#!/usr/bin/python # # Copyright (C) 2013 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for looking up symbolic debugging information. The information can include symbol names, offsets, and source locations. """ import glob import os import platform import re import subprocess import unittest ANDROID_BUILD_TOP = os.environ["ANDROID_BUILD_TOP"] if not ANDROID_BUILD_TOP: ANDROID_BUILD_TOP = "." def FindSymbolsDir(): saveddir = os.getcwd() os.chdir(ANDROID_BUILD_TOP) try: cmd = ("CALLED_FROM_SETUP=true BUILD_SYSTEM=build/core " "SRC_TARGET_DIR=build/target make -f build/core/config.mk " "dumpvar-abs-TARGET_OUT_UNSTRIPPED") stream = subprocess.Popen(cmd, stdout=subprocess.PIPE, shell=True).stdout return os.path.join(ANDROID_BUILD_TOP, stream.read().strip()) finally: os.chdir(saveddir) SYMBOLS_DIR = FindSymbolsDir() ARCH = None # These are private. Do not access them from other modules. _CACHED_TOOLCHAIN = None _CACHED_TOOLCHAIN_ARCH = None def ToolPath(tool, toolchain=None): """Return a fully-qualified path to the specified tool""" if not toolchain: toolchain = FindToolchain() return glob.glob(os.path.join(toolchain, "*-" + tool))[0] def FindToolchain(): """Returns the toolchain matching ARCH.""" global _CACHED_TOOLCHAIN, _CACHED_TOOLCHAIN_ARCH if _CACHED_TOOLCHAIN is not None and _CACHED_TOOLCHAIN_ARCH == ARCH: return _CACHED_TOOLCHAIN # We use slightly different names from GCC, and there's only one toolchain # for x86/x86_64. Note that these are the names of the top-level directory # rather than the _different_ names used lower down the directory hierarchy! gcc_dir = ARCH if gcc_dir == "arm64": gcc_dir = "aarch64" elif gcc_dir == "mips64": gcc_dir = "mips" elif gcc_dir == "x86_64": gcc_dir = "x86" os_name = platform.system().lower(); available_toolchains = glob.glob("%s/prebuilts/gcc/%s-x86/%s/*-linux-*/bin/" % (ANDROID_BUILD_TOP, os_name, gcc_dir)) if len(available_toolchains) == 0: raise Exception("Could not find tool chain for %s" % (ARCH)) toolchain = sorted(available_toolchains)[-1] if not os.path.exists(ToolPath("addr2line", toolchain)): raise Exception("No addr2line for %s" % (toolchain)) _CACHED_TOOLCHAIN = toolchain _CACHED_TOOLCHAIN_ARCH = ARCH print "Using %s toolchain from: %s" % (_CACHED_TOOLCHAIN_ARCH, _CACHED_TOOLCHAIN) return _CACHED_TOOLCHAIN def SymbolInformation(lib, addr): """Look up symbol information about an address. Args: lib: library (or executable) pathname containing symbols addr: string hexidecimal address Returns: A list of the form [(source_symbol, source_location, object_symbol_with_offset)]. If the function has been inlined then the list may contain more than one element with the symbols for the most deeply nested inlined location appearing first. The list is always non-empty, even if no information is available. Usually you want to display the source_location and object_symbol_with_offset from the last element in the list. """ info = SymbolInformationForSet(lib, set([addr])) return (info and info.get(addr)) or [(None, None, None)] def SymbolInformationForSet(lib, unique_addrs): """Look up symbol information for a set of addresses from the given library. Args: lib: library (or executable) pathname containing symbols unique_addrs: set of hexidecimal addresses Returns: A dictionary of the form {addr: [(source_symbol, source_location, object_symbol_with_offset)]} where each address has a list of associated symbols and locations. The list is always non-empty. If the function has been inlined then the list may contain more than one element with the symbols for the most deeply nested inlined location appearing first. The list is always non-empty, even if no information is available. Usually you want to display the source_location and object_symbol_with_offset from the last element in the list. """ if not lib: return None addr_to_line = CallAddr2LineForSet(lib, unique_addrs) if not addr_to_line: return None addr_to_objdump = CallObjdumpForSet(lib, unique_addrs) if not addr_to_objdump: return None result = {} for addr in unique_addrs: source_info = addr_to_line.get(addr) if not source_info: source_info = [(None, None)] if addr in addr_to_objdump: (object_symbol, object_offset) = addr_to_objdump.get(addr) object_symbol_with_offset = FormatSymbolWithOffset(object_symbol, object_offset) else: object_symbol_with_offset = None result[addr] = [(source_symbol, source_location, object_symbol_with_offset) for (source_symbol, source_location) in source_info] return result def CallAddr2LineForSet(lib, unique_addrs): """Look up line and symbol information for a set of addresses. Args: lib: library (or executable) pathname containing symbols unique_addrs: set of string hexidecimal addresses look up. Returns: A dictionary of the form {addr: [(symbol, file:line)]} where each address has a list of associated symbols and locations or an empty list if no symbol information was found. If the function has been inlined then the list may contain more than one element with the symbols for the most deeply nested inlined location appearing first. """ if not lib: return None symbols = SYMBOLS_DIR + lib if not os.path.exists(symbols): symbols = lib if not os.path.exists(symbols): return None # Make sure the symbols path is not a directory. if os.path.isdir(symbols): return None cmd = [ToolPath("addr2line"), "--functions", "--inlines", "--demangle", "--exe=" + symbols] child = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE) result = {} addrs = sorted(unique_addrs) for addr in addrs: child.stdin.write("0x%s\n" % addr) child.stdin.flush() records = [] first = True while True: symbol = child.stdout.readline().strip() if symbol == "??": symbol = None location = child.stdout.readline().strip() if location == "??:0" or location == "??:?": location = None if symbol is None and location is None: break records.append((symbol, location)) if first: # Write a blank line as a sentinel so we know when to stop # reading inlines from the output. # The blank line will cause addr2line to emit "??\n??:0\n". child.stdin.write("\n") first = False result[addr] = records child.stdin.close() child.stdout.close() return result def StripPC(addr): """Strips the Thumb bit a program counter address when appropriate. Args: addr: the program counter address Returns: The stripped program counter address. """ global ARCH if ARCH == "arm": return addr & ~1 return addr def CallObjdumpForSet(lib, unique_addrs): """Use objdump to find out the names of the containing functions. Args: lib: library (or executable) pathname containing symbols unique_addrs: set of string hexidecimal addresses to find the functions for. Returns: A dictionary of the form {addr: (string symbol, offset)}. """ if not lib: return None symbols = SYMBOLS_DIR + lib if not os.path.exists(symbols): symbols = lib if not os.path.exists(symbols): return None addrs = sorted(unique_addrs) start_addr_dec = str(StripPC(int(addrs[0], 16))) stop_addr_dec = str(StripPC(int(addrs[-1], 16)) + 8) cmd = [ToolPath("objdump"), "--section=.text", "--demangle", "--disassemble", "--start-address=" + start_addr_dec, "--stop-address=" + stop_addr_dec, symbols] # Function lines look like: # 000177b0 <android::IBinder::~IBinder()+0x2c>: # We pull out the address and function first. Then we check for an optional # offset. This is tricky due to functions that look like "operator+(..)+0x2c" func_regexp = re.compile("(^[a-f0-9]*) \<(.*)\>:$") offset_regexp = re.compile("(.*)\+0x([a-f0-9]*)") # A disassembly line looks like: # 177b2: b510 push {r4, lr} asm_regexp = re.compile("(^[ a-f0-9]*):[ a-f0-0]*.*$") current_symbol = None # The current function symbol in the disassembly. current_symbol_addr = 0 # The address of the current function. addr_index = 0 # The address that we are currently looking for. stream = subprocess.Popen(cmd, stdout=subprocess.PIPE).stdout result = {} for line in stream: # Is it a function line like: # 000177b0 <android::IBinder::~IBinder()>: components = func_regexp.match(line) if components: # This is a new function, so record the current function and its address. current_symbol_addr = int(components.group(1), 16) current_symbol = components.group(2) # Does it have an optional offset like: "foo(..)+0x2c"? components = offset_regexp.match(current_symbol) if components: current_symbol = components.group(1) offset = components.group(2) if offset: current_symbol_addr -= int(offset, 16) # Is it an disassembly line like: # 177b2: b510 push {r4, lr} components = asm_regexp.match(line) if components: addr = components.group(1) target_addr = addrs[addr_index] i_addr = int(addr, 16) i_target = StripPC(int(target_addr, 16)) if i_addr == i_target: result[target_addr] = (current_symbol, i_target - current_symbol_addr) addr_index += 1 if addr_index >= len(addrs): break stream.close() return result def CallCppFilt(mangled_symbol): cmd = [ToolPath("c++filt")] process = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE) process.stdin.write(mangled_symbol) process.stdin.write("\n") process.stdin.close() demangled_symbol = process.stdout.readline().strip() process.stdout.close() return demangled_symbol def FormatSymbolWithOffset(symbol, offset): if offset == 0: return symbol return "%s+%d" % (symbol, offset) def GetAbiFromToolchain(toolchain_var, bits): toolchain = os.environ.get(toolchain_var) if not toolchain: return None toolchain_match = re.search("\/(aarch64|arm|mips|x86)\/", toolchain) if toolchain_match: abi = toolchain_match.group(1) if abi == "aarch64": return "arm64" elif bits == 64: if abi == "x86": return "x86_64" elif abi == "mips": return "mips64" return abi return None def Get32BitArch(): # Check for ANDROID_TOOLCHAIN_2ND_ARCH first, if set, use that. # If not try ANDROID_TOOLCHAIN to find the arch. # If this is not set, then default to arm. arch = GetAbiFromToolchain("ANDROID_TOOLCHAIN_2ND_ARCH", 32) if not arch: arch = GetAbiFromToolchain("ANDROID_TOOLCHAIN", 32) if not arch: return "arm" return arch def Get64BitArch(): # Check for ANDROID_TOOLCHAIN, if it is set, we can figure out the # arch this way. If this is not set, then default to arm64. arch = GetAbiFromToolchain("ANDROID_TOOLCHAIN", 64) if not arch: return "arm64" return arch def SetAbi(lines): global ARCH abi_line = re.compile("ABI: \'(.*)\'") trace_line = re.compile("\#[0-9]+[ \t]+..[ \t]+([0-9a-f]{8}|[0-9a-f]{16})([ \t]+|$)") asan_trace_line = re.compile("\#[0-9]+[ \t]+0x([0-9a-f]+)[ \t]+") ARCH = None for line in lines: abi_match = abi_line.search(line) if abi_match: ARCH = abi_match.group(1) break trace_match = trace_line.search(line) if trace_match: # Try to guess the arch, we know the bitness. if len(trace_match.group(1)) == 16: ARCH = Get64BitArch() else: ARCH = Get32BitArch() break asan_trace_match = asan_trace_line.search(line) if asan_trace_match: # We might be able to guess the bitness by the length of the address. if len(asan_trace_match.group(1)) > 8: ARCH = Get64BitArch() # We know for a fact this is 64 bit, so we are done. break else: ARCH = Get32BitArch() # This might be 32 bit, or just a small address. Keep going in this # case, but if we couldn't figure anything else out, go with 32 bit. if not ARCH: raise Exception("Could not determine arch from input, use --arch=XXX to specify it") class FindToolchainTests(unittest.TestCase): def assert_toolchain_found(self, abi): global ARCH ARCH = abi FindToolchain() # Will throw on failure. def test_toolchains_found(self): self.assert_toolchain_found("arm") self.assert_toolchain_found("arm64") self.assert_toolchain_found("mips") self.assert_toolchain_found("x86") self.assert_toolchain_found("x86_64") class SetArchTests(unittest.TestCase): def test_abi_check(self): global ARCH SetAbi(["ABI: 'arm'"]) self.assertEqual(ARCH, "arm") SetAbi(["ABI: 'arm64'"]) self.assertEqual(ARCH, "arm64") SetAbi(["ABI: 'mips'"]) self.assertEqual(ARCH, "mips") SetAbi(["ABI: 'mips64'"]) self.assertEqual(ARCH, "mips64") SetAbi(["ABI: 'x86'"]) self.assertEqual(ARCH, "x86") SetAbi(["ABI: 'x86_64'"]) self.assertEqual(ARCH, "x86_64") def test_32bit_trace_line_toolchain(self): global ARCH os.environ.clear() os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/arm/arm-linux-androideabi-4.9/bin" SetAbi(["#00 pc 000374e0"]) self.assertEqual(ARCH, "arm") os.environ.clear() os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/mips/arm-linux-androideabi-4.9/bin" SetAbi(["#00 pc 000374e0"]) self.assertEqual(ARCH, "mips") os.environ.clear() os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/x86/arm-linux-androideabi-4.9/bin" SetAbi(["#00 pc 000374e0"]) self.assertEqual(ARCH, "x86") def test_32bit_trace_line_toolchain_2nd(self): global ARCH os.environ.clear() os.environ["ANDROID_TOOLCHAIN_2ND_ARCH"] = "linux-x86/arm/arm-linux-androideabi-4.9/bin" os.environ["ANDROID_TOOLCHAIN_ARCH"] = "linux-x86/aarch64/aarch64-linux-android-4.9/bin" SetAbi(["#00 pc 000374e0"]) self.assertEqual(ARCH, "arm") os.environ.clear() os.environ["ANDROID_TOOLCHAIN_2ND_ARCH"] = "linux-x86/mips/mips-linux-androideabi-4.9/bin" os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/unknown/unknown-linux-androideabi-4.9/bin" SetAbi(["#00 pc 000374e0"]) self.assertEqual(ARCH, "mips") os.environ.clear() os.environ["ANDROID_TOOLCHAIN_2ND_ARCH"] = "linux-x86/x86/x86-linux-androideabi-4.9/bin" os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/unknown/unknown-linux-androideabi-4.9/bin" SetAbi(["#00 pc 000374e0"]) self.assertEqual(ARCH, "x86") def test_64bit_trace_line_toolchain(self): global ARCH os.environ.clear() os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/aarch/aarch-linux-androideabi-4.9/bin" SetAbi(["#00 pc 00000000000374e0"]) self.assertEqual(ARCH, "arm64") os.environ.clear() os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/mips/arm-linux-androideabi-4.9/bin" SetAbi(["#00 pc 00000000000374e0"]) self.assertEqual(ARCH, "mips64") os.environ.clear() os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/x86/arm-linux-androideabi-4.9/bin" SetAbi(["#00 pc 00000000000374e0"]) self.assertEqual(ARCH, "x86_64") def test_trace_default_abis(self): global ARCH os.environ.clear() SetAbi(["#00 pc 000374e0"]) self.assertEqual(ARCH, "arm") SetAbi(["#00 pc 00000000000374e0"]) self.assertEqual(ARCH, "arm64") def test_32bit_asan_trace_line_toolchain(self): global ARCH os.environ.clear() os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/arm/arm-linux-androideabi-4.9/bin" SetAbi(["#10 0xb5eeba5d (/system/vendor/lib/egl/libGLESv1_CM_adreno.so+0xfa5d)"]) self.assertEqual(ARCH, "arm") os.environ.clear() os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/mips/arm-linux-androideabi-4.9/bin" SetAbi(["#10 0xb5eeba5d (/system/vendor/lib/egl/libGLESv1_CM_adreno.so+0xfa5d)"]) self.assertEqual(ARCH, "mips") os.environ.clear() os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/x86/arm-linux-androideabi-4.9/bin" SetAbi(["#10 0xb5eeba5d (/system/vendor/lib/egl/libGLESv1_CM_adreno.so+0xfa5d)"]) self.assertEqual(ARCH, "x86") def test_32bit_asan_trace_line_toolchain_2nd(self): global ARCH os.environ.clear() os.environ["ANDROID_TOOLCHAIN_2ND_ARCH"] = "linux-x86/arm/arm-linux-androideabi-4.9/bin" os.environ["ANDROID_TOOLCHAIN_ARCH"] = "linux-x86/aarch64/aarch64-linux-android-4.9/bin" SetAbi(["#3 0xae1725b5 (/system/vendor/lib/libllvm-glnext.so+0x6435b5)"]) self.assertEqual(ARCH, "arm") os.environ.clear() os.environ["ANDROID_TOOLCHAIN_2ND_ARCH"] = "linux-x86/mips/mips-linux-androideabi-4.9/bin" os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/unknown/unknown-linux-androideabi-4.9/bin" SetAbi(["#3 0xae1725b5 (/system/vendor/lib/libllvm-glnext.so+0x6435b5)"]) self.assertEqual(ARCH, "mips") os.environ.clear() os.environ["ANDROID_TOOLCHAIN_2ND_ARCH"] = "linux-x86/x86/x86-linux-androideabi-4.9/bin" os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/unknown/unknown-linux-androideabi-4.9/bin" SetAbi(["#3 0xae1725b5 (/system/vendor/lib/libllvm-glnext.so+0x6435b5)"]) self.assertEqual(ARCH, "x86") def test_64bit_asan_trace_line_toolchain(self): global ARCH os.environ.clear() os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/aarch/aarch-linux-androideabi-4.9/bin" SetAbi(["#0 0x11b35d33bf (/system/lib/libclang_rt.asan-arm-android.so+0x823bf)"]) self.assertEqual(ARCH, "arm64") os.environ.clear() os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/mips/arm-linux-androideabi-4.9/bin" SetAbi(["#1 0x11b35d33bf (/system/lib/libclang_rt.asan-arm-android.so+0x823bf)"]) self.assertEqual(ARCH, "mips64") os.environ.clear() os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/x86/arm-linux-androideabi-4.9/bin" SetAbi(["#12 0x11b35d33bf (/system/lib/libclang_rt.asan-arm-android.so+0x823bf)"]) self.assertEqual(ARCH, "x86_64") # Verify that if an address that might be 32 bit comes first, that # encountering a 64 bit address returns a 64 bit abi. ARCH = None os.environ.clear() os.environ["ANDROID_TOOLCHAIN"] = "linux-x86/x86/arm-linux-androideabi-4.9/bin" SetAbi(["#12 0x5d33bf (/system/lib/libclang_rt.asan-arm-android.so+0x823bf)", "#12 0x11b35d33bf (/system/lib/libclang_rt.asan-arm-android.so+0x823bf)"]) self.assertEqual(ARCH, "x86_64") def test_asan_trace_default_abis(self): global ARCH os.environ.clear() SetAbi(["#4 0x1234349ab (/system/vendor/lib/libllvm-glnext.so+0x64fc4f)"]) self.assertEqual(ARCH, "arm64") SetAbi(["#1 0xae17ec4f (/system/vendor/lib/libllvm-glnext.so+0x64fc4f)"]) self.assertEqual(ARCH, "arm") def test_no_abi(self): global ARCH self.assertRaisesRegexp(Exception, "Could not determine arch from input, use --arch=XXX to specify it", SetAbi, []) if __name__ == '__main__': unittest.main()