/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <stdbool.h> #include <string.h> #include <stdint.h> #include <stdlib.h> #include <stdio.h> #include <inttypes.h> #include <nanohub/aes.h> #include <nanohub/sha2.h> #include <nanohub/nanohub.h> #include <nanohub/nanoapp.h> static FILE* urandom = NULL; static void cleanup(void) { if (urandom) fclose(urandom); } static void rand_bytes(void *dst, uint32_t len) { if (!urandom) { urandom = fopen("/dev/urandom", "rb"); if (!urandom) { fprintf(stderr, "Failed to open /dev/urandom. Cannot procceed!\n"); exit(2); } //it might not matter, but we still like to try to cleanup after ourselves (void)atexit(cleanup); } if (len != fread(dst, 1, len, urandom)) { fprintf(stderr, "Failed to read /dev/urandom. Cannot procceed!\n"); exit(2); } } static int handleEncrypt(uint8_t **pbuf, uint32_t bufUsed, FILE *out, uint64_t keyId, uint32_t *key) { uint32_t i; struct AesCbcContext ctx; struct ImageHeader *image; uint32_t *data; struct Sha2state shaState; bool err = false; struct AppSecEncrHdr encr; uint32_t padLen = 0; uint8_t *buf = *pbuf; encr.keyID = keyId; //FIXME: compatibility: all the devices has google secret key with id 1, so we // can't simply change and enforce new key naming policy; // first, key upload mechanism shall start working, and then we can have // all the policies we want; for now, disable enforcement // if (encr.keyID <= 0xFFFF) // encr.keyID = AES_KEY_ID(encr.keyID); fprintf(stderr, "Using Key ID: %016" PRIX64 "\n", encr.keyID); rand_bytes(encr.IV, sizeof(encr.IV)); printHash(stderr, "Using IV", encr.IV, AES_BLOCK_WORDS); if (bufUsed <= sizeof(*image)) { fprintf(stderr, "Input file is too small\n"); return 2; } encr.dataLen = bufUsed; if (((bufUsed - sizeof(*image)) % AES_BLOCK_SIZE) != 0) padLen = AES_BLOCK_SIZE - ((bufUsed - sizeof(*image)) % AES_BLOCK_SIZE); if (padLen) { reallocOrDie(buf, bufUsed + padLen); rand_bytes(buf + bufUsed, padLen); bufUsed += padLen; fprintf(stderr, "Padded to %" PRIu32 " bytes\n", bufUsed); *pbuf = buf; } image = (struct ImageHeader *)buf; if (bufUsed >= sizeof(*image) && image->aosp.magic == NANOAPP_AOSP_MAGIC && image->aosp.header_version == 1 && image->layout.magic == GOOGLE_LAYOUT_MAGIC) { fprintf(stderr, "Found AOSP header\n"); } else { fprintf(stderr, "Unknown binary format\n"); return 2; } if ((image->aosp.flags & NANOAPP_SIGNED_FLAG) != 0) { fprintf(stderr, "data is marked as signed; encryption is not possible for signed data\n"); return 2; } if ((image->aosp.flags & NANOAPP_ENCRYPTED_FLAG) != 0) { fprintf(stderr, "data is marked as encrypted; encryption is not possible for encrypted data\n"); return 2; } image->aosp.flags |= NANOAPP_ENCRYPTED_FLAG; fwrite(image, sizeof(*image), 1, out); data = (uint32_t *)(image + 1); fprintf(stderr, "orig len: %" PRIu32 " bytes\n", encr.dataLen); bufUsed -= sizeof(*image); encr.dataLen -= sizeof(*image); fwrite(&encr, sizeof(encr), 1, out); sha2init(&shaState); //encrypt and emit data aesCbcInitForEncr(&ctx, key, encr.IV); uint32_t outBuf[AES_BLOCK_WORDS]; for (i = 0; i < bufUsed/sizeof(uint32_t); i += AES_BLOCK_WORDS) { aesCbcEncr(&ctx, data + i, outBuf); int32_t sz = encr.dataLen - (i * sizeof(uint32_t)); sz = sz > AES_BLOCK_SIZE ? AES_BLOCK_SIZE : sz; if (sz > 0) { sha2processBytes(&shaState, data + i, sz); fwrite(outBuf, AES_BLOCK_SIZE, 1, out); } } const uint32_t *hash = sha2finish(&shaState); printHash(stderr, "HASH", hash, SHA2_HASH_WORDS); // finally, encrypt and output SHA2 hash aesCbcEncr(&ctx, hash, outBuf); fwrite(outBuf, AES_BLOCK_SIZE, 1, out); aesCbcEncr(&ctx, hash + AES_BLOCK_WORDS, outBuf); err = fwrite(outBuf, AES_BLOCK_SIZE, 1, out) != 1; return err ? 2 : 0; } static int handleDecrypt(uint8_t **pbuf, uint32_t bufUsed, FILE *out, uint32_t *key) { struct AesCbcContext ctx; struct ImageHeader *image; struct Sha2state shaState; struct AppSecEncrHdr *encr; uint32_t *data; bool err = false; uint32_t fileHash[((SHA2_HASH_WORDS + AES_BLOCK_WORDS - 1) / AES_BLOCK_WORDS) * AES_BLOCK_WORDS], fileHashSz; uint32_t outBuf[AES_BLOCK_WORDS]; uint32_t i; uint8_t *buf = *pbuf; //parse header image = (struct ImageHeader*)buf; if (bufUsed >= (sizeof(*image) + sizeof(*encr)) && image->aosp.header_version == 1 && image->aosp.magic == NANOAPP_AOSP_MAGIC && image->layout.magic == GOOGLE_LAYOUT_MAGIC) { fprintf(stderr, "Found AOSP header\n"); if (!(image->aosp.flags & NANOAPP_ENCRYPTED_FLAG)) { fprintf(stderr, "data is not marked as encrypted; can't decrypt\n"); return 2; } image->aosp.flags &= ~NANOAPP_ENCRYPTED_FLAG; data = (uint32_t *)(image + 1); encr = (struct AppSecEncrHdr *)data; data = (uint32_t *)(encr + 1); bufUsed -= sizeof(*image) + sizeof(*encr); } else { fprintf(stderr, "Unknown binary format\n"); return 2; } if (encr->dataLen > bufUsed) { fprintf(stderr, "Claimed output size of %" PRIu32 "b invalid\n", encr->dataLen); return 2; } fprintf(stderr, "Original size %" PRIu32 "b (%" PRIu32 "b of padding present)\n", encr->dataLen, bufUsed - encr->dataLen); if (!encr->keyID) { fprintf(stderr, "Input data has invalid key ID\n"); return 2; } fprintf(stderr, "Using Key ID: %016" PRIX64 "\n", encr->keyID); printHash(stderr, "Using IV", encr->IV, AES_BLOCK_WORDS); fwrite(image, sizeof(*image), 1, out); //decrypt and emit data aesCbcInitForDecr(&ctx, key, encr->IV); fileHashSz = 0; sha2init(&shaState); for (i = 0; i < bufUsed / sizeof(uint32_t); i += AES_BLOCK_WORDS) { int32_t size = encr->dataLen - i * sizeof(uint32_t); aesCbcDecr(&ctx, data + i, outBuf); if (size > AES_BLOCK_SIZE) size = AES_BLOCK_SIZE; if (size > 0) { sha2processBytes(&shaState, outBuf, size); err = fwrite(outBuf, size, 1, out) != 1; } else if (fileHashSz < sizeof(fileHash)) { memcpy(((uint8_t*)fileHash) + fileHashSz, outBuf, AES_BLOCK_SIZE); fileHashSz += AES_BLOCK_SIZE; } else { fprintf(stderr, "Too much input data\n"); return 2; } } const uint32_t *calcHash = sha2finish(&shaState); printHash(stderr, "HASH [calc]", calcHash, SHA2_HASH_WORDS); printHash(stderr, "HASH [file]", fileHash, SHA2_HASH_WORDS); bool verify = memcmp(fileHash, calcHash, SHA2_HASH_SIZE) == 0; fprintf(stderr, "hash verification: %s\n", verify ? "passed" : "failed"); if (!verify) return 2; if (!err) fprintf(stderr, "Done\n"); return err ? 2 : 0; } static void fatalUsage(const char *name, const char *msg, const char *arg) { if (msg && arg) fprintf(stderr, "Error: %s: %s\n\n", msg, arg); else if (msg) fprintf(stderr, "Error: %s\n\n", msg); fprintf(stderr, "USAGE: %s [-e] [-d] [-i <key id>] [-k <key file>] <input file> [<output file>]\n" " -i : 64-bit hex number != 0\n" " -e : encrypt post-processed file\n" " -d : decrypt encrypted post-processed file\n" " -k : binary file (32 byte size) containing AES-256 secret key\n" , name); exit(1); } int main(int argc, char **argv) { uint32_t bufUsed = 0; uint8_t *buf = NULL; uint64_t keyId = 0; int ret = -1; uint32_t *u32Arg = NULL; uint64_t *u64Arg = NULL; const char **strArg = NULL; const char *appName = argv[0]; const char *posArg[2] = { NULL }; uint32_t posArgCnt = 0; FILE *out = NULL; const char *prev = NULL; bool decrypt = false; bool encrypt = false; const char *keyFile = NULL; int multi = 0; uint32_t key[AES_KEY_WORDS]; for (int i = 1; i < argc; i++) { char *end = NULL; if (argv[i][0] == '-') { prev = argv[i]; if (!strcmp(argv[i], "-d")) decrypt = true; else if (!strcmp(argv[i], "-e")) encrypt = true; else if (!strcmp(argv[i], "-k")) strArg = &keyFile; else if (!strcmp(argv[i], "-i")) u64Arg = &keyId; else fatalUsage(appName, "unknown argument", argv[i]); } else { if (u64Arg) { uint64_t tmp = strtoull(argv[i], &end, 16); if (*end == '\0') *u64Arg = tmp; u64Arg = NULL; } else if (u32Arg) { uint32_t tmp = strtoul(argv[i], &end, 16); if (*end == '\0') *u32Arg = tmp; u32Arg = NULL; } else if (strArg) { *strArg = argv[i]; strArg = NULL; } else { if (posArgCnt < 2) posArg[posArgCnt++] = argv[i]; else fatalUsage(appName, "too many positional arguments", argv[i]); } prev = 0; } } if (prev) fatalUsage(appName, "missing argument after", prev); if (!posArgCnt) fatalUsage(appName, "missing input file name", NULL); if (encrypt) multi++; if (decrypt) multi++; if (multi != 1) fatalUsage(appName, "select either -d or -e", NULL); if (!keyFile) fatalUsage(appName, "no key file given", NULL); if (encrypt && !keyId) fatalUsage(appName, "Non-zero Key ID must be given to encrypt data", NULL); //read key if (!readFile(key, sizeof(key), keyFile)) fatalUsage(appName, "Key file does not exist or has incorrect size", keyFile); buf = loadFile(posArg[0], &bufUsed); fprintf(stderr, "Read %" PRIu32 " bytes\n", bufUsed); if (!posArg[1]) out = stdout; else out = fopen(posArg[1], "w"); if (!out) fatalUsage(appName, "failed to create/open output file", posArg[1]); if (encrypt) ret = handleEncrypt(&buf, bufUsed, out, keyId, key); else if (decrypt) ret = handleDecrypt(&buf, bufUsed, out, key); free(buf); fclose(out); return ret; }