for (const ProfilingInfo* info : profiling_infos_) { ArtMethod* method = info->GetMethod(); const DexFile* dex_file = method->GetDexFile(); if (!ContainsElement(dex_base_locations, dex_file->GetBaseLocation())) { // Skip dex files which are not profiled. continue; } std::vector<ProfileMethodInfo::ProfileInlineCache> inline_caches; // If the method didn't reach the compilation threshold don't save the inline caches. // They might be incomplete and cause unnecessary deoptimizations. // If the inline cache is empty the compiler will generate a regular invoke virtual/interface. if (method->GetCounter() < jit_compile_threshold) { methods.emplace_back(/*ProfileMethodInfo*/ dex_file, method->GetDexMethodIndex(), inline_caches); continue; } for (size_t i = 0; i < info->number_of_inline_caches_; ++i) { std::vector<ProfileMethodInfo::ProfileClassReference> profile_classes; const InlineCache& cache = info->cache_[i]; ArtMethod* caller = info->GetMethod(); bool is_missing_types = false; for (size_t k = 0; k < InlineCache::kIndividualCacheSize; k++) { mirror::Class* cls = cache.classes_[k].Read(); if (cls == nullptr) { break; } // Check if the receiver is in the boot class path or if it's in the // same class loader as the caller. If not, skip it, as there is not // much we can do during AOT. if (!cls->IsBootStrapClassLoaded() && caller->GetClassLoader() != cls->GetClassLoader()) { is_missing_types = true; continue; } const DexFile* class_dex_file = nullptr; dex::TypeIndex type_index; if (cls->GetDexCache() == nullptr) { DCHECK(cls->IsArrayClass()) << cls->PrettyClass(); // Make a best effort to find the type index in the method's dex file. // We could search all open dex files but that might turn expensive // and probably not worth it. class_dex_file = dex_file; type_index = cls->FindTypeIndexInOtherDexFile(*dex_file); } else { class_dex_file = &(cls->GetDexFile()); type_index = cls->GetDexTypeIndex(); } if (!type_index.IsValid()) { // Could be a proxy class or an array for which we couldn't find the type index. is_missing_types = true; continue; } if (ContainsElement(dex_base_locations, class_dex_file->GetBaseLocation())) { // Only consider classes from the same apk (including multidex). profile_classes.emplace_back(/*ProfileMethodInfo::ProfileClassReference*/ class_dex_file, type_index); } else { is_missing_types = true; } } if (!profile_classes.empty()) { inline_caches.emplace_back(/*ProfileMethodInfo::ProfileInlineCache*/ cache.dex_pc_, is_missing_types, profile_classes); } } methods.emplace_back(/*ProfileMethodInfo*/ dex_file, method->GetDexMethodIndex(), inline_caches); } } uint64_t JitCodeCache::GetLastUpdateTimeNs() const { return last_update_time_ns_.LoadAcquire(); } bool JitCodeCache::IsOsrCompiled(ArtMethod* method) { MutexLock mu(Thread::Current(), lock_); return osr_code_map_.find(method) != osr_code_map_.end(); } bool JitCodeCache::NotifyCompilationOf(ArtMethod* method, Thread* self, bool osr) { if (!osr && ContainsPc(method->GetEntryPointFromQuickCompiledCode())) { return false; } MutexLock mu(self, lock_); if (osr && (osr_code_map_.find(method) != osr_code_map_.end())) { return false; } ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); if (info == nullptr) { VLOG(jit) << method->PrettyMethod() << " needs a ProfilingInfo to be compiled"; // Because the counter is not atomic, there are some rare cases where we may not // hit the threshold for creating the ProfilingInfo. Reset the counter now to // "correct" this. method->ClearCounter(); return false; } if (info->IsMethodBeingCompiled(osr)) { return false; } info->SetIsMethodBeingCompiled(true, osr); return true; } ProfilingInfo* JitCodeCache::NotifyCompilerUse(ArtMethod* method, Thread* self) { MutexLock mu(self, lock_); ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); if (info != nullptr) { if (!info->IncrementInlineUse()) { // Overflow of inlining uses, just bail. return nullptr; } } return info; } void JitCodeCache::DoneCompilerUse(ArtMethod* method, Thread* self) { MutexLock mu(self, lock_); ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); DCHECK(info != nullptr); info->DecrementInlineUse(); } void JitCodeCache::DoneCompiling(ArtMethod* method, Thread* self ATTRIBUTE_UNUSED, bool osr) { ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); DCHECK(info->IsMethodBeingCompiled(osr)); info->SetIsMethodBeingCompiled(false, osr); } size_t JitCodeCache::GetMemorySizeOfCodePointer(const void* ptr) { MutexLock mu(Thread::Current(), lock_); return mspace_usable_size(reinterpret_cast<const void*>(FromCodeToAllocation(ptr))); } void JitCodeCache::InvalidateCompiledCodeFor(ArtMethod* method, const OatQuickMethodHeader* header) { ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize); if ((profiling_info != nullptr) && (profiling_info->GetSavedEntryPoint() == header->GetEntryPoint())) { // Prevent future uses of the compiled code. profiling_info->SetSavedEntryPoint(nullptr); } if (method->GetEntryPointFromQuickCompiledCode() == header->GetEntryPoint()) { // The entrypoint is the one to invalidate, so we just update // it to the interpreter entry point and clear the counter to get the method // Jitted again. Runtime::Current()->GetInstrumentation()->UpdateMethodsCode( method, GetQuickToInterpreterBridge()); method->ClearCounter(); } else { MutexLock mu(Thread::Current(), lock_); auto it = osr_code_map_.find(method); if (it != osr_code_map_.end() && OatQuickMethodHeader::FromCodePointer(it->second) == header) { // Remove the OSR method, to avoid using it again. osr_code_map_.erase(it); } } } uint8_t* JitCodeCache::AllocateCode(size_t code_size) { size_t alignment = GetInstructionSetAlignment(kRuntimeISA); uint8_t* result = reinterpret_cast<uint8_t*>( mspace_memalign(code_mspace_, alignment, code_size)); size_t header_size = RoundUp(sizeof(OatQuickMethodHeader), alignment); // Ensure the header ends up at expected instruction alignment. DCHECK_ALIGNED_PARAM(reinterpret_cast<uintptr_t>(result + header_size), alignment); used_memory_for_code_ += mspace_usable_size(result); return result; } void JitCodeCache::FreeCode(uint8_t* code) { used_memory_for_code_ -= mspace_usable_size(code); mspace_free(code_mspace_, code); } uint8_t* JitCodeCache::AllocateData(size_t data_size) { void* result = mspace_malloc(data_mspace_, data_size); used_memory_for_data_ += mspace_usable_size(result); return reinterpret_cast<uint8_t*>(result); } void JitCodeCache::FreeData(uint8_t* data) { used_memory_for_data_ -= mspace_usable_size(data); mspace_free(data_mspace_, data); } void JitCodeCache::Dump(std::ostream& os) { MutexLock mu(Thread::Current(), lock_); os << "Current JIT code cache size: " << PrettySize(used_memory_for_code_) << "\n" << "Current JIT data cache size: " << PrettySize(used_memory_for_data_) << "\n" << "Current JIT capacity: " << PrettySize(current_capacity_) << "\n" << "Current number of JIT code cache entries: " << method_code_map_.size() << "\n" << "Total number of JIT compilations: " << number_of_compilations_ << "\n" << "Total number of JIT compilations for on stack replacement: " << number_of_osr_compilations_ << "\n" << "Total number of JIT code cache collections: " << number_of_collections_ << std::endl; histogram_stack_map_memory_use_.PrintMemoryUse(os); histogram_code_memory_use_.PrintMemoryUse(os); histogram_profiling_info_memory_use_.PrintMemoryUse(os); } } // namespace jit } // namespace art