/* * Copyright (C) 2015 The Android Open Source Project * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "linker_allocator.h" #include "linker_debug.h" #include "linker.h" #include <algorithm> #include <vector> #include <stdlib.h> #include <sys/mman.h> #include <unistd.h> #include "private/bionic_prctl.h" // // LinkerMemeoryAllocator is general purpose allocator // designed to provide the same functionality as the malloc/free/realloc // libc functions. // // On alloc: // If size is >= 1k allocator proxies malloc call directly to mmap // If size < 1k allocator uses SmallObjectAllocator for the size // rounded up to the nearest power of two. // // On free: // // For a pointer allocated using proxy-to-mmap allocator unmaps // the memory. // // For a pointer allocated using SmallObjectAllocator it adds // the block to free_blocks_list_. If the number of free pages reaches 2, // SmallObjectAllocator munmaps one of the pages keeping the other one // in reserve. static const char kSignature[4] = {'L', 'M', 'A', 1}; static const size_t kSmallObjectMaxSize = 1 << kSmallObjectMaxSizeLog2; // This type is used for large allocations (with size >1k) static const uint32_t kLargeObject = 111; bool operator<(const small_object_page_record& one, const small_object_page_record& two) { return one.page_addr < two.page_addr; } static inline uint16_t log2(size_t number) { uint16_t result = 0; number--; while (number != 0) { result++; number >>= 1; } return result; } LinkerSmallObjectAllocator::LinkerSmallObjectAllocator(uint32_t type, size_t block_size) : type_(type), block_size_(block_size), free_pages_cnt_(0), free_blocks_list_(nullptr) {} void* LinkerSmallObjectAllocator::alloc() { CHECK(block_size_ != 0); if (free_blocks_list_ == nullptr) { alloc_page(); } small_object_block_record* block_record = free_blocks_list_; if (block_record->free_blocks_cnt > 1) { small_object_block_record* next_free = reinterpret_cast<small_object_block_record*>( reinterpret_cast<uint8_t*>(block_record) + block_size_); next_free->next = block_record->next; next_free->free_blocks_cnt = block_record->free_blocks_cnt - 1; free_blocks_list_ = next_free; } else { free_blocks_list_ = block_record->next; } // bookkeeping... auto page_record = find_page_record(block_record); if (page_record->allocated_blocks_cnt == 0) { free_pages_cnt_--; } page_record->free_blocks_cnt--; page_record->allocated_blocks_cnt++; memset(block_record, 0, block_size_); return block_record; } void LinkerSmallObjectAllocator::free_page(linker_vector_t::iterator page_record) { void* page_start = reinterpret_cast<void*>(page_record->page_addr); void* page_end = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(page_start) + PAGE_SIZE); while (free_blocks_list_ != nullptr && free_blocks_list_ > page_start && free_blocks_list_ < page_end) { free_blocks_list_ = free_blocks_list_->next; } small_object_block_record* current = free_blocks_list_; while (current != nullptr) { while (current->next > page_start && current->next < page_end) { current->next = current->next->next; } current = current->next; } munmap(page_start, PAGE_SIZE); page_records_.erase(page_record); free_pages_cnt_--; } void LinkerSmallObjectAllocator::free(void* ptr) { auto page_record = find_page_record(ptr); ssize_t offset = reinterpret_cast<uintptr_t>(ptr) - sizeof(page_info); if (offset % block_size_ != 0) { __libc_fatal("invalid pointer: %p (block_size=%zd)", ptr, block_size_); } memset(ptr, 0, block_size_); small_object_block_record* block_record = reinterpret_cast<small_object_block_record*>(ptr); block_record->next = free_blocks_list_; block_record->free_blocks_cnt = 1; free_blocks_list_ = block_record; page_record->free_blocks_cnt++; page_record->allocated_blocks_cnt--; if (page_record->allocated_blocks_cnt == 0) { if (free_pages_cnt_++ > 1) { // if we already have a free page - unmap this one. free_page(page_record); } } } linker_vector_t::iterator LinkerSmallObjectAllocator::find_page_record(void* ptr) { void* addr = reinterpret_cast<void*>(PAGE_START(reinterpret_cast<uintptr_t>(ptr))); small_object_page_record boundary; boundary.page_addr = addr; linker_vector_t::iterator it = std::lower_bound( page_records_.begin(), page_records_.end(), boundary); if (it == page_records_.end() || it->page_addr != addr) { // not found... __libc_fatal("page record for %p was not found (block_size=%zd)", ptr, block_size_); } return it; } void LinkerSmallObjectAllocator::create_page_record(void* page_addr, size_t free_blocks_cnt) { small_object_page_record record; record.page_addr = page_addr; record.free_blocks_cnt = free_blocks_cnt; record.allocated_blocks_cnt = 0; linker_vector_t::iterator it = std::lower_bound( page_records_.begin(), page_records_.end(), record); page_records_.insert(it, record); } void LinkerSmallObjectAllocator::alloc_page() { static_assert(sizeof(page_info) % 16 == 0, "sizeof(page_info) is not multiple of 16"); void* map_ptr = mmap(nullptr, PAGE_SIZE, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, 0, 0); if (map_ptr == MAP_FAILED) { __libc_fatal("mmap failed"); } prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, map_ptr, PAGE_SIZE, "linker_alloc_small_objects"); page_info* info = reinterpret_cast<page_info*>(map_ptr); memcpy(info->signature, kSignature, sizeof(kSignature)); info->type = type_; info->allocator_addr = this; size_t free_blocks_cnt = (PAGE_SIZE - sizeof(page_info))/block_size_; create_page_record(map_ptr, free_blocks_cnt); small_object_block_record* first_block = reinterpret_cast<small_object_block_record*>(info + 1); first_block->next = free_blocks_list_; first_block->free_blocks_cnt = free_blocks_cnt; free_blocks_list_ = first_block; } void LinkerMemoryAllocator::initialize_allocators() { if (allocators_ != nullptr) { return; } LinkerSmallObjectAllocator* allocators = reinterpret_cast<LinkerSmallObjectAllocator*>(allocators_buf_); for (size_t i = 0; i < kSmallObjectAllocatorsCount; ++i) { uint32_t type = i + kSmallObjectMinSizeLog2; new (allocators + i) LinkerSmallObjectAllocator(type, 1 << type); } allocators_ = allocators; } void* LinkerMemoryAllocator::alloc_mmap(size_t size) { size_t allocated_size = PAGE_END(size + sizeof(page_info)); void* map_ptr = mmap(nullptr, allocated_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, 0, 0); if (map_ptr == MAP_FAILED) { __libc_fatal("mmap failed"); } prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, map_ptr, allocated_size, "linker_alloc_lob"); page_info* info = reinterpret_cast<page_info*>(map_ptr); memcpy(info->signature, kSignature, sizeof(kSignature)); info->type = kLargeObject; info->allocated_size = allocated_size; return info + 1; } void* LinkerMemoryAllocator::alloc(size_t size) { // treat alloc(0) as alloc(1) if (size == 0) { size = 1; } if (size > kSmallObjectMaxSize) { return alloc_mmap(size); } uint16_t log2_size = log2(size); if (log2_size < kSmallObjectMinSizeLog2) { log2_size = kSmallObjectMinSizeLog2; } return get_small_object_allocator(log2_size)->alloc(); } page_info* LinkerMemoryAllocator::get_page_info(void* ptr) { page_info* info = reinterpret_cast<page_info*>(PAGE_START(reinterpret_cast<size_t>(ptr))); if (memcmp(info->signature, kSignature, sizeof(kSignature)) != 0) { __libc_fatal("invalid pointer %p (page signature mismatch)", ptr); } return info; } void* LinkerMemoryAllocator::realloc(void* ptr, size_t size) { if (ptr == nullptr) { return alloc(size); } if (size == 0) { free(ptr); return nullptr; } page_info* info = get_page_info(ptr); size_t old_size = 0; if (info->type == kLargeObject) { old_size = info->allocated_size - sizeof(page_info); } else { LinkerSmallObjectAllocator* allocator = get_small_object_allocator(info->type); if (allocator != info->allocator_addr) { __libc_fatal("invalid pointer %p (page signature mismatch)", ptr); } old_size = allocator->get_block_size(); } if (old_size < size) { void *result = alloc(size); memcpy(result, ptr, old_size); free(ptr); return result; } return ptr; } void LinkerMemoryAllocator::free(void* ptr) { if (ptr == nullptr) { return; } page_info* info = get_page_info(ptr); if (info->type == kLargeObject) { munmap(info, info->allocated_size); } else { LinkerSmallObjectAllocator* allocator = get_small_object_allocator(info->type); if (allocator != info->allocator_addr) { __libc_fatal("invalid pointer %p (invalid allocator address for the page)", ptr); } allocator->free(ptr); } } LinkerSmallObjectAllocator* LinkerMemoryAllocator::get_small_object_allocator(uint32_t type) { if (type < kSmallObjectMinSizeLog2 || type > kSmallObjectMaxSizeLog2) { __libc_fatal("invalid type: %u", type); } initialize_allocators(); return &allocators_[type - kSmallObjectMinSizeLog2]; }