/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include <assert.h> #include <fcntl.h> #include <gelf.h> #include <libelf.h> #include <sys/types.h> #include <stdbool.h> #include <unistd.h> #include <stdlib.h> #include <string.h> #include <stdint.h> #include <stdio.h> #include <stddef.h> #include <errno.h> #include <nanohub/nanohub.h> #include <nanohub/nanoapp.h> #include <nanohub/appRelocFormat.h> //This code assumes it is run on a LE CPU with unaligned access abilities. Sorry. #define FLASH_BASE 0x10000000 #define RAM_BASE 0x80000000 #define FLASH_SIZE 0x10000000 //256MB ought to be enough for everyone #define RAM_SIZE 0x10000000 //256MB ought to be enough for everyone //caution: double evaluation #define IS_IN_RANGE_E(_val, _rstart, _rend) (((_val) >= (_rstart)) && ((_val) < (_rend))) #define IS_IN_RANGE(_val, _rstart, _rsz) IS_IN_RANGE_E((_val), (_rstart), ((_rstart) + (_rsz))) #define IS_IN_RAM(_val) IS_IN_RANGE(_val, RAM_BASE, RAM_SIZE) #define IS_IN_FLASH(_val) IS_IN_RANGE(_val, FLASH_BASE, FLASH_SIZE) #define NANO_RELOC_TYPE_RAM 0 #define NANO_RELOC_TYPE_FLASH 1 #define NANO_RELOC_LAST 2 //must be <= (RELOC_TYPE_MASK >> RELOC_TYPE_SHIFT) struct RelocEntry { uint32_t where; uint32_t info; //bottom 8 bits is type, top 24 is sym idx }; #define RELOC_TYPE_ABS_S 2 #define RELOC_TYPE_ABS_D 21 #define RELOC_TYPE_SECT 23 struct SymtabEntry { uint32_t a; uint32_t addr; uint32_t b, c; }; struct NanoRelocEntry { uint32_t ofstInRam; uint8_t type; }; #ifndef ARRAY_SIZE #define ARRAY_SIZE(ary) (sizeof(ary) / sizeof((ary)[0])) #endif #define DBG(fmt, ...) printf(fmt "\n", ##__VA_ARGS__) #define ERR(fmt, ...) fprintf(stderr, fmt "\n", ##__VA_ARGS__) // Prints the given message followed by the most recent libelf error #define ELF_ERR(fmt, ...) ERR(fmt ": %s\n", ##__VA_ARGS__, elf_errmsg(-1)) struct ElfAppSection { void *data; size_t size; }; struct ElfNanoApp { struct ElfAppSection flash; struct ElfAppSection data; struct ElfAppSection relocs; struct ElfAppSection symtab; // Not parsed from file, but constructed via genElfNanoRelocs struct ElfAppSection packedNanoRelocs; }; static void fatalUsage(const char *name, const char *msg, const char *arg) { if (msg && arg) fprintf(stderr, "Error: %s: %s\n\n", msg, arg); else if (msg) fprintf(stderr, "Error: %s\n\n", msg); fprintf(stderr, "USAGE: %s [-v] [-k <key id>] [-a <app id>] [-r] [-n <layout name>] [-i <layout id>] <input file> [<output file>]\n" " -v : be verbose\n" " -n <layout name> : app, os, key\n" " -i <layout id> : 1 (app), 2 (key), 3 (os)\n" " -f <layout flags>: 16-bit hex value, stored as layout-specific flags\n" " -a <app ID> : 64-bit hex number != 0\n" " -e <app version> : 32-bit hex number\n" " -k <key ID> : 64-bit hex number != 0\n" " -r : bare (no AOSP header); used only for inner OS image generation\n" " -s : treat input as statically linked ELF (app layout only)\n" " layout ID and layout name control the same parameter, so only one of them needs to be used\n" , name); exit(1); } static uint8_t *packNanoRelocs(struct NanoRelocEntry *nanoRelocs, uint32_t outNumRelocs, uint32_t *finalPackedNanoRelocSz, bool verbose) { uint32_t i, j, k; uint8_t *packedNanoRelocs; uint32_t packedNanoRelocSz; uint32_t lastOutType = 0, origin = 0; //sort by type and then offset for (i = 0; i < outNumRelocs; i++) { struct NanoRelocEntry t; for (k = i, j = k + 1; j < outNumRelocs; j++) { if (nanoRelocs[j].type > nanoRelocs[k].type) continue; if ((nanoRelocs[j].type < nanoRelocs[k].type) || (nanoRelocs[j].ofstInRam < nanoRelocs[k].ofstInRam)) k = j; } memcpy(&t, nanoRelocs + i, sizeof(struct NanoRelocEntry)); memcpy(nanoRelocs + i, nanoRelocs + k, sizeof(struct NanoRelocEntry)); memcpy(nanoRelocs + k, &t, sizeof(struct NanoRelocEntry)); if (verbose) fprintf(stderr, "SortedReloc[%3" PRIu32 "] = {0x%08" PRIX32 ",0x%02" PRIX8 "}\n", i, nanoRelocs[i].ofstInRam, nanoRelocs[i].type); } //produce output nanorelocs in packed format packedNanoRelocs = malloc(outNumRelocs * 6); //definitely big enough packedNanoRelocSz = 0; for (i = 0; i < outNumRelocs; i++) { uint32_t displacement; if (lastOutType != nanoRelocs[i].type) { //output type if ti changed if (nanoRelocs[i].type - lastOutType == 1) { packedNanoRelocs[packedNanoRelocSz++] = TOKEN_RELOC_TYPE_NEXT; if (verbose) fprintf(stderr, "Out: RelocTC (1) // to 0x%02" PRIX8 "\n", nanoRelocs[i].type); } else { packedNanoRelocs[packedNanoRelocSz++] = TOKEN_RELOC_TYPE_CHG; packedNanoRelocs[packedNanoRelocSz++] = nanoRelocs[i].type - lastOutType - 1; if (verbose) fprintf(stderr, "Out: RelocTC (0x%02" PRIX8 ") // to 0x%02" PRIX8 "\n", (uint8_t)(nanoRelocs[i].type - lastOutType - 1), nanoRelocs[i].type); } lastOutType = nanoRelocs[i].type; origin = 0; } displacement = nanoRelocs[i].ofstInRam - origin; origin = nanoRelocs[i].ofstInRam + 4; if (displacement & 3) { fprintf(stderr, "Unaligned relocs are not possible!\n"); exit(-5); } displacement /= 4; //might be start of a run. look into that if (!displacement) { for (j = 1; j + i < outNumRelocs && j < MAX_RUN_LEN && nanoRelocs[j + i].type == lastOutType && nanoRelocs[j + i].ofstInRam - nanoRelocs[j + i - 1].ofstInRam == 4; j++); if (j >= MIN_RUN_LEN) { if (verbose) fprintf(stderr, "Out: Reloc0 x%" PRIX32 "\n", j); packedNanoRelocs[packedNanoRelocSz++] = TOKEN_CONSECUTIVE; packedNanoRelocs[packedNanoRelocSz++] = j - MIN_RUN_LEN; origin = nanoRelocs[j + i - 1].ofstInRam + 4; //reset origin to last one i += j - 1; //loop will increment anyways, hence +1 continue; } } //produce output if (displacement <= MAX_8_BIT_NUM) { if (verbose) fprintf(stderr, "Out: Reloc8 0x%02" PRIX32 "\n", displacement); packedNanoRelocs[packedNanoRelocSz++] = displacement; } else if (displacement <= MAX_16_BIT_NUM) { if (verbose) fprintf(stderr, "Out: Reloc16 0x%06" PRIX32 "\n", displacement); displacement -= MAX_8_BIT_NUM; packedNanoRelocs[packedNanoRelocSz++] = TOKEN_16BIT_OFST; packedNanoRelocs[packedNanoRelocSz++] = displacement; packedNanoRelocs[packedNanoRelocSz++] = displacement >> 8; } else if (displacement <= MAX_24_BIT_NUM) { if (verbose) fprintf(stderr, "Out: Reloc24 0x%08" PRIX32 "\n", displacement); displacement -= MAX_16_BIT_NUM; packedNanoRelocs[packedNanoRelocSz++] = TOKEN_24BIT_OFST; packedNanoRelocs[packedNanoRelocSz++] = displacement; packedNanoRelocs[packedNanoRelocSz++] = displacement >> 8; packedNanoRelocs[packedNanoRelocSz++] = displacement >> 16; } else { if (verbose) fprintf(stderr, "Out: Reloc32 0x%08" PRIX32 "\n", displacement); packedNanoRelocs[packedNanoRelocSz++] = TOKEN_32BIT_OFST; packedNanoRelocs[packedNanoRelocSz++] = displacement; packedNanoRelocs[packedNanoRelocSz++] = displacement >> 8; packedNanoRelocs[packedNanoRelocSz++] = displacement >> 16; packedNanoRelocs[packedNanoRelocSz++] = displacement >> 24; } } *finalPackedNanoRelocSz = packedNanoRelocSz; return packedNanoRelocs; } static int finalizeAndWrite(uint8_t *buf, uint32_t bufUsed, uint32_t bufSz, FILE *out, uint32_t layoutFlags, uint64_t appId) { int ret; struct AppInfo app; struct SectInfo *sect; struct BinHdr *bin = (struct BinHdr *) buf; struct ImageHeader outHeader = { .aosp = (struct nano_app_binary_t) { .header_version = 1, .magic = NANOAPP_AOSP_MAGIC, .app_id = appId, .app_version = bin->hdr.appVer, .flags = 0, // encrypted (1), signed (2) (will be set by other tools) }, .layout = (struct ImageLayout) { .magic = GOOGLE_LAYOUT_MAGIC, .version = 1, .payload = LAYOUT_APP, .flags = layoutFlags, }, }; uint32_t dataOffset = sizeof(outHeader) + sizeof(app); uint32_t hdrDiff = dataOffset - sizeof(*bin); app.sect = bin->sect; app.vec = bin->vec; assertMem(bufUsed + hdrDiff, bufSz); memmove(buf + dataOffset, buf + sizeof(*bin), bufUsed - sizeof(*bin)); bufUsed += hdrDiff; memcpy(buf, &outHeader, sizeof(outHeader)); memcpy(buf + sizeof(outHeader), &app, sizeof(app)); sect = &app.sect; //if we have any bytes to output, show stats if (bufUsed) { uint32_t codeAndRoDataSz = sect->data_data; uint32_t relocsSz = sect->rel_end - sect->rel_start; uint32_t gotSz = sect->got_end - sect->data_start; uint32_t bssSz = sect->bss_end - sect->bss_start; fprintf(stderr,"Final binary size %" PRIu32 " bytes\n", bufUsed); fprintf(stderr, "\n"); fprintf(stderr, " FW header size (flash): %6zu bytes\n", FLASH_RELOC_OFFSET); fprintf(stderr, " Code + RO data (flash): %6" PRIu32 " bytes\n", codeAndRoDataSz); fprintf(stderr, " Relocs (flash): %6" PRIu32 " bytes\n", relocsSz); fprintf(stderr, " GOT + RW data (flash & RAM): %6" PRIu32 " bytes\n", gotSz); fprintf(stderr, " BSS (RAM): %6" PRIu32 " bytes\n", bssSz); fprintf(stderr, "\n"); fprintf(stderr,"Runtime flash use: %" PRIu32 " bytes\n", (uint32_t)(codeAndRoDataSz + relocsSz + gotSz + FLASH_RELOC_OFFSET)); fprintf(stderr,"Runtime RAM use: %" PRIu32 " bytes\n", gotSz + bssSz); } ret = fwrite(buf, bufUsed, 1, out) == 1 ? 0 : 2; if (ret) fprintf(stderr, "Failed to write output file: %s\n", strerror(errno)); return ret; } static int handleApp(uint8_t **pbuf, uint32_t bufUsed, FILE *out, uint32_t layoutFlags, uint64_t appId, uint32_t appVer, bool verbose) { uint32_t i, numRelocs, numSyms, outNumRelocs = 0, packedNanoRelocSz; struct NanoRelocEntry *nanoRelocs = NULL; struct RelocEntry *relocs; struct SymtabEntry *syms; uint8_t *packedNanoRelocs; uint32_t t; struct BinHdr *bin; int ret = -1; struct SectInfo *sect; uint8_t *buf = *pbuf; uint32_t bufSz = bufUsed * 3 /2; //make buffer 50% bigger than bufUsed in case relocs grow out of hand buf = reallocOrDie(buf, bufSz); *pbuf = buf; //sanity checks bin = (struct BinHdr*)buf; if (bufUsed < sizeof(*bin)) { fprintf(stderr, "File size too small\n"); goto out; } if (bin->hdr.magic != NANOAPP_FW_MAGIC) { fprintf(stderr, "Magic value is wrong: found %08" PRIX32 "; expected %08" PRIX32 "\n", bin->hdr.magic, NANOAPP_FW_MAGIC); goto out; } sect = &bin->sect; bin->hdr.appVer = appVer; //do some math relocs = (struct RelocEntry*)(buf + sect->rel_start - FLASH_BASE); syms = (struct SymtabEntry*)(buf + sect->rel_end - FLASH_BASE); numRelocs = (sect->rel_end - sect->rel_start) / sizeof(struct RelocEntry); numSyms = (bufUsed + FLASH_BASE - sect->rel_end) / sizeof(struct SymtabEntry); //sanity if (numRelocs * sizeof(struct RelocEntry) + sect->rel_start != sect->rel_end) { fprintf(stderr, "Relocs of nonstandard size\n"); goto out; } if (numSyms * sizeof(struct SymtabEntry) + sect->rel_end != bufUsed + FLASH_BASE) { fprintf(stderr, "Syms of nonstandard size\n"); goto out; } //show some info fprintf(stderr, "\nRead %" PRIu32 " bytes of binary.\n", bufUsed); if (verbose) fprintf(stderr, "Found %" PRIu32 " relocs and a %" PRIu32 "-entry symbol table\n", numRelocs, numSyms); //handle relocs nanoRelocs = malloc(sizeof(struct NanoRelocEntry[numRelocs])); if (!nanoRelocs) { fprintf(stderr, "Failed to allocate a nano-reloc table\n"); goto out; } for (i = 0; i < numRelocs; i++) { uint32_t relocType = relocs[i].info & 0xff; uint32_t whichSym = relocs[i].info >> 8; uint32_t *valThereP; if (whichSym >= numSyms) { fprintf(stderr, "Reloc %" PRIu32 " references a nonexistent symbol!\n" "INFO:\n" " Where: 0x%08" PRIX32 "\n" " type: %" PRIu32 "\n" " sym: %" PRIu32 "\n", i, relocs[i].where, relocs[i].info & 0xff, whichSym); goto out; } if (verbose) { const char *seg; fprintf(stderr, "Reloc[%3" PRIu32 "]:\n {@0x%08" PRIX32 ", type %3" PRIu32 ", -> sym[%3" PRIu32 "]: {@0x%08" PRIX32 "}, ", i, relocs[i].where, relocs[i].info & 0xff, whichSym, syms[whichSym].addr); if (IS_IN_RANGE_E(relocs[i].where, sect->bss_start, sect->bss_end)) seg = ".bss"; else if (IS_IN_RANGE_E(relocs[i].where, sect->data_start, sect->data_end)) seg = ".data"; else if (IS_IN_RANGE_E(relocs[i].where, sect->got_start, sect->got_end)) seg = ".got"; else if (IS_IN_RANGE_E(relocs[i].where, FLASH_BASE, FLASH_BASE + sizeof(struct BinHdr))) seg = "APPHDR"; else seg = "???"; fprintf(stderr, "in %s}\n", seg); } /* handle relocs inside the header */ if (IS_IN_FLASH(relocs[i].where) && relocs[i].where - FLASH_BASE < sizeof(struct BinHdr) && relocType == RELOC_TYPE_SECT) { /* relocs in header are special - runtime corrects for them */ if (syms[whichSym].addr) { fprintf(stderr, "Weird in-header sect reloc %" PRIu32 " to symbol %" PRIu32 " with nonzero addr 0x%08" PRIX32 "\n", i, whichSym, syms[whichSym].addr); goto out; } valThereP = (uint32_t*)(buf + relocs[i].where - FLASH_BASE); if (!IS_IN_FLASH(*valThereP)) { fprintf(stderr, "In-header reloc %" PRIu32 " of location 0x%08" PRIX32 " is outside of FLASH!\n" "INFO:\n" " type: %" PRIu32 "\n" " sym: %" PRIu32 "\n" " Sym Addr: 0x%08" PRIX32 "\n", i, relocs[i].where, relocType, whichSym, syms[whichSym].addr); goto out; } // binary header generated by objcopy, .napp header and final FW header in flash are of different size. // we subtract binary header offset here, so all the entry points are relative to beginning of "sect". // FW will use § as a base to call these vectors; no more problems with different header sizes; // Assumption: offsets between sect & vec, vec & code are the same in all images (or, in a simpler words, { sect, vec, code } // must go together). this is enforced by linker script, and maintained by all tools and FW download code in the OS. *valThereP -= FLASH_BASE + BINARY_RELOC_OFFSET; if (verbose) fprintf(stderr, " -> Nano reloc skipped for in-header reloc\n"); continue; /* do not produce an output reloc */ } if (!IS_IN_RAM(relocs[i].where)) { fprintf(stderr, "In-header reloc %" PRIu32 " of location 0x%08" PRIX32 " is outside of RAM!\n" "INFO:\n" " type: %" PRIu32 "\n" " sym: %" PRIu32 "\n" " Sym Addr: 0x%08" PRIX32 "\n", i, relocs[i].where, relocType, whichSym, syms[whichSym].addr); goto out; } valThereP = (uint32_t*)(buf + relocs[i].where + sect->data_data - RAM_BASE - FLASH_BASE); nanoRelocs[outNumRelocs].ofstInRam = relocs[i].where - RAM_BASE; switch (relocType) { case RELOC_TYPE_ABS_S: case RELOC_TYPE_ABS_D: t = *valThereP; (*valThereP) += syms[whichSym].addr; if (IS_IN_FLASH(syms[whichSym].addr)) { (*valThereP) -= FLASH_BASE + BINARY_RELOC_OFFSET; nanoRelocs[outNumRelocs].type = NANO_RELOC_TYPE_FLASH; } else if (IS_IN_RAM(syms[whichSym].addr)) { (*valThereP) -= RAM_BASE; nanoRelocs[outNumRelocs].type = NANO_RELOC_TYPE_RAM; } else { fprintf(stderr, "Weird reloc %" PRIu32 " to symbol %" PRIu32 " in unknown memory space (addr 0x%08" PRIX32 ")\n", i, whichSym, syms[whichSym].addr); goto out; } if (verbose) fprintf(stderr, " -> Abs reference fixed up 0x%08" PRIX32 " -> 0x%08" PRIX32 "\n", t, *valThereP); break; case RELOC_TYPE_SECT: if (syms[whichSym].addr) { fprintf(stderr, "Weird sect reloc %" PRIu32 " to symbol %" PRIu32 " with nonzero addr 0x%08" PRIX32 "\n", i, whichSym, syms[whichSym].addr); goto out; } t = *valThereP; if (IS_IN_FLASH(*valThereP)) { nanoRelocs[outNumRelocs].type = NANO_RELOC_TYPE_FLASH; *valThereP -= FLASH_BASE + BINARY_RELOC_OFFSET; } else if (IS_IN_RAM(*valThereP)) { nanoRelocs[outNumRelocs].type = NANO_RELOC_TYPE_RAM; *valThereP -= RAM_BASE; } else { fprintf(stderr, "Weird sec reloc %" PRIu32 " to symbol %" PRIu32 " in unknown memory space (addr 0x%08" PRIX32 ")\n", i, whichSym, *valThereP); goto out; } if (verbose) fprintf(stderr, " -> Sect reference fixed up 0x%08" PRIX32 " -> 0x%08" PRIX32 "\n", t, *valThereP); break; default: fprintf(stderr, "Weird reloc %" PRIX32 " type %" PRIX32 " to symbol %" PRIX32 "\n", i, relocType, whichSym); goto out; } if (verbose) fprintf(stderr, " -> Nano reloc calculated as 0x%08" PRIX32 ",0x%02" PRIX8 "\n", nanoRelocs[i].ofstInRam, nanoRelocs[i].type); outNumRelocs++; } packedNanoRelocs = packNanoRelocs(nanoRelocs, outNumRelocs, &packedNanoRelocSz, verbose); //overwrite original relocs and symtab with nanorelocs and adjust sizes memcpy(relocs, packedNanoRelocs, packedNanoRelocSz); bufUsed -= sizeof(struct RelocEntry[numRelocs]); bufUsed -= sizeof(struct SymtabEntry[numSyms]); bufUsed += packedNanoRelocSz; assertMem(bufUsed, bufSz); sect->rel_end = sect->rel_start + packedNanoRelocSz; //sanity if (sect->rel_end - FLASH_BASE != bufUsed) { fprintf(stderr, "Relocs end and file end not coincident\n"); goto out; } //adjust headers for easy access (RAM) if (!IS_IN_RAM(sect->data_start) || !IS_IN_RAM(sect->data_end) || !IS_IN_RAM(sect->bss_start) || !IS_IN_RAM(sect->bss_end) || !IS_IN_RAM(sect->got_start) || !IS_IN_RAM(sect->got_end)) { fprintf(stderr, "data, bss, or got not in ram\n"); goto out; } sect->data_start -= RAM_BASE; sect->data_end -= RAM_BASE; sect->bss_start -= RAM_BASE; sect->bss_end -= RAM_BASE; sect->got_start -= RAM_BASE; sect->got_end -= RAM_BASE; //adjust headers for easy access (FLASH) if (!IS_IN_FLASH(sect->data_data) || !IS_IN_FLASH(sect->rel_start) || !IS_IN_FLASH(sect->rel_end)) { fprintf(stderr, "data.data, or rel not in flash\n"); goto out; } sect->data_data -= FLASH_BASE + BINARY_RELOC_OFFSET; sect->rel_start -= FLASH_BASE + BINARY_RELOC_OFFSET; sect->rel_end -= FLASH_BASE + BINARY_RELOC_OFFSET; ret = finalizeAndWrite(buf, bufUsed, bufSz, out, layoutFlags, appId); out: free(nanoRelocs); return ret; } static void elfExtractSectionPointer(const Elf_Data *data, const char *name, struct ElfNanoApp *app) { // Maps section names to their byte offset in struct ElfNanoApp. Note that // this assumes that the linker script puts text/code in the .flash section, // RW data in .data, that relocs for .data are included in .rel.data, and // the symbol table is emitted in .symtab const struct SectionMap { const char *name; size_t offset; } sectionMap[] = { { .name = ".flash", .offset = offsetof(struct ElfNanoApp, flash), }, { .name = ".data", .offset = offsetof(struct ElfNanoApp, data), }, { .name = ".rel.data", .offset = offsetof(struct ElfNanoApp, relocs), }, { .name = ".symtab", .offset = offsetof(struct ElfNanoApp, symtab), }, }; struct ElfAppSection *appSection; uint8_t *appBytes = (uint8_t *) app; for (size_t i = 0; i < ARRAY_SIZE(sectionMap); i++) { if (strcmp(name, sectionMap[i].name) != 0) { continue; } appSection = (struct ElfAppSection *) &appBytes[sectionMap[i].offset]; appSection->data = data->d_buf; appSection->size = data->d_size; DBG("Found section %s with size %zu", name, appSection->size); break; } } // Populates a struct ElfNanoApp with data parsed from the ELF static bool elfParse(Elf *elf, struct ElfNanoApp *app) { size_t shdrstrndx; Elf_Scn *scn = NULL; GElf_Shdr shdr; char *sectionName; Elf_Data *elf_data; memset(app, 0, sizeof(*app)); if (elf_getshdrstrndx(elf, &shdrstrndx) != 0) { ELF_ERR("Couldn't get section name string table index"); return false; } while ((scn = elf_nextscn(elf, scn)) != NULL) { if (gelf_getshdr(scn, &shdr) != &shdr) { ELF_ERR("Error getting section header"); return false; } sectionName = elf_strptr(elf, shdrstrndx, shdr.sh_name); elf_data = elf_getdata(scn, NULL); if (!elf_data) { ELF_ERR("Error getting data for section %s", sectionName); return false; } elfExtractSectionPointer(elf_data, sectionName, app); } return true; } static bool loadNanoappElfFile(const char *fileName, struct ElfNanoApp *app) { int fd; Elf *elf; if (elf_version(EV_CURRENT) == EV_NONE) { ELF_ERR("Failed to initialize ELF library"); return false; } fd = open(fileName, O_RDONLY, 0); if (fd < 0) { ERR("Failed to open file %s for reading: %s", fileName, strerror(errno)); return false; } elf = elf_begin(fd, ELF_C_READ, NULL); if (elf == NULL) { ELF_ERR("Failed to open ELF"); return false; } if (!elfParse(elf, app)) { ERR("Failed to parse ELF file"); return false; } return true; } // Subtracts the fixed memory region offset from an absolute address and returns // the associated NANO_RELOC_* value, or NANO_RELOC_LAST if the address is not // in the expected range. // Not strictly tied to ELF usage, but handled slightly differently. static uint8_t fixupAddrElf(uint32_t *addr) { uint8_t type; // TODO: this assumes that the host running this tool has the same // endianness as the image file/target processor if (IS_IN_FLASH(*addr)) { DBG("Fixup addr 0x%08" PRIX32 " (flash) --> 0x%08" PRIX32, *addr, (uint32_t) (*addr - (FLASH_BASE + BINARY_RELOC_OFFSET))); *addr -= FLASH_BASE + BINARY_RELOC_OFFSET; type = NANO_RELOC_TYPE_FLASH; } else if (IS_IN_RAM(*addr)) { DBG("Fixup addr 0x%08" PRIX32 " (ram) --> 0x%08" PRIX32, *addr, *addr - RAM_BASE); *addr -= RAM_BASE; type = NANO_RELOC_TYPE_RAM; } else { DBG("Error: invalid address 0x%08" PRIX32, *addr); type = NANO_RELOC_LAST; } return type; } // Fixup addresses in the header to be relative. Not strictly tied to the ELF // format, but used only in that program flow in the current implementation. static bool fixupHeaderElf(const struct ElfNanoApp *app) { struct BinHdr *hdr = (struct BinHdr *) app->flash.data; DBG("Appyling fixups to header"); if (fixupAddrElf(&hdr->sect.data_start) != NANO_RELOC_TYPE_RAM || fixupAddrElf(&hdr->sect.data_end) != NANO_RELOC_TYPE_RAM || fixupAddrElf(&hdr->sect.bss_start) != NANO_RELOC_TYPE_RAM || fixupAddrElf(&hdr->sect.bss_end) != NANO_RELOC_TYPE_RAM || fixupAddrElf(&hdr->sect.got_start) != NANO_RELOC_TYPE_RAM || fixupAddrElf(&hdr->sect.got_end) != NANO_RELOC_TYPE_RAM) { ERR(".data, .bss, or .got not in RAM address space!"); return false; } if (fixupAddrElf(&hdr->sect.rel_start) != NANO_RELOC_TYPE_FLASH || fixupAddrElf(&hdr->sect.rel_end) != NANO_RELOC_TYPE_FLASH || fixupAddrElf(&hdr->sect.data_data) != NANO_RELOC_TYPE_FLASH) { ERR(".data loadaddr, or .relocs not in flash address space!"); return false; } if (fixupAddrElf(&hdr->vec.init) != NANO_RELOC_TYPE_FLASH || fixupAddrElf(&hdr->vec.end) != NANO_RELOC_TYPE_FLASH || fixupAddrElf(&hdr->vec.handle) != NANO_RELOC_TYPE_FLASH) { ERR("Entry point(s) not in flash address space!"); return false; } return true; } // Fixup addresses in .data, .init_array/.fini_array, and .got, and generates // packed array of nano reloc entries. The app header must have already been // fixed up. static bool genElfNanoRelocs(struct ElfNanoApp *app, bool verbose) { const struct BinHdr *hdr = (const struct BinHdr *) app->flash.data; const struct SectInfo *sect = &hdr->sect; bool success = false; size_t numDataRelocs = app->relocs.size / sizeof(Elf32_Rel); size_t gotCount = (sect->got_end - sect->got_start) / sizeof(uint32_t); size_t numInitFuncs = (sect->bss_start - sect->data_end) / sizeof(uint32_t); size_t totalRelocCount = (numDataRelocs + numInitFuncs + gotCount); struct NanoRelocEntry *nanoRelocs = malloc( totalRelocCount * sizeof(struct NanoRelocEntry)); if (!nanoRelocs) { ERR("Couldn't allocate memory for nano relocs! Needed %zu bytes", totalRelocCount * sizeof(struct NanoRelocEntry)); return false; } uint8_t *data = app->data.data; const Elf32_Rel *relocs = (const Elf32_Rel *) app->relocs.data; const Elf32_Sym *syms = (const Elf32_Sym *) app->symtab.data; size_t numRelocs = 0; DBG("Parsing relocs for .data (%zu):", numDataRelocs); for (size_t i = 0; i < numDataRelocs; i++) { uint32_t type = ELF32_R_TYPE(relocs[i].r_info); uint32_t sym = ELF32_R_SYM(relocs[i].r_info); DBG(" [%3zu] 0x%08" PRIx32 " type %2" PRIu32 " symIdx %3" PRIu32 " --> 0x%08" PRIx32, i, relocs[i].r_offset, type, sym, syms[sym].st_value); // Note that R_ARM_TARGET1 is used for .init_array/.fini_array support, // and can be interpreted either as ABS32 or REL32, depending on the // runtime; we expect it to be ABS32. if (type == R_ARM_ABS32 || type == R_ARM_TARGET1) { if (!IS_IN_RAM(relocs[i].r_offset)) { ERR("Reloc for .data not in RAM address range!"); goto out; } uint32_t offset = relocs[i].r_offset - RAM_BASE; uint32_t *addr = (uint32_t *) &data[offset]; nanoRelocs[numRelocs].type = fixupAddrElf(addr); nanoRelocs[numRelocs].ofstInRam = offset; numRelocs++; } else { // TODO: Assuming that the ELF only contains absolute addresses in // the .data section; may need to handle other relocation types in // the future ERR("Error: Unexpected reloc type %" PRIu32 " at index %zu", type, i); goto out; } } DBG("Updating GOT entries (%zu):", gotCount); for (uint32_t offset = sect->got_start; offset < sect->got_end; offset += sizeof(uint32_t)) { uint32_t *addr = (uint32_t *) &data[offset]; // Skip values that are set to 0, these seem to be padding (?) if (*addr) { nanoRelocs[numRelocs].type = fixupAddrElf(addr); nanoRelocs[numRelocs].ofstInRam = offset; numRelocs++; } } uint32_t packedNanoRelocSz = 0; app->packedNanoRelocs.data = packNanoRelocs( nanoRelocs, numRelocs, &packedNanoRelocSz, verbose); app->packedNanoRelocs.size = packedNanoRelocSz; success = true; out: free(nanoRelocs); return success; } static int handleAppStatic(const char *fileName, FILE *out, uint32_t layoutFlags, uint64_t appId, uint32_t appVer, bool verbose) { struct ElfNanoApp app; if (!loadNanoappElfFile(fileName, &app) || !fixupHeaderElf(&app) || !genElfNanoRelocs(&app, verbose)) { exit(2); } // Construct a single contiguous buffer, with extra room to fit the // ImageHeader that will be prepended by finalizeAndWrite(). Note that this // will allocate a bit more space than is needed, because some of the data // from BinHdr will get discarded. // TODO: this should be refactored to just write the binary components in // order rather than allocating a big buffer, and moving data around size_t bufSize = app.flash.size + app.data.size + app.packedNanoRelocs.size + sizeof(struct ImageHeader); uint8_t *buf = malloc(bufSize); if (!buf) { ERR("Failed to allocate %zu bytes for final app", bufSize); exit(2); } size_t offset = 0; memcpy(buf, app.flash.data, app.flash.size); offset += app.flash.size; memcpy(&buf[offset], app.data.data, app.data.size); offset += app.data.size; memcpy(&buf[offset], app.packedNanoRelocs.data, app.packedNanoRelocs.size); offset += app.packedNanoRelocs.size; // Update rel_end in the header to reflect the packed reloc size struct BinHdr *hdr = (struct BinHdr *) buf; hdr->sect.rel_end = hdr->sect.rel_start + app.packedNanoRelocs.size; hdr->hdr.appVer = appVer; return finalizeAndWrite(buf, offset, bufSize, out, layoutFlags, appId); // TODO: should free all memory we allocated... just letting the OS handle // it for now } static int handleKey(uint8_t **pbuf, uint32_t bufUsed, FILE *out, uint32_t layoutFlags, uint64_t appId, uint64_t keyId) { uint8_t *buf = *pbuf; struct KeyInfo ki = { .data = keyId }; bool good = true; struct ImageHeader outHeader = { .aosp = (struct nano_app_binary_t) { .header_version = 1, .magic = NANOAPP_AOSP_MAGIC, .app_id = appId, }, .layout = (struct ImageLayout) { .magic = GOOGLE_LAYOUT_MAGIC, .version = 1, .payload = LAYOUT_KEY, .flags = layoutFlags, }, }; good = good && fwrite(&outHeader, sizeof(outHeader), 1, out) == 1; good = good && fwrite(&ki, sizeof(ki), 1, out) == 1; good = good && fwrite(buf, bufUsed, 1, out) == 1; return good ? 0 : 2; } static int handleOs(uint8_t **pbuf, uint32_t bufUsed, FILE *out, uint32_t layoutFlags, bool bare) { uint8_t *buf = *pbuf; bool good; struct OsUpdateHdr os = { .magic = OS_UPDT_MAGIC, .marker = OS_UPDT_MARKER_INPROGRESS, .size = bufUsed }; struct ImageHeader outHeader = { .aosp = (struct nano_app_binary_t) { .header_version = 1, .magic = NANOAPP_AOSP_MAGIC, }, .layout = (struct ImageLayout) { .magic = GOOGLE_LAYOUT_MAGIC, .version = 1, .payload = LAYOUT_OS, .flags = layoutFlags, }, }; if (!bare) good = fwrite(&outHeader, sizeof(outHeader), 1, out) == 1; else good = fwrite(&os, sizeof(os), 1, out) == 1; good = good && fwrite(buf, bufUsed, 1, out) == 1; return good ? 0 : 2; } int main(int argc, char **argv) { uint32_t bufUsed = 0; bool verbose = false; uint8_t *buf = NULL; uint64_t appId = 0; uint64_t keyId = 0; uint32_t appVer = 0; uint32_t layoutId = 0; uint32_t layoutFlags = 0; int ret = -1; uint32_t *u32Arg = NULL; uint64_t *u64Arg = NULL; const char **strArg = NULL; const char *appName = argv[0]; int posArgCnt = 0; const char *posArg[2] = { NULL }; FILE *out = NULL; const char *layoutName = "app"; const char *prev = NULL; bool bareData = false; bool staticElf = false; for (int i = 1; i < argc; i++) { char *end = NULL; if (argv[i][0] == '-') { prev = argv[i]; if (!strcmp(argv[i], "-v")) verbose = true; else if (!strcmp(argv[i], "-r")) bareData = true; else if (!strcmp(argv[i], "-s")) staticElf = true; else if (!strcmp(argv[i], "-a")) u64Arg = &appId; else if (!strcmp(argv[i], "-e")) u32Arg = &appVer; else if (!strcmp(argv[i], "-k")) u64Arg = &keyId; else if (!strcmp(argv[i], "-n")) strArg = &layoutName; else if (!strcmp(argv[i], "-i")) u32Arg = &layoutId; else if (!strcmp(argv[i], "-f")) u32Arg = &layoutFlags; else fatalUsage(appName, "unknown argument", argv[i]); } else { if (u64Arg) { uint64_t tmp = strtoull(argv[i], &end, 16); if (*end == '\0') *u64Arg = tmp; u64Arg = NULL; } else if (u32Arg) { uint32_t tmp = strtoul(argv[i], &end, 16); if (*end == '\0') *u32Arg = tmp; u32Arg = NULL; } else if (strArg) { *strArg = argv[i]; strArg = NULL; } else { if (posArgCnt < 2) posArg[posArgCnt++] = argv[i]; else fatalUsage(appName, "too many positional arguments", argv[i]); } prev = NULL; } } if (prev) fatalUsage(appName, "missing argument after", prev); if (!posArgCnt) fatalUsage(appName, "missing input file name", NULL); if (!layoutId) { if (strcmp(layoutName, "app") == 0) layoutId = LAYOUT_APP; else if (strcmp(layoutName, "os") == 0) layoutId = LAYOUT_OS; else if (strcmp(layoutName, "key") == 0) layoutId = LAYOUT_KEY; else fatalUsage(appName, "Invalid layout name", layoutName); } if (staticElf && layoutId != LAYOUT_APP) fatalUsage(appName, "Only app layout is supported for static option", NULL); if (layoutId == LAYOUT_APP && !appId) fatalUsage(appName, "App layout requires app ID", NULL); if (layoutId == LAYOUT_KEY && !keyId) fatalUsage(appName, "Key layout requires key ID", NULL); if (layoutId == LAYOUT_OS && (keyId || appId)) fatalUsage(appName, "OS layout does not need any ID", NULL); if (!staticElf) { buf = loadFile(posArg[0], &bufUsed); fprintf(stderr, "Read %" PRIu32 " bytes\n", bufUsed); } if (!posArg[1]) out = stdout; else out = fopen(posArg[1], "w"); if (!out) fatalUsage(appName, "failed to create/open output file", posArg[1]); switch(layoutId) { case LAYOUT_APP: if (staticElf) { ret = handleAppStatic(posArg[0], out, layoutFlags, appId, appVer, verbose); } else { ret = handleApp(&buf, bufUsed, out, layoutFlags, appId, appVer, verbose); } break; case LAYOUT_KEY: ret = handleKey(&buf, bufUsed, out, layoutFlags, appId, keyId); break; case LAYOUT_OS: ret = handleOs(&buf, bufUsed, out, layoutFlags, bareData); break; } free(buf); fclose(out); return ret; }