/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <ctype.h> #include <errno.h> #include <dirent.h> #include <fcntl.h> #include <linux/fs.h> #include <pthread.h> #include <stdarg.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <sys/ioctl.h> #include <time.h> #include <unistd.h> #include <fec/io.h> #include <functional> #include <memory> #include <string> #include <unordered_map> #include <vector> #include <android-base/logging.h> #include <android-base/parseint.h> #include <android-base/strings.h> #include <android-base/unique_fd.h> #include <applypatch/applypatch.h> #include <openssl/sha.h> #include <private/android_filesystem_config.h> #include <ziparchive/zip_archive.h> #include "edify/expr.h" #include "error_code.h" #include "updater/install.h" #include "ota_io.h" #include "print_sha1.h" #include "updater/updater.h" // Set this to 0 to interpret 'erase' transfers to mean do a // BLKDISCARD ioctl (the normal behavior). Set to 1 to interpret // erase to mean fill the region with zeroes. #define DEBUG_ERASE 0 static constexpr size_t BLOCKSIZE = 4096; static constexpr const char* STASH_DIRECTORY_BASE = "/cache/recovery"; static constexpr mode_t STASH_DIRECTORY_MODE = 0700; static constexpr mode_t STASH_FILE_MODE = 0600; struct RangeSet { size_t count; // Limit is INT_MAX. size_t size; std::vector<size_t> pos; // Actual limit is INT_MAX. // Get the block number for the ith(starting from 0) block in the range set. int get_block(size_t idx) const { if (idx >= size) { LOG(ERROR) << "index: " << idx << " is greater than range set size: " << size; return -1; } for (size_t i = 0; i < pos.size(); i += 2) { if (idx < pos[i + 1] - pos[i]) { return pos[i] + idx; } idx -= (pos[i + 1] - pos[i]); } return -1; } }; static CauseCode failure_type = kNoCause; static bool is_retry = false; static std::unordered_map<std::string, RangeSet> stash_map; static RangeSet parse_range(const std::string& range_text) { RangeSet rs; std::vector<std::string> pieces = android::base::Split(range_text, ","); if (pieces.size() < 3) { goto err; } size_t num; if (!android::base::ParseUint(pieces[0], &num, static_cast<size_t>(INT_MAX))) { goto err; } if (num == 0 || num % 2) { goto err; // must be even } else if (num != pieces.size() - 1) { goto err; } rs.pos.resize(num); rs.count = num / 2; rs.size = 0; for (size_t i = 0; i < num; i += 2) { if (!android::base::ParseUint(pieces[i + 1], &rs.pos[i], static_cast<size_t>(INT_MAX))) { goto err; } if (!android::base::ParseUint(pieces[i + 2], &rs.pos[i + 1], static_cast<size_t>(INT_MAX))) { goto err; } if (rs.pos[i] >= rs.pos[i + 1]) { goto err; // empty or negative range } size_t sz = rs.pos[i + 1] - rs.pos[i]; if (rs.size > SIZE_MAX - sz) { goto err; // overflow } rs.size += sz; } return rs; err: LOG(ERROR) << "failed to parse range '" << range_text << "'"; exit(EXIT_FAILURE); } static bool range_overlaps(const RangeSet& r1, const RangeSet& r2) { for (size_t i = 0; i < r1.count; ++i) { size_t r1_0 = r1.pos[i * 2]; size_t r1_1 = r1.pos[i * 2 + 1]; for (size_t j = 0; j < r2.count; ++j) { size_t r2_0 = r2.pos[j * 2]; size_t r2_1 = r2.pos[j * 2 + 1]; if (!(r2_0 >= r1_1 || r1_0 >= r2_1)) { return true; } } } return false; } static int read_all(int fd, uint8_t* data, size_t size) { size_t so_far = 0; while (so_far < size) { ssize_t r = TEMP_FAILURE_RETRY(ota_read(fd, data+so_far, size-so_far)); if (r == -1) { failure_type = kFreadFailure; PLOG(ERROR) << "read failed"; return -1; } else if (r == 0) { failure_type = kFreadFailure; LOG(ERROR) << "read reached unexpected EOF."; return -1; } so_far += r; } return 0; } static int read_all(int fd, std::vector<uint8_t>& buffer, size_t size) { return read_all(fd, buffer.data(), size); } static int write_all(int fd, const uint8_t* data, size_t size) { size_t written = 0; while (written < size) { ssize_t w = TEMP_FAILURE_RETRY(ota_write(fd, data+written, size-written)); if (w == -1) { failure_type = kFwriteFailure; PLOG(ERROR) << "write failed"; return -1; } written += w; } return 0; } static int write_all(int fd, const std::vector<uint8_t>& buffer, size_t size) { return write_all(fd, buffer.data(), size); } static bool discard_blocks(int fd, off64_t offset, uint64_t size) { // Don't discard blocks unless the update is a retry run. if (!is_retry) { return true; } uint64_t args[2] = {static_cast<uint64_t>(offset), size}; int status = ioctl(fd, BLKDISCARD, &args); if (status == -1) { PLOG(ERROR) << "BLKDISCARD ioctl failed"; return false; } return true; } static bool check_lseek(int fd, off64_t offset, int whence) { off64_t rc = TEMP_FAILURE_RETRY(lseek64(fd, offset, whence)); if (rc == -1) { failure_type = kLseekFailure; PLOG(ERROR) << "lseek64 failed"; return false; } return true; } static void allocate(size_t size, std::vector<uint8_t>& buffer) { // if the buffer's big enough, reuse it. if (size <= buffer.size()) return; buffer.resize(size); } struct RangeSinkState { explicit RangeSinkState(RangeSet& rs) : tgt(rs) { }; int fd; const RangeSet& tgt; size_t p_block; size_t p_remain; }; static ssize_t RangeSinkWrite(const uint8_t* data, ssize_t size, void* token) { RangeSinkState* rss = reinterpret_cast<RangeSinkState*>(token); if (rss->p_remain == 0) { LOG(ERROR) << "range sink write overrun"; return 0; } ssize_t written = 0; while (size > 0) { size_t write_now = size; if (rss->p_remain < write_now) { write_now = rss->p_remain; } if (write_all(rss->fd, data, write_now) == -1) { break; } data += write_now; size -= write_now; rss->p_remain -= write_now; written += write_now; if (rss->p_remain == 0) { // move to the next block ++rss->p_block; if (rss->p_block < rss->tgt.count) { rss->p_remain = (rss->tgt.pos[rss->p_block * 2 + 1] - rss->tgt.pos[rss->p_block * 2]) * BLOCKSIZE; off64_t offset = static_cast<off64_t>(rss->tgt.pos[rss->p_block*2]) * BLOCKSIZE; if (!discard_blocks(rss->fd, offset, rss->p_remain)) { break; } if (!check_lseek(rss->fd, offset, SEEK_SET)) { break; } } else { // we can't write any more; return how many bytes have // been written so far. break; } } } return written; } // All of the data for all the 'new' transfers is contained in one // file in the update package, concatenated together in the order in // which transfers.list will need it. We want to stream it out of the // archive (it's compressed) without writing it to a temp file, but we // can't write each section until it's that transfer's turn to go. // // To achieve this, we expand the new data from the archive in a // background thread, and block that threads 'receive uncompressed // data' function until the main thread has reached a point where we // want some new data to be written. We signal the background thread // with the destination for the data and block the main thread, // waiting for the background thread to complete writing that section. // Then it signals the main thread to wake up and goes back to // blocking waiting for a transfer. // // NewThreadInfo is the struct used to pass information back and forth // between the two threads. When the main thread wants some data // written, it sets rss to the destination location and signals the // condition. When the background thread is done writing, it clears // rss and signals the condition again. struct NewThreadInfo { ZipArchiveHandle za; ZipEntry entry; RangeSinkState* rss; pthread_mutex_t mu; pthread_cond_t cv; }; static bool receive_new_data(const uint8_t* data, size_t size, void* cookie) { NewThreadInfo* nti = reinterpret_cast<NewThreadInfo*>(cookie); while (size > 0) { // Wait for nti->rss to be non-null, indicating some of this // data is wanted. pthread_mutex_lock(&nti->mu); while (nti->rss == nullptr) { pthread_cond_wait(&nti->cv, &nti->mu); } pthread_mutex_unlock(&nti->mu); // At this point nti->rss is set, and we own it. The main // thread is waiting for it to disappear from nti. ssize_t written = RangeSinkWrite(data, size, nti->rss); data += written; size -= written; if (nti->rss->p_block == nti->rss->tgt.count) { // we have written all the bytes desired by this rss. pthread_mutex_lock(&nti->mu); nti->rss = nullptr; pthread_cond_broadcast(&nti->cv); pthread_mutex_unlock(&nti->mu); } } return true; } static void* unzip_new_data(void* cookie) { NewThreadInfo* nti = static_cast<NewThreadInfo*>(cookie); ProcessZipEntryContents(nti->za, &nti->entry, receive_new_data, nti); return nullptr; } static int ReadBlocks(const RangeSet& src, std::vector<uint8_t>& buffer, int fd) { size_t p = 0; uint8_t* data = buffer.data(); for (size_t i = 0; i < src.count; ++i) { if (!check_lseek(fd, (off64_t) src.pos[i * 2] * BLOCKSIZE, SEEK_SET)) { return -1; } size_t size = (src.pos[i * 2 + 1] - src.pos[i * 2]) * BLOCKSIZE; if (read_all(fd, data + p, size) == -1) { return -1; } p += size; } return 0; } static int WriteBlocks(const RangeSet& tgt, const std::vector<uint8_t>& buffer, int fd) { const uint8_t* data = buffer.data(); size_t p = 0; for (size_t i = 0; i < tgt.count; ++i) { off64_t offset = static_cast<off64_t>(tgt.pos[i * 2]) * BLOCKSIZE; size_t size = (tgt.pos[i * 2 + 1] - tgt.pos[i * 2]) * BLOCKSIZE; if (!discard_blocks(fd, offset, size)) { return -1; } if (!check_lseek(fd, offset, SEEK_SET)) { return -1; } if (write_all(fd, data + p, size) == -1) { return -1; } p += size; } return 0; } // Parameters for transfer list command functions struct CommandParameters { std::vector<std::string> tokens; size_t cpos; const char* cmdname; const char* cmdline; std::string freestash; std::string stashbase; bool canwrite; int createdstash; android::base::unique_fd fd; bool foundwrites; bool isunresumable; int version; size_t written; size_t stashed; NewThreadInfo nti; pthread_t thread; std::vector<uint8_t> buffer; uint8_t* patch_start; }; // Print the hash in hex for corrupted source blocks (excluding the stashed blocks which is // handled separately). static void PrintHashForCorruptedSourceBlocks(const CommandParameters& params, const std::vector<uint8_t>& buffer) { LOG(INFO) << "unexpected contents of source blocks in cmd:\n" << params.cmdline; CHECK(params.tokens[0] == "move" || params.tokens[0] == "bsdiff" || params.tokens[0] == "imgdiff"); size_t pos = 0; // Command example: // move <onehash> <tgt_range> <src_blk_count> <src_range> [<loc_range> <stashed_blocks>] // bsdiff <offset> <len> <src_hash> <tgt_hash> <tgt_range> <src_blk_count> <src_range> // [<loc_range> <stashed_blocks>] if (params.tokens[0] == "move") { // src_range for move starts at the 4th position. if (params.tokens.size() < 5) { LOG(ERROR) << "failed to parse source range in cmd:\n" << params.cmdline; return; } pos = 4; } else { // src_range for diff starts at the 7th position. if (params.tokens.size() < 8) { LOG(ERROR) << "failed to parse source range in cmd:\n" << params.cmdline; return; } pos = 7; } // Source blocks in stash only, no work to do. if (params.tokens[pos] == "-") { return; } RangeSet src = parse_range(params.tokens[pos++]); RangeSet locs; // If there's no stashed blocks, content in the buffer is consecutive and has the same // order as the source blocks. if (pos == params.tokens.size()) { locs.count = 1; locs.size = src.size; locs.pos = { 0, src.size }; } else { // Otherwise, the next token is the offset of the source blocks in the target range. // Example: for the tokens <4,63946,63947,63948,63979> <4,6,7,8,39> <stashed_blocks>; // We want to print SHA-1 for the data in buffer[6], buffer[8], buffer[9] ... buffer[38]; // this corresponds to the 32 src blocks #63946, #63948, #63949 ... #63978. locs = parse_range(params.tokens[pos++]); CHECK_EQ(src.size, locs.size); CHECK_EQ(locs.pos.size() % 2, static_cast<size_t>(0)); } LOG(INFO) << "printing hash in hex for " << src.size << " source blocks"; for (size_t i = 0; i < src.size; i++) { int block_num = src.get_block(i); CHECK_NE(block_num, -1); int buffer_index = locs.get_block(i); CHECK_NE(buffer_index, -1); CHECK_LE((buffer_index + 1) * BLOCKSIZE, buffer.size()); uint8_t digest[SHA_DIGEST_LENGTH]; SHA1(buffer.data() + buffer_index * BLOCKSIZE, BLOCKSIZE, digest); std::string hexdigest = print_sha1(digest); LOG(INFO) << " block number: " << block_num << ", SHA-1: " << hexdigest; } } // If the calculated hash for the whole stash doesn't match the stash id, print the SHA-1 // in hex for each block. static void PrintHashForCorruptedStashedBlocks(const std::string& id, const std::vector<uint8_t>& buffer, const RangeSet& src) { LOG(INFO) << "printing hash in hex for stash_id: " << id; CHECK_EQ(src.size * BLOCKSIZE, buffer.size()); for (size_t i = 0; i < src.size; i++) { int block_num = src.get_block(i); CHECK_NE(block_num, -1); uint8_t digest[SHA_DIGEST_LENGTH]; SHA1(buffer.data() + i * BLOCKSIZE, BLOCKSIZE, digest); std::string hexdigest = print_sha1(digest); LOG(INFO) << " block number: " << block_num << ", SHA-1: " << hexdigest; } } // If the stash file doesn't exist, read the source blocks this stash contains and print the // SHA-1 for these blocks. static void PrintHashForMissingStashedBlocks(const std::string& id, int fd) { if (stash_map.find(id) == stash_map.end()) { LOG(ERROR) << "No stash saved for id: " << id; return; } LOG(INFO) << "print hash in hex for source blocks in missing stash: " << id; const RangeSet& src = stash_map[id]; std::vector<uint8_t> buffer(src.size * BLOCKSIZE); if (ReadBlocks(src, buffer, fd) == -1) { LOG(ERROR) << "failed to read source blocks for stash: " << id; return; } PrintHashForCorruptedStashedBlocks(id, buffer, src); } static int VerifyBlocks(const std::string& expected, const std::vector<uint8_t>& buffer, const size_t blocks, bool printerror) { uint8_t digest[SHA_DIGEST_LENGTH]; const uint8_t* data = buffer.data(); SHA1(data, blocks * BLOCKSIZE, digest); std::string hexdigest = print_sha1(digest); if (hexdigest != expected) { if (printerror) { LOG(ERROR) << "failed to verify blocks (expected " << expected << ", read " << hexdigest << ")"; } return -1; } return 0; } static std::string GetStashFileName(const std::string& base, const std::string& id, const std::string& postfix) { if (base.empty()) { return ""; } std::string fn(STASH_DIRECTORY_BASE); fn += "/" + base + "/" + id + postfix; return fn; } // Does a best effort enumeration of stash files. Ignores possible non-file items in the stash // directory and continues despite of errors. Calls the 'callback' function for each file. static void EnumerateStash(const std::string& dirname, const std::function<void(const std::string&)>& callback) { if (dirname.empty()) return; std::unique_ptr<DIR, decltype(&closedir)> directory(opendir(dirname.c_str()), closedir); if (directory == nullptr) { if (errno != ENOENT) { PLOG(ERROR) << "opendir \"" << dirname << "\" failed"; } return; } dirent* item; while ((item = readdir(directory.get())) != nullptr) { if (item->d_type != DT_REG) continue; callback(dirname + "/" + item->d_name); } } // Deletes the stash directory and all files in it. Assumes that it only // contains files. There is nothing we can do about unlikely, but possible // errors, so they are merely logged. static void DeleteFile(const std::string& fn) { if (fn.empty()) return; LOG(INFO) << "deleting " << fn; if (unlink(fn.c_str()) == -1 && errno != ENOENT) { PLOG(ERROR) << "unlink \"" << fn << "\" failed"; } } static void DeleteStash(const std::string& base) { if (base.empty()) return; LOG(INFO) << "deleting stash " << base; std::string dirname = GetStashFileName(base, "", ""); EnumerateStash(dirname, DeleteFile); if (rmdir(dirname.c_str()) == -1) { if (errno != ENOENT && errno != ENOTDIR) { PLOG(ERROR) << "rmdir \"" << dirname << "\" failed"; } } } static int LoadStash(CommandParameters& params, const std::string& id, bool verify, size_t* blocks, std::vector<uint8_t>& buffer, bool printnoent) { // In verify mode, if source range_set was saved for the given hash, // check contents in the source blocks first. If the check fails, // search for the stashed files on /cache as usual. if (!params.canwrite) { if (stash_map.find(id) != stash_map.end()) { const RangeSet& src = stash_map[id]; allocate(src.size * BLOCKSIZE, buffer); if (ReadBlocks(src, buffer, params.fd) == -1) { LOG(ERROR) << "failed to read source blocks in stash map."; return -1; } if (VerifyBlocks(id, buffer, src.size, true) != 0) { LOG(ERROR) << "failed to verify loaded source blocks in stash map."; PrintHashForCorruptedStashedBlocks(id, buffer, src); return -1; } return 0; } } size_t blockcount = 0; if (!blocks) { blocks = &blockcount; } std::string fn = GetStashFileName(params.stashbase, id, ""); struct stat sb; int res = stat(fn.c_str(), &sb); if (res == -1) { if (errno != ENOENT || printnoent) { PLOG(ERROR) << "stat \"" << fn << "\" failed"; PrintHashForMissingStashedBlocks(id, params.fd); } return -1; } LOG(INFO) << " loading " << fn; if ((sb.st_size % BLOCKSIZE) != 0) { LOG(ERROR) << fn << " size " << sb.st_size << " not multiple of block size " << BLOCKSIZE; return -1; } android::base::unique_fd fd(TEMP_FAILURE_RETRY(ota_open(fn.c_str(), O_RDONLY))); if (fd == -1) { PLOG(ERROR) << "open \"" << fn << "\" failed"; return -1; } allocate(sb.st_size, buffer); if (read_all(fd, buffer, sb.st_size) == -1) { return -1; } *blocks = sb.st_size / BLOCKSIZE; if (verify && VerifyBlocks(id, buffer, *blocks, true) != 0) { LOG(ERROR) << "unexpected contents in " << fn; if (stash_map.find(id) == stash_map.end()) { LOG(ERROR) << "failed to find source blocks number for stash " << id << " when executing command: " << params.cmdname; } else { const RangeSet& src = stash_map[id]; PrintHashForCorruptedStashedBlocks(id, buffer, src); } DeleteFile(fn); return -1; } return 0; } static int WriteStash(const std::string& base, const std::string& id, int blocks, std::vector<uint8_t>& buffer, bool checkspace, bool *exists) { if (base.empty()) { return -1; } if (checkspace && CacheSizeCheck(blocks * BLOCKSIZE) != 0) { LOG(ERROR) << "not enough space to write stash"; return -1; } std::string fn = GetStashFileName(base, id, ".partial"); std::string cn = GetStashFileName(base, id, ""); if (exists) { struct stat sb; int res = stat(cn.c_str(), &sb); if (res == 0) { // The file already exists and since the name is the hash of the contents, // it's safe to assume the contents are identical (accidental hash collisions // are unlikely) LOG(INFO) << " skipping " << blocks << " existing blocks in " << cn; *exists = true; return 0; } *exists = false; } LOG(INFO) << " writing " << blocks << " blocks to " << cn; android::base::unique_fd fd( TEMP_FAILURE_RETRY(ota_open(fn.c_str(), O_WRONLY | O_CREAT | O_TRUNC, STASH_FILE_MODE))); if (fd == -1) { PLOG(ERROR) << "failed to create \"" << fn << "\""; return -1; } if (fchown(fd, AID_SYSTEM, AID_SYSTEM) != 0) { // system user PLOG(ERROR) << "failed to chown \"" << fn << "\""; return -1; } if (write_all(fd, buffer, blocks * BLOCKSIZE) == -1) { return -1; } if (ota_fsync(fd) == -1) { failure_type = kFsyncFailure; PLOG(ERROR) << "fsync \"" << fn << "\" failed"; return -1; } if (rename(fn.c_str(), cn.c_str()) == -1) { PLOG(ERROR) << "rename(\"" << fn << "\", \"" << cn << "\") failed"; return -1; } std::string dname = GetStashFileName(base, "", ""); android::base::unique_fd dfd(TEMP_FAILURE_RETRY(ota_open(dname.c_str(), O_RDONLY | O_DIRECTORY))); if (dfd == -1) { failure_type = kFileOpenFailure; PLOG(ERROR) << "failed to open \"" << dname << "\" failed"; return -1; } if (ota_fsync(dfd) == -1) { failure_type = kFsyncFailure; PLOG(ERROR) << "fsync \"" << dname << "\" failed"; return -1; } return 0; } // Creates a directory for storing stash files and checks if the /cache partition // hash enough space for the expected amount of blocks we need to store. Returns // >0 if we created the directory, zero if it existed already, and <0 of failure. static int CreateStash(State* state, size_t maxblocks, const std::string& blockdev, std::string& base) { if (blockdev.empty()) { return -1; } // Stash directory should be different for each partition to avoid conflicts // when updating multiple partitions at the same time, so we use the hash of // the block device name as the base directory uint8_t digest[SHA_DIGEST_LENGTH]; SHA1(reinterpret_cast<const uint8_t*>(blockdev.data()), blockdev.size(), digest); base = print_sha1(digest); std::string dirname = GetStashFileName(base, "", ""); struct stat sb; int res = stat(dirname.c_str(), &sb); size_t max_stash_size = maxblocks * BLOCKSIZE; if (res == -1 && errno != ENOENT) { ErrorAbort(state, kStashCreationFailure, "stat \"%s\" failed: %s\n", dirname.c_str(), strerror(errno)); return -1; } else if (res != 0) { LOG(INFO) << "creating stash " << dirname; res = mkdir(dirname.c_str(), STASH_DIRECTORY_MODE); if (res != 0) { ErrorAbort(state, kStashCreationFailure, "mkdir \"%s\" failed: %s\n", dirname.c_str(), strerror(errno)); return -1; } if (chown(dirname.c_str(), AID_SYSTEM, AID_SYSTEM) != 0) { // system user ErrorAbort(state, kStashCreationFailure, "chown \"%s\" failed: %s\n", dirname.c_str(), strerror(errno)); return -1; } if (CacheSizeCheck(max_stash_size) != 0) { ErrorAbort(state, kStashCreationFailure, "not enough space for stash (%zu needed)\n", max_stash_size); return -1; } return 1; // Created directory } LOG(INFO) << "using existing stash " << dirname; // If the directory already exists, calculate the space already allocated to stash files and check // if there's enough for all required blocks. Delete any partially completed stash files first. EnumerateStash(dirname, [](const std::string& fn) { if (android::base::EndsWith(fn, ".partial")) { DeleteFile(fn); } }); size_t existing = 0; EnumerateStash(dirname, [&existing](const std::string& fn) { if (fn.empty()) return; struct stat sb; if (stat(fn.c_str(), &sb) == -1) { PLOG(ERROR) << "stat \"" << fn << "\" failed"; return; } existing += static_cast<size_t>(sb.st_size); }); if (max_stash_size > existing) { size_t needed = max_stash_size - existing; if (CacheSizeCheck(needed) != 0) { ErrorAbort(state, kStashCreationFailure, "not enough space for stash (%zu more needed)\n", needed); return -1; } } return 0; // Using existing directory } static int FreeStash(const std::string& base, const std::string& id) { if (base.empty() || id.empty()) { return -1; } DeleteFile(GetStashFileName(base, id, "")); return 0; } static void MoveRange(std::vector<uint8_t>& dest, const RangeSet& locs, const std::vector<uint8_t>& source) { // source contains packed data, which we want to move to the // locations given in locs in the dest buffer. source and dest // may be the same buffer. const uint8_t* from = source.data(); uint8_t* to = dest.data(); size_t start = locs.size; for (int i = locs.count-1; i >= 0; --i) { size_t blocks = locs.pos[i*2+1] - locs.pos[i*2]; start -= blocks; memmove(to + (locs.pos[i*2] * BLOCKSIZE), from + (start * BLOCKSIZE), blocks * BLOCKSIZE); } } // Do a source/target load for move/bsdiff/imgdiff in version 2. // We expect to parse the remainder of the parameter tokens as one of: // // <tgt_range> <src_block_count> <src_range> // (loads data from source image only) // // <tgt_range> <src_block_count> - <[stash_id:stash_range] ...> // (loads data from stashes only) // // <tgt_range> <src_block_count> <src_range> <src_loc> <[stash_id:stash_range] ...> // (loads data from both source image and stashes) // // On return, params.buffer is filled with the loaded source data (rearranged and combined with // stashed data as necessary). buffer may be reallocated if needed to accommodate the source data. // *tgt is the target RangeSet. Any stashes required are loaded using LoadStash. static int LoadSrcTgtVersion2(CommandParameters& params, RangeSet& tgt, size_t& src_blocks, bool* overlap) { // At least it needs to provide three parameters: <tgt_range>, // <src_block_count> and "-"/<src_range>. if (params.cpos + 2 >= params.tokens.size()) { LOG(ERROR) << "invalid parameters"; return -1; } // <tgt_range> tgt = parse_range(params.tokens[params.cpos++]); // <src_block_count> const std::string& token = params.tokens[params.cpos++]; if (!android::base::ParseUint(token.c_str(), &src_blocks)) { LOG(ERROR) << "invalid src_block_count \"" << token << "\""; return -1; } allocate(src_blocks * BLOCKSIZE, params.buffer); // "-" or <src_range> [<src_loc>] if (params.tokens[params.cpos] == "-") { // no source ranges, only stashes params.cpos++; } else { RangeSet src = parse_range(params.tokens[params.cpos++]); int res = ReadBlocks(src, params.buffer, params.fd); if (overlap) { *overlap = range_overlaps(src, tgt); } if (res == -1) { return -1; } if (params.cpos >= params.tokens.size()) { // no stashes, only source range return 0; } RangeSet locs = parse_range(params.tokens[params.cpos++]); MoveRange(params.buffer, locs, params.buffer); } // <[stash_id:stash_range]> while (params.cpos < params.tokens.size()) { // Each word is a an index into the stash table, a colon, and // then a rangeset describing where in the source block that // stashed data should go. std::vector<std::string> tokens = android::base::Split(params.tokens[params.cpos++], ":"); if (tokens.size() != 2) { LOG(ERROR) << "invalid parameter"; return -1; } std::vector<uint8_t> stash; int res = LoadStash(params, tokens[0], false, nullptr, stash, true); if (res == -1) { // These source blocks will fail verification if used later, but we // will let the caller decide if this is a fatal failure LOG(ERROR) << "failed to load stash " << tokens[0]; continue; } RangeSet locs = parse_range(tokens[1]); MoveRange(params.buffer, locs, stash); } return 0; } /** * Do a source/target load for move/bsdiff/imgdiff in version 3. * * We expect to parse the remainder of the parameter tokens as one of: * * <tgt_range> <src_block_count> <src_range> * (loads data from source image only) * * <tgt_range> <src_block_count> - <[stash_id:stash_range] ...> * (loads data from stashes only) * * <tgt_range> <src_block_count> <src_range> <src_loc> <[stash_id:stash_range] ...> * (loads data from both source image and stashes) * * Parameters are the same as for LoadSrcTgtVersion2, except for 'onehash', which tells the function * whether to expect separate source and targe block hashes, or if they are both the same and only * one hash should be expected, and 'isunresumable', which receives a non-zero value if block * verification fails in a way that the update cannot be resumed anymore. * * If the function is unable to load the necessary blocks or their contents don't match the hashes, * the return value is -1 and the command should be aborted. * * If the return value is 1, the command has already been completed according to the contents of the * target blocks, and should not be performed again. * * If the return value is 0, source blocks have expected content and the command can be performed. */ static int LoadSrcTgtVersion3(CommandParameters& params, RangeSet& tgt, size_t& src_blocks, bool onehash, bool& overlap) { if (params.cpos >= params.tokens.size()) { LOG(ERROR) << "missing source hash"; return -1; } std::string srchash = params.tokens[params.cpos++]; std::string tgthash; if (onehash) { tgthash = srchash; } else { if (params.cpos >= params.tokens.size()) { LOG(ERROR) << "missing target hash"; return -1; } tgthash = params.tokens[params.cpos++]; } if (LoadSrcTgtVersion2(params, tgt, src_blocks, &overlap) == -1) { return -1; } std::vector<uint8_t> tgtbuffer(tgt.size * BLOCKSIZE); if (ReadBlocks(tgt, tgtbuffer, params.fd) == -1) { return -1; } if (VerifyBlocks(tgthash, tgtbuffer, tgt.size, false) == 0) { // Target blocks already have expected content, command should be skipped. return 1; } if (VerifyBlocks(srchash, params.buffer, src_blocks, true) == 0) { // If source and target blocks overlap, stash the source blocks so we can // resume from possible write errors. In verify mode, we can skip stashing // because the source blocks won't be overwritten. if (overlap && params.canwrite) { LOG(INFO) << "stashing " << src_blocks << " overlapping blocks to " << srchash; bool stash_exists = false; if (WriteStash(params.stashbase, srchash, src_blocks, params.buffer, true, &stash_exists) != 0) { LOG(ERROR) << "failed to stash overlapping source blocks"; return -1; } params.stashed += src_blocks; // Can be deleted when the write has completed. if (!stash_exists) { params.freestash = srchash; } } // Source blocks have expected content, command can proceed. return 0; } if (overlap && LoadStash(params, srchash, true, nullptr, params.buffer, true) == 0) { // Overlapping source blocks were previously stashed, command can proceed. // We are recovering from an interrupted command, so we don't know if the // stash can safely be deleted after this command. return 0; } // Valid source data not available, update cannot be resumed. LOG(ERROR) << "partition has unexpected contents"; PrintHashForCorruptedSourceBlocks(params, params.buffer); params.isunresumable = true; return -1; } static int PerformCommandMove(CommandParameters& params) { size_t blocks = 0; bool overlap = false; RangeSet tgt; int status = LoadSrcTgtVersion3(params, tgt, blocks, true, overlap); if (status == -1) { LOG(ERROR) << "failed to read blocks for move"; return -1; } if (status == 0) { params.foundwrites = true; } else if (params.foundwrites) { LOG(WARNING) << "warning: commands executed out of order [" << params.cmdname << "]"; } if (params.canwrite) { if (status == 0) { LOG(INFO) << " moving " << blocks << " blocks"; if (WriteBlocks(tgt, params.buffer, params.fd) == -1) { return -1; } } else { LOG(INFO) << "skipping " << blocks << " already moved blocks"; } } if (!params.freestash.empty()) { FreeStash(params.stashbase, params.freestash); params.freestash.clear(); } params.written += tgt.size; return 0; } static int PerformCommandStash(CommandParameters& params) { // <stash_id> <src_range> if (params.cpos + 1 >= params.tokens.size()) { LOG(ERROR) << "missing id and/or src range fields in stash command"; return -1; } const std::string& id = params.tokens[params.cpos++]; size_t blocks = 0; if (LoadStash(params, id, true, &blocks, params.buffer, false) == 0) { // Stash file already exists and has expected contents. Do not read from source again, as the // source may have been already overwritten during a previous attempt. return 0; } RangeSet src = parse_range(params.tokens[params.cpos++]); allocate(src.size * BLOCKSIZE, params.buffer); if (ReadBlocks(src, params.buffer, params.fd) == -1) { return -1; } blocks = src.size; stash_map[id] = src; if (VerifyBlocks(id, params.buffer, blocks, true) != 0) { // Source blocks have unexpected contents. If we actually need this data later, this is an // unrecoverable error. However, the command that uses the data may have already completed // previously, so the possible failure will occur during source block verification. LOG(ERROR) << "failed to load source blocks for stash " << id; return 0; } // In verify mode, we don't need to stash any blocks. if (!params.canwrite) { return 0; } LOG(INFO) << "stashing " << blocks << " blocks to " << id; params.stashed += blocks; return WriteStash(params.stashbase, id, blocks, params.buffer, false, nullptr); } static int PerformCommandFree(CommandParameters& params) { // <stash_id> if (params.cpos >= params.tokens.size()) { LOG(ERROR) << "missing stash id in free command"; return -1; } const std::string& id = params.tokens[params.cpos++]; stash_map.erase(id); if (params.createdstash || params.canwrite) { return FreeStash(params.stashbase, id); } return 0; } static int PerformCommandZero(CommandParameters& params) { if (params.cpos >= params.tokens.size()) { LOG(ERROR) << "missing target blocks for zero"; return -1; } RangeSet tgt = parse_range(params.tokens[params.cpos++]); LOG(INFO) << " zeroing " << tgt.size << " blocks"; allocate(BLOCKSIZE, params.buffer); memset(params.buffer.data(), 0, BLOCKSIZE); if (params.canwrite) { for (size_t i = 0; i < tgt.count; ++i) { off64_t offset = static_cast<off64_t>(tgt.pos[i * 2]) * BLOCKSIZE; size_t size = (tgt.pos[i * 2 + 1] - tgt.pos[i * 2]) * BLOCKSIZE; if (!discard_blocks(params.fd, offset, size)) { return -1; } if (!check_lseek(params.fd, offset, SEEK_SET)) { return -1; } for (size_t j = tgt.pos[i * 2]; j < tgt.pos[i * 2 + 1]; ++j) { if (write_all(params.fd, params.buffer, BLOCKSIZE) == -1) { return -1; } } } } if (params.cmdname[0] == 'z') { // Update only for the zero command, as the erase command will call // this if DEBUG_ERASE is defined. params.written += tgt.size; } return 0; } static int PerformCommandNew(CommandParameters& params) { if (params.cpos >= params.tokens.size()) { LOG(ERROR) << "missing target blocks for new"; return -1; } RangeSet tgt = parse_range(params.tokens[params.cpos++]); if (params.canwrite) { LOG(INFO) << " writing " << tgt.size << " blocks of new data"; RangeSinkState rss(tgt); rss.fd = params.fd; rss.p_block = 0; rss.p_remain = (tgt.pos[1] - tgt.pos[0]) * BLOCKSIZE; off64_t offset = static_cast<off64_t>(tgt.pos[0]) * BLOCKSIZE; if (!discard_blocks(params.fd, offset, tgt.size * BLOCKSIZE)) { return -1; } if (!check_lseek(params.fd, offset, SEEK_SET)) { return -1; } pthread_mutex_lock(¶ms.nti.mu); params.nti.rss = &rss; pthread_cond_broadcast(¶ms.nti.cv); while (params.nti.rss) { pthread_cond_wait(¶ms.nti.cv, ¶ms.nti.mu); } pthread_mutex_unlock(¶ms.nti.mu); } params.written += tgt.size; return 0; } static int PerformCommandDiff(CommandParameters& params) { // <offset> <length> if (params.cpos + 1 >= params.tokens.size()) { LOG(ERROR) << "missing patch offset or length for " << params.cmdname; return -1; } size_t offset; if (!android::base::ParseUint(params.tokens[params.cpos++].c_str(), &offset)) { LOG(ERROR) << "invalid patch offset"; return -1; } size_t len; if (!android::base::ParseUint(params.tokens[params.cpos++].c_str(), &len)) { LOG(ERROR) << "invalid patch len"; return -1; } RangeSet tgt; size_t blocks = 0; bool overlap = false; int status = LoadSrcTgtVersion3(params, tgt, blocks, false, overlap); if (status == -1) { LOG(ERROR) << "failed to read blocks for diff"; return -1; } if (status == 0) { params.foundwrites = true; } else if (params.foundwrites) { LOG(WARNING) << "warning: commands executed out of order [" << params.cmdname << "]"; } if (params.canwrite) { if (status == 0) { LOG(INFO) << "patching " << blocks << " blocks to " << tgt.size; Value patch_value(VAL_BLOB, std::string(reinterpret_cast<const char*>(params.patch_start + offset), len)); RangeSinkState rss(tgt); rss.fd = params.fd; rss.p_block = 0; rss.p_remain = (tgt.pos[1] - tgt.pos[0]) * BLOCKSIZE; off64_t offset = static_cast<off64_t>(tgt.pos[0]) * BLOCKSIZE; if (!discard_blocks(params.fd, offset, rss.p_remain)) { return -1; } if (!check_lseek(params.fd, offset, SEEK_SET)) { return -1; } if (params.cmdname[0] == 'i') { // imgdiff if (ApplyImagePatch(params.buffer.data(), blocks * BLOCKSIZE, &patch_value, &RangeSinkWrite, &rss, nullptr, nullptr) != 0) { LOG(ERROR) << "Failed to apply image patch."; return -1; } } else { if (ApplyBSDiffPatch(params.buffer.data(), blocks * BLOCKSIZE, &patch_value, 0, &RangeSinkWrite, &rss, nullptr) != 0) { LOG(ERROR) << "Failed to apply bsdiff patch."; return -1; } } // We expect the output of the patcher to fill the tgt ranges exactly. if (rss.p_block != tgt.count || rss.p_remain != 0) { LOG(ERROR) << "range sink underrun?"; } } else { LOG(INFO) << "skipping " << blocks << " blocks already patched to " << tgt.size << " [" << params.cmdline << "]"; } } if (!params.freestash.empty()) { FreeStash(params.stashbase, params.freestash); params.freestash.clear(); } params.written += tgt.size; return 0; } static int PerformCommandErase(CommandParameters& params) { if (DEBUG_ERASE) { return PerformCommandZero(params); } struct stat sb; if (fstat(params.fd, &sb) == -1) { PLOG(ERROR) << "failed to fstat device to erase"; return -1; } if (!S_ISBLK(sb.st_mode)) { LOG(ERROR) << "not a block device; skipping erase"; return -1; } if (params.cpos >= params.tokens.size()) { LOG(ERROR) << "missing target blocks for erase"; return -1; } RangeSet tgt = parse_range(params.tokens[params.cpos++]); if (params.canwrite) { LOG(INFO) << " erasing " << tgt.size << " blocks"; for (size_t i = 0; i < tgt.count; ++i) { uint64_t blocks[2]; // offset in bytes blocks[0] = tgt.pos[i * 2] * (uint64_t) BLOCKSIZE; // length in bytes blocks[1] = (tgt.pos[i * 2 + 1] - tgt.pos[i * 2]) * (uint64_t) BLOCKSIZE; if (ioctl(params.fd, BLKDISCARD, &blocks) == -1) { PLOG(ERROR) << "BLKDISCARD ioctl failed"; return -1; } } } return 0; } // Definitions for transfer list command functions typedef int (*CommandFunction)(CommandParameters&); struct Command { const char* name; CommandFunction f; }; // args: // - block device (or file) to modify in-place // - transfer list (blob) // - new data stream (filename within package.zip) // - patch stream (filename within package.zip, must be uncompressed) static Value* PerformBlockImageUpdate(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv, const Command* commands, size_t cmdcount, bool dryrun) { CommandParameters params = {}; params.canwrite = !dryrun; LOG(INFO) << "performing " << (dryrun ? "verification" : "update"); if (state->is_retry) { is_retry = true; LOG(INFO) << "This update is a retry."; } if (argv.size() != 4) { ErrorAbort(state, kArgsParsingFailure, "block_image_update expects 4 arguments, got %zu", argv.size()); return StringValue(""); } std::vector<std::unique_ptr<Value>> args; if (!ReadValueArgs(state, argv, &args)) { return nullptr; } const Value* blockdev_filename = args[0].get(); const Value* transfer_list_value = args[1].get(); const Value* new_data_fn = args[2].get(); const Value* patch_data_fn = args[3].get(); if (blockdev_filename->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "blockdev_filename argument to %s must be string", name); return StringValue(""); } if (transfer_list_value->type != VAL_BLOB) { ErrorAbort(state, kArgsParsingFailure, "transfer_list argument to %s must be blob", name); return StringValue(""); } if (new_data_fn->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "new_data_fn argument to %s must be string", name); return StringValue(""); } if (patch_data_fn->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "patch_data_fn argument to %s must be string", name); return StringValue(""); } UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie); if (ui == nullptr) { return StringValue(""); } FILE* cmd_pipe = ui->cmd_pipe; ZipArchiveHandle za = ui->package_zip; if (cmd_pipe == nullptr || za == nullptr) { return StringValue(""); } ZipString path_data(patch_data_fn->data.c_str()); ZipEntry patch_entry; if (FindEntry(za, path_data, &patch_entry) != 0) { LOG(ERROR) << name << "(): no file \"" << patch_data_fn->data << "\" in package"; return StringValue(""); } params.patch_start = ui->package_zip_addr + patch_entry.offset; ZipString new_data(new_data_fn->data.c_str()); ZipEntry new_entry; if (FindEntry(za, new_data, &new_entry) != 0) { LOG(ERROR) << name << "(): no file \"" << new_data_fn->data << "\" in package"; return StringValue(""); } params.fd.reset(TEMP_FAILURE_RETRY(ota_open(blockdev_filename->data.c_str(), O_RDWR))); if (params.fd == -1) { PLOG(ERROR) << "open \"" << blockdev_filename->data << "\" failed"; return StringValue(""); } if (params.canwrite) { params.nti.za = za; params.nti.entry = new_entry; pthread_mutex_init(¶ms.nti.mu, nullptr); pthread_cond_init(¶ms.nti.cv, nullptr); pthread_attr_t attr; pthread_attr_init(&attr); pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE); int error = pthread_create(¶ms.thread, &attr, unzip_new_data, ¶ms.nti); if (error != 0) { PLOG(ERROR) << "pthread_create failed"; return StringValue(""); } } std::vector<std::string> lines = android::base::Split(transfer_list_value->data, "\n"); if (lines.size() < 2) { ErrorAbort(state, kArgsParsingFailure, "too few lines in the transfer list [%zd]\n", lines.size()); return StringValue(""); } // First line in transfer list is the version number. if (!android::base::ParseInt(lines[0], ¶ms.version, 3, 4)) { LOG(ERROR) << "unexpected transfer list version [" << lines[0] << "]"; return StringValue(""); } LOG(INFO) << "blockimg version is " << params.version; // Second line in transfer list is the total number of blocks we expect to write. size_t total_blocks; if (!android::base::ParseUint(lines[1], &total_blocks)) { ErrorAbort(state, kArgsParsingFailure, "unexpected block count [%s]\n", lines[1].c_str()); return StringValue(""); } if (total_blocks == 0) { return StringValue("t"); } size_t start = 2; if (lines.size() < 4) { ErrorAbort(state, kArgsParsingFailure, "too few lines in the transfer list [%zu]\n", lines.size()); return StringValue(""); } // Third line is how many stash entries are needed simultaneously. LOG(INFO) << "maximum stash entries " << lines[2]; // Fourth line is the maximum number of blocks that will be stashed simultaneously size_t stash_max_blocks; if (!android::base::ParseUint(lines[3], &stash_max_blocks)) { ErrorAbort(state, kArgsParsingFailure, "unexpected maximum stash blocks [%s]\n", lines[3].c_str()); return StringValue(""); } int res = CreateStash(state, stash_max_blocks, blockdev_filename->data, params.stashbase); if (res == -1) { return StringValue(""); } params.createdstash = res; start += 2; // Build a map of the available commands std::unordered_map<std::string, const Command*> cmd_map; for (size_t i = 0; i < cmdcount; ++i) { if (cmd_map.find(commands[i].name) != cmd_map.end()) { LOG(ERROR) << "Error: command [" << commands[i].name << "] already exists in the cmd map."; return StringValue(strdup("")); } cmd_map[commands[i].name] = &commands[i]; } int rc = -1; // Subsequent lines are all individual transfer commands for (auto it = lines.cbegin() + start; it != lines.cend(); it++) { const std::string& line(*it); if (line.empty()) continue; params.tokens = android::base::Split(line, " "); params.cpos = 0; params.cmdname = params.tokens[params.cpos++].c_str(); params.cmdline = line.c_str(); if (cmd_map.find(params.cmdname) == cmd_map.end()) { LOG(ERROR) << "unexpected command [" << params.cmdname << "]"; goto pbiudone; } const Command* cmd = cmd_map[params.cmdname]; if (cmd->f != nullptr && cmd->f(params) == -1) { LOG(ERROR) << "failed to execute command [" << line << "]"; goto pbiudone; } if (params.canwrite) { if (ota_fsync(params.fd) == -1) { failure_type = kFsyncFailure; PLOG(ERROR) << "fsync failed"; goto pbiudone; } fprintf(cmd_pipe, "set_progress %.4f\n", static_cast<double>(params.written) / total_blocks); fflush(cmd_pipe); } } if (params.canwrite) { pthread_join(params.thread, nullptr); LOG(INFO) << "wrote " << params.written << " blocks; expected " << total_blocks; LOG(INFO) << "stashed " << params.stashed << " blocks"; LOG(INFO) << "max alloc needed was " << params.buffer.size(); const char* partition = strrchr(blockdev_filename->data.c_str(), '/'); if (partition != nullptr && *(partition + 1) != 0) { fprintf(cmd_pipe, "log bytes_written_%s: %zu\n", partition + 1, params.written * BLOCKSIZE); fprintf(cmd_pipe, "log bytes_stashed_%s: %zu\n", partition + 1, params.stashed * BLOCKSIZE); fflush(cmd_pipe); } // Delete stash only after successfully completing the update, as it may contain blocks needed // to complete the update later. DeleteStash(params.stashbase); } else { LOG(INFO) << "verified partition contents; update may be resumed"; } rc = 0; pbiudone: if (ota_fsync(params.fd) == -1) { failure_type = kFsyncFailure; PLOG(ERROR) << "fsync failed"; } // params.fd will be automatically closed because it's a unique_fd. // Only delete the stash if the update cannot be resumed, or it's a verification run and we // created the stash. if (params.isunresumable || (!params.canwrite && params.createdstash)) { DeleteStash(params.stashbase); } if (failure_type != kNoCause && state->cause_code == kNoCause) { state->cause_code = failure_type; } return StringValue(rc == 0 ? "t" : ""); } /** * The transfer list is a text file containing commands to transfer data from one place to another * on the target partition. We parse it and execute the commands in order: * * zero [rangeset] * - Fill the indicated blocks with zeros. * * new [rangeset] * - Fill the blocks with data read from the new_data file. * * erase [rangeset] * - Mark the given blocks as empty. * * move <...> * bsdiff <patchstart> <patchlen> <...> * imgdiff <patchstart> <patchlen> <...> * - Read the source blocks, apply a patch (or not in the case of move), write result to target * blocks. bsdiff or imgdiff specifies the type of patch; move means no patch at all. * * See the comments in LoadSrcTgtVersion3() for a description of the <...> format. * * stash <stash_id> <src_range> * - Load the given source range and stash the data in the given slot of the stash table. * * free <stash_id> * - Free the given stash data. * * The creator of the transfer list will guarantee that no block is read (ie, used as the source for * a patch or move) after it has been written. * * The creator will guarantee that a given stash is loaded (with a stash command) before it's used * in a move/bsdiff/imgdiff command. * * Within one command the source and target ranges may overlap so in general we need to read the * entire source into memory before writing anything to the target blocks. * * All the patch data is concatenated into one patch_data file in the update package. It must be * stored uncompressed because we memory-map it in directly from the archive. (Since patches are * already compressed, we lose very little by not compressing their concatenation.) * * Commands that read data from the partition (i.e. move/bsdiff/imgdiff/stash) have one or more * additional hashes before the range parameters, which are used to check if the command has already * been completed and verify the integrity of the source data. */ Value* BlockImageVerifyFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { // Commands which are not tested are set to nullptr to skip them completely const Command commands[] = { { "bsdiff", PerformCommandDiff }, { "erase", nullptr }, { "free", PerformCommandFree }, { "imgdiff", PerformCommandDiff }, { "move", PerformCommandMove }, { "new", nullptr }, { "stash", PerformCommandStash }, { "zero", nullptr } }; // Perform a dry run without writing to test if an update can proceed return PerformBlockImageUpdate(name, state, argv, commands, sizeof(commands) / sizeof(commands[0]), true); } Value* BlockImageUpdateFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { const Command commands[] = { { "bsdiff", PerformCommandDiff }, { "erase", PerformCommandErase }, { "free", PerformCommandFree }, { "imgdiff", PerformCommandDiff }, { "move", PerformCommandMove }, { "new", PerformCommandNew }, { "stash", PerformCommandStash }, { "zero", PerformCommandZero } }; return PerformBlockImageUpdate(name, state, argv, commands, sizeof(commands) / sizeof(commands[0]), false); } Value* RangeSha1Fn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 2) { ErrorAbort(state, kArgsParsingFailure, "range_sha1 expects 2 arguments, got %zu", argv.size()); return StringValue(""); } std::vector<std::unique_ptr<Value>> args; if (!ReadValueArgs(state, argv, &args)) { return nullptr; } const Value* blockdev_filename = args[0].get(); const Value* ranges = args[1].get(); if (blockdev_filename->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "blockdev_filename argument to %s must be string", name); return StringValue(""); } if (ranges->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "ranges argument to %s must be string", name); return StringValue(""); } android::base::unique_fd fd(ota_open(blockdev_filename->data.c_str(), O_RDWR)); if (fd == -1) { ErrorAbort(state, kFileOpenFailure, "open \"%s\" failed: %s", blockdev_filename->data.c_str(), strerror(errno)); return StringValue(""); } RangeSet rs = parse_range(ranges->data); SHA_CTX ctx; SHA1_Init(&ctx); std::vector<uint8_t> buffer(BLOCKSIZE); for (size_t i = 0; i < rs.count; ++i) { if (!check_lseek(fd, (off64_t)rs.pos[i*2] * BLOCKSIZE, SEEK_SET)) { ErrorAbort(state, kLseekFailure, "failed to seek %s: %s", blockdev_filename->data.c_str(), strerror(errno)); return StringValue(""); } for (size_t j = rs.pos[i*2]; j < rs.pos[i*2+1]; ++j) { if (read_all(fd, buffer, BLOCKSIZE) == -1) { ErrorAbort(state, kFreadFailure, "failed to read %s: %s", blockdev_filename->data.c_str(), strerror(errno)); return StringValue(""); } SHA1_Update(&ctx, buffer.data(), BLOCKSIZE); } } uint8_t digest[SHA_DIGEST_LENGTH]; SHA1_Final(digest, &ctx); return StringValue(print_sha1(digest)); } // This function checks if a device has been remounted R/W prior to an incremental // OTA update. This is an common cause of update abortion. The function reads the // 1st block of each partition and check for mounting time/count. It return string "t" // if executes successfully and an empty string otherwise. Value* CheckFirstBlockFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 1) { ErrorAbort(state, kArgsParsingFailure, "check_first_block expects 1 argument, got %zu", argv.size()); return StringValue(""); } std::vector<std::unique_ptr<Value>> args; if (!ReadValueArgs(state, argv, &args)) { return nullptr; } const Value* arg_filename = args[0].get(); if (arg_filename->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "filename argument to %s must be string", name); return StringValue(""); } android::base::unique_fd fd(ota_open(arg_filename->data.c_str(), O_RDONLY)); if (fd == -1) { ErrorAbort(state, kFileOpenFailure, "open \"%s\" failed: %s", arg_filename->data.c_str(), strerror(errno)); return StringValue(""); } RangeSet blk0 {1 /*count*/, 1/*size*/, std::vector<size_t> {0, 1}/*position*/}; std::vector<uint8_t> block0_buffer(BLOCKSIZE); if (ReadBlocks(blk0, block0_buffer, fd) == -1) { ErrorAbort(state, kFreadFailure, "failed to read %s: %s", arg_filename->data.c_str(), strerror(errno)); return StringValue(""); } // https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout // Super block starts from block 0, offset 0x400 // 0x2C: len32 Mount time // 0x30: len32 Write time // 0x34: len16 Number of mounts since the last fsck // 0x38: len16 Magic signature 0xEF53 time_t mount_time = *reinterpret_cast<uint32_t*>(&block0_buffer[0x400+0x2C]); uint16_t mount_count = *reinterpret_cast<uint16_t*>(&block0_buffer[0x400+0x34]); if (mount_count > 0) { uiPrintf(state, "Device was remounted R/W %d times\n", mount_count); uiPrintf(state, "Last remount happened on %s", ctime(&mount_time)); } return StringValue("t"); } Value* BlockImageRecoverFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 2) { ErrorAbort(state, kArgsParsingFailure, "block_image_recover expects 2 arguments, got %zu", argv.size()); return StringValue(""); } std::vector<std::unique_ptr<Value>> args; if (!ReadValueArgs(state, argv, &args)) { return nullptr; } const Value* filename = args[0].get(); const Value* ranges = args[1].get(); if (filename->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "filename argument to %s must be string", name); return StringValue(""); } if (ranges->type != VAL_STRING) { ErrorAbort(state, kArgsParsingFailure, "ranges argument to %s must be string", name); return StringValue(""); } // Output notice to log when recover is attempted LOG(INFO) << filename->data << " image corrupted, attempting to recover..."; // When opened with O_RDWR, libfec rewrites corrupted blocks when they are read fec::io fh(filename->data.c_str(), O_RDWR); if (!fh) { ErrorAbort(state, kLibfecFailure, "fec_open \"%s\" failed: %s", filename->data.c_str(), strerror(errno)); return StringValue(""); } if (!fh.has_ecc() || !fh.has_verity()) { ErrorAbort(state, kLibfecFailure, "unable to use metadata to correct errors"); return StringValue(""); } fec_status status; if (!fh.get_status(status)) { ErrorAbort(state, kLibfecFailure, "failed to read FEC status"); return StringValue(""); } RangeSet rs = parse_range(ranges->data); uint8_t buffer[BLOCKSIZE]; for (size_t i = 0; i < rs.count; ++i) { for (size_t j = rs.pos[i * 2]; j < rs.pos[i * 2 + 1]; ++j) { // Stay within the data area, libfec validates and corrects metadata if (status.data_size <= (uint64_t)j * BLOCKSIZE) { continue; } if (fh.pread(buffer, BLOCKSIZE, (off64_t)j * BLOCKSIZE) != BLOCKSIZE) { ErrorAbort(state, kLibfecFailure, "failed to recover %s (block %zu): %s", filename->data.c_str(), j, strerror(errno)); return StringValue(""); } // If we want to be able to recover from a situation where rewriting a corrected // block doesn't guarantee the same data will be returned when re-read later, we // can save a copy of corrected blocks to /cache. Note: // // 1. Maximum space required from /cache is the same as the maximum number of // corrupted blocks we can correct. For RS(255, 253) and a 2 GiB partition, // this would be ~16 MiB, for example. // // 2. To find out if this block was corrupted, call fec_get_status after each // read and check if the errors field value has increased. } } LOG(INFO) << "..." << filename->data << " image recovered successfully."; return StringValue("t"); } void RegisterBlockImageFunctions() { RegisterFunction("block_image_verify", BlockImageVerifyFn); RegisterFunction("block_image_update", BlockImageUpdateFn); RegisterFunction("block_image_recover", BlockImageRecoverFn); RegisterFunction("check_first_block", CheckFirstBlockFn); RegisterFunction("range_sha1", RangeSha1Fn); }