/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "verifier.h" #include <errno.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <algorithm> #include <functional> #include <memory> #include <vector> #include <android-base/logging.h> #include <openssl/bn.h> #include <openssl/ecdsa.h> #include <openssl/obj_mac.h> #include "asn1_decoder.h" #include "print_sha1.h" static constexpr size_t MiB = 1024 * 1024; /* * Simple version of PKCS#7 SignedData extraction. This extracts the * signature OCTET STRING to be used for signature verification. * * For full details, see http://www.ietf.org/rfc/rfc3852.txt * * The PKCS#7 structure looks like: * * SEQUENCE (ContentInfo) * OID (ContentType) * [0] (content) * SEQUENCE (SignedData) * INTEGER (version CMSVersion) * SET (DigestAlgorithmIdentifiers) * SEQUENCE (EncapsulatedContentInfo) * [0] (CertificateSet OPTIONAL) * [1] (RevocationInfoChoices OPTIONAL) * SET (SignerInfos) * SEQUENCE (SignerInfo) * INTEGER (CMSVersion) * SEQUENCE (SignerIdentifier) * SEQUENCE (DigestAlgorithmIdentifier) * SEQUENCE (SignatureAlgorithmIdentifier) * OCTET STRING (SignatureValue) */ static bool read_pkcs7(const uint8_t* pkcs7_der, size_t pkcs7_der_len, std::vector<uint8_t>* sig_der) { CHECK(sig_der != nullptr); sig_der->clear(); asn1_context ctx(pkcs7_der, pkcs7_der_len); std::unique_ptr<asn1_context> pkcs7_seq(ctx.asn1_sequence_get()); if (pkcs7_seq == nullptr || !pkcs7_seq->asn1_sequence_next()) { return false; } std::unique_ptr<asn1_context> signed_data_app(pkcs7_seq->asn1_constructed_get()); if (signed_data_app == nullptr) { return false; } std::unique_ptr<asn1_context> signed_data_seq(signed_data_app->asn1_sequence_get()); if (signed_data_seq == nullptr || !signed_data_seq->asn1_sequence_next() || !signed_data_seq->asn1_sequence_next() || !signed_data_seq->asn1_sequence_next() || !signed_data_seq->asn1_constructed_skip_all()) { return false; } std::unique_ptr<asn1_context> sig_set(signed_data_seq->asn1_set_get()); if (sig_set == nullptr) { return false; } std::unique_ptr<asn1_context> sig_seq(sig_set->asn1_sequence_get()); if (sig_seq == nullptr || !sig_seq->asn1_sequence_next() || !sig_seq->asn1_sequence_next() || !sig_seq->asn1_sequence_next() || !sig_seq->asn1_sequence_next()) { return false; } const uint8_t* sig_der_ptr; size_t sig_der_length; if (!sig_seq->asn1_octet_string_get(&sig_der_ptr, &sig_der_length)) { return false; } sig_der->resize(sig_der_length); std::copy(sig_der_ptr, sig_der_ptr + sig_der_length, sig_der->begin()); return true; } /* * Looks for an RSA signature embedded in the .ZIP file comment given the path to the zip. Verifies * that it matches one of the given public keys. A callback function can be optionally provided for * posting the progress. * * Returns VERIFY_SUCCESS or VERIFY_FAILURE (if any error is encountered or no key matches the * signature). */ int verify_file(const unsigned char* addr, size_t length, const std::vector<Certificate>& keys, const std::function<void(float)>& set_progress) { if (set_progress) { set_progress(0.0); } // An archive with a whole-file signature will end in six bytes: // // (2-byte signature start) $ff $ff (2-byte comment size) // // (As far as the ZIP format is concerned, these are part of the archive comment.) We start by // reading this footer, this tells us how far back from the end we have to start reading to find // the whole comment. #define FOOTER_SIZE 6 if (length < FOOTER_SIZE) { LOG(ERROR) << "not big enough to contain footer"; return VERIFY_FAILURE; } const unsigned char* footer = addr + length - FOOTER_SIZE; if (footer[2] != 0xff || footer[3] != 0xff) { LOG(ERROR) << "footer is wrong"; return VERIFY_FAILURE; } size_t comment_size = footer[4] + (footer[5] << 8); size_t signature_start = footer[0] + (footer[1] << 8); LOG(INFO) << "comment is " << comment_size << " bytes; signature is " << signature_start << " bytes from end"; if (signature_start > comment_size) { LOG(ERROR) << "signature start: " << signature_start << " is larger than comment size: " << comment_size; return VERIFY_FAILURE; } if (signature_start <= FOOTER_SIZE) { LOG(ERROR) << "Signature start is in the footer"; return VERIFY_FAILURE; } #define EOCD_HEADER_SIZE 22 // The end-of-central-directory record is 22 bytes plus any comment length. size_t eocd_size = comment_size + EOCD_HEADER_SIZE; if (length < eocd_size) { LOG(ERROR) << "not big enough to contain EOCD"; return VERIFY_FAILURE; } // Determine how much of the file is covered by the signature. This is everything except the // signature data and length, which includes all of the EOCD except for the comment length field // (2 bytes) and the comment data. size_t signed_len = length - eocd_size + EOCD_HEADER_SIZE - 2; const unsigned char* eocd = addr + length - eocd_size; // If this is really is the EOCD record, it will begin with the magic number $50 $4b $05 $06. if (eocd[0] != 0x50 || eocd[1] != 0x4b || eocd[2] != 0x05 || eocd[3] != 0x06) { LOG(ERROR) << "signature length doesn't match EOCD marker"; return VERIFY_FAILURE; } for (size_t i = 4; i < eocd_size-3; ++i) { if (eocd[i] == 0x50 && eocd[i+1] == 0x4b && eocd[i+2] == 0x05 && eocd[i+3] == 0x06) { // If the sequence $50 $4b $05 $06 appears anywhere after the real one, libziparchive will // find the later (wrong) one, which could be exploitable. Fail the verification if this // sequence occurs anywhere after the real one. LOG(ERROR) << "EOCD marker occurs after start of EOCD"; return VERIFY_FAILURE; } } bool need_sha1 = false; bool need_sha256 = false; for (const auto& key : keys) { switch (key.hash_len) { case SHA_DIGEST_LENGTH: need_sha1 = true; break; case SHA256_DIGEST_LENGTH: need_sha256 = true; break; } } SHA_CTX sha1_ctx; SHA256_CTX sha256_ctx; SHA1_Init(&sha1_ctx); SHA256_Init(&sha256_ctx); double frac = -1.0; size_t so_far = 0; while (so_far < signed_len) { // On a Nexus 5X, experiment showed 16MiB beat 1MiB by 6% faster for a // 1196MiB full OTA and 60% for an 89MiB incremental OTA. // http://b/28135231. size_t size = std::min(signed_len - so_far, 16 * MiB); if (need_sha1) SHA1_Update(&sha1_ctx, addr + so_far, size); if (need_sha256) SHA256_Update(&sha256_ctx, addr + so_far, size); so_far += size; if (set_progress) { double f = so_far / (double)signed_len; if (f > frac + 0.02 || size == so_far) { set_progress(f); frac = f; } } } uint8_t sha1[SHA_DIGEST_LENGTH]; SHA1_Final(sha1, &sha1_ctx); uint8_t sha256[SHA256_DIGEST_LENGTH]; SHA256_Final(sha256, &sha256_ctx); const uint8_t* signature = eocd + eocd_size - signature_start; size_t signature_size = signature_start - FOOTER_SIZE; LOG(INFO) << "signature (offset: " << std::hex << (length - signature_start) << ", length: " << signature_size << "): " << print_hex(signature, signature_size); std::vector<uint8_t> sig_der; if (!read_pkcs7(signature, signature_size, &sig_der)) { LOG(ERROR) << "Could not find signature DER block"; return VERIFY_FAILURE; } // Check to make sure at least one of the keys matches the signature. Since any key can match, // we need to try each before determining a verification failure has happened. size_t i = 0; for (const auto& key : keys) { const uint8_t* hash; int hash_nid; switch (key.hash_len) { case SHA_DIGEST_LENGTH: hash = sha1; hash_nid = NID_sha1; break; case SHA256_DIGEST_LENGTH: hash = sha256; hash_nid = NID_sha256; break; default: continue; } // The 6 bytes is the "(signature_start) $ff $ff (comment_size)" that the signing tool appends // after the signature itself. if (key.key_type == Certificate::KEY_TYPE_RSA) { if (!RSA_verify(hash_nid, hash, key.hash_len, sig_der.data(), sig_der.size(), key.rsa.get())) { LOG(INFO) << "failed to verify against RSA key " << i; continue; } LOG(INFO) << "whole-file signature verified against RSA key " << i; return VERIFY_SUCCESS; } else if (key.key_type == Certificate::KEY_TYPE_EC && key.hash_len == SHA256_DIGEST_LENGTH) { if (!ECDSA_verify(0, hash, key.hash_len, sig_der.data(), sig_der.size(), key.ec.get())) { LOG(INFO) << "failed to verify against EC key " << i; continue; } LOG(INFO) << "whole-file signature verified against EC key " << i; return VERIFY_SUCCESS; } else { LOG(INFO) << "Unknown key type " << key.key_type; } i++; } if (need_sha1) { LOG(INFO) << "SHA-1 digest: " << print_hex(sha1, SHA_DIGEST_LENGTH); } if (need_sha256) { LOG(INFO) << "SHA-256 digest: " << print_hex(sha256, SHA256_DIGEST_LENGTH); } LOG(ERROR) << "failed to verify whole-file signature"; return VERIFY_FAILURE; } std::unique_ptr<RSA, RSADeleter> parse_rsa_key(FILE* file, uint32_t exponent) { // Read key length in words and n0inv. n0inv is a precomputed montgomery // parameter derived from the modulus and can be used to speed up // verification. n0inv is 32 bits wide here, assuming the verification logic // uses 32 bit arithmetic. However, BoringSSL may use a word size of 64 bits // internally, in which case we don't have a valid n0inv. Thus, we just // ignore the montgomery parameters and have BoringSSL recompute them // internally. If/When the speedup from using the montgomery parameters // becomes relevant, we can add more sophisticated code here to obtain a // 64-bit n0inv and initialize the montgomery parameters in the key object. uint32_t key_len_words = 0; uint32_t n0inv = 0; if (fscanf(file, " %i , 0x%x", &key_len_words, &n0inv) != 2) { return nullptr; } if (key_len_words > 8192 / 32) { LOG(ERROR) << "key length (" << key_len_words << ") too large"; return nullptr; } // Read the modulus. std::unique_ptr<uint32_t[]> modulus(new uint32_t[key_len_words]); if (fscanf(file, " , { %u", &modulus[0]) != 1) { return nullptr; } for (uint32_t i = 1; i < key_len_words; ++i) { if (fscanf(file, " , %u", &modulus[i]) != 1) { return nullptr; } } // Cconvert from little-endian array of little-endian words to big-endian // byte array suitable as input for BN_bin2bn. std::reverse((uint8_t*)modulus.get(), (uint8_t*)(modulus.get() + key_len_words)); // The next sequence of values is the montgomery parameter R^2. Since we // generally don't have a valid |n0inv|, we ignore this (see comment above). uint32_t rr_value; if (fscanf(file, " } , { %u", &rr_value) != 1) { return nullptr; } for (uint32_t i = 1; i < key_len_words; ++i) { if (fscanf(file, " , %u", &rr_value) != 1) { return nullptr; } } if (fscanf(file, " } } ") != 0) { return nullptr; } // Initialize the key. std::unique_ptr<RSA, RSADeleter> key(RSA_new()); if (!key) { return nullptr; } key->n = BN_bin2bn((uint8_t*)modulus.get(), key_len_words * sizeof(uint32_t), NULL); if (!key->n) { return nullptr; } key->e = BN_new(); if (!key->e || !BN_set_word(key->e, exponent)) { return nullptr; } return key; } struct BNDeleter { void operator()(BIGNUM* bn) const { BN_free(bn); } }; std::unique_ptr<EC_KEY, ECKEYDeleter> parse_ec_key(FILE* file) { uint32_t key_len_bytes = 0; if (fscanf(file, " %i", &key_len_bytes) != 1) { return nullptr; } std::unique_ptr<EC_GROUP, void (*)(EC_GROUP*)> group( EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1), EC_GROUP_free); if (!group) { return nullptr; } // Verify that |key_len| matches the group order. if (key_len_bytes != BN_num_bytes(EC_GROUP_get0_order(group.get()))) { return nullptr; } // Read the public key coordinates. Note that the byte order in the file is // little-endian, so we convert to big-endian here. std::unique_ptr<uint8_t[]> bytes(new uint8_t[key_len_bytes]); std::unique_ptr<BIGNUM, BNDeleter> point[2]; for (int i = 0; i < 2; ++i) { unsigned int byte = 0; if (fscanf(file, " , { %u", &byte) != 1) { return nullptr; } bytes[key_len_bytes - 1] = byte; for (size_t i = 1; i < key_len_bytes; ++i) { if (fscanf(file, " , %u", &byte) != 1) { return nullptr; } bytes[key_len_bytes - i - 1] = byte; } point[i].reset(BN_bin2bn(bytes.get(), key_len_bytes, nullptr)); if (!point[i]) { return nullptr; } if (fscanf(file, " }") != 0) { return nullptr; } } if (fscanf(file, " } ") != 0) { return nullptr; } // Create and initialize the key. std::unique_ptr<EC_KEY, ECKEYDeleter> key(EC_KEY_new()); if (!key || !EC_KEY_set_group(key.get(), group.get()) || !EC_KEY_set_public_key_affine_coordinates(key.get(), point[0].get(), point[1].get())) { return nullptr; } return key; } // Reads a file containing one or more public keys as produced by // DumpPublicKey: this is an RSAPublicKey struct as it would appear // as a C source literal, eg: // // "{64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}" // // For key versions newer than the original 2048-bit e=3 keys // supported by Android, the string is preceded by a version // identifier, eg: // // "v2 {64,0xc926ad21,{1795090719,...,-695002876},{-857949815,...,1175080310}}" // // (Note that the braces and commas in this example are actual // characters the parser expects to find in the file; the ellipses // indicate more numbers omitted from this example.) // // The file may contain multiple keys in this format, separated by // commas. The last key must not be followed by a comma. // // A Certificate is a pair of an RSAPublicKey and a particular hash // (we support SHA-1 and SHA-256; we store the hash length to signify // which is being used). The hash used is implied by the version number. // // 1: 2048-bit RSA key with e=3 and SHA-1 hash // 2: 2048-bit RSA key with e=65537 and SHA-1 hash // 3: 2048-bit RSA key with e=3 and SHA-256 hash // 4: 2048-bit RSA key with e=65537 and SHA-256 hash // 5: 256-bit EC key using the NIST P-256 curve parameters and SHA-256 hash // // Returns true on success, and appends the found keys (at least one) to certs. // Otherwise returns false if the file failed to parse, or if it contains zero // keys. The contents in certs would be unspecified on failure. bool load_keys(const char* filename, std::vector<Certificate>& certs) { std::unique_ptr<FILE, decltype(&fclose)> f(fopen(filename, "r"), fclose); if (!f) { PLOG(ERROR) << "error opening " << filename; return false; } while (true) { certs.emplace_back(0, Certificate::KEY_TYPE_RSA, nullptr, nullptr); Certificate& cert = certs.back(); uint32_t exponent = 0; char start_char; if (fscanf(f.get(), " %c", &start_char) != 1) return false; if (start_char == '{') { // a version 1 key has no version specifier. cert.key_type = Certificate::KEY_TYPE_RSA; exponent = 3; cert.hash_len = SHA_DIGEST_LENGTH; } else if (start_char == 'v') { int version; if (fscanf(f.get(), "%d {", &version) != 1) return false; switch (version) { case 2: cert.key_type = Certificate::KEY_TYPE_RSA; exponent = 65537; cert.hash_len = SHA_DIGEST_LENGTH; break; case 3: cert.key_type = Certificate::KEY_TYPE_RSA; exponent = 3; cert.hash_len = SHA256_DIGEST_LENGTH; break; case 4: cert.key_type = Certificate::KEY_TYPE_RSA; exponent = 65537; cert.hash_len = SHA256_DIGEST_LENGTH; break; case 5: cert.key_type = Certificate::KEY_TYPE_EC; cert.hash_len = SHA256_DIGEST_LENGTH; break; default: return false; } } if (cert.key_type == Certificate::KEY_TYPE_RSA) { cert.rsa = parse_rsa_key(f.get(), exponent); if (!cert.rsa) { return false; } LOG(INFO) << "read key e=" << exponent << " hash=" << cert.hash_len; } else if (cert.key_type == Certificate::KEY_TYPE_EC) { cert.ec = parse_ec_key(f.get()); if (!cert.ec) { return false; } } else { LOG(ERROR) << "Unknown key type " << cert.key_type; return false; } // if the line ends in a comma, this file has more keys. int ch = fgetc(f.get()); if (ch == ',') { // more keys to come. continue; } else if (ch == EOF) { break; } else { LOG(ERROR) << "unexpected character between keys"; return false; } } return true; }