/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % CCCC OOO M M PPPP RRRR EEEEE SSSSS SSSSS % % C O O MM MM P P R R E SS SS % % C O O M M M PPPP RRRR EEE SSS SSS % % C O O M M P R R E SS SS % % CCCC OOO M M P R R EEEEE SSSSS SSSSS % % % % % % MagickCore Image Compression/Decompression Methods % % % % Software Design % % Cristy % % May 1993 % % % % % % Copyright 1999-2016 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % http://www.imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % */ /* Include declarations. */ #include "MagickCore/studio.h" #include "MagickCore/attribute.h" #include "MagickCore/blob.h" #include "MagickCore/blob-private.h" #include "MagickCore/color-private.h" #include "MagickCore/cache.h" #include "MagickCore/compress.h" #include "MagickCore/constitute.h" #include "MagickCore/exception.h" #include "MagickCore/exception-private.h" #include "MagickCore/image-private.h" #include "MagickCore/list.h" #include "MagickCore/memory_.h" #include "MagickCore/monitor.h" #include "MagickCore/monitor-private.h" #include "MagickCore/option.h" #include "MagickCore/pixel-accessor.h" #include "MagickCore/resource_.h" #include "MagickCore/string_.h" #if defined(MAGICKCORE_ZLIB_DELEGATE) #include "zlib.h" #endif /* Typedef declarations. */ struct _Ascii85Info { ssize_t offset, line_break; unsigned char buffer[10]; }; typedef struct HuffmanTable { size_t id, code, length, count; } HuffmanTable; /* Huffman coding declarations. */ #define TWId 23 #define MWId 24 #define TBId 25 #define MBId 26 #define EXId 27 static const HuffmanTable MBTable[]= { { MBId, 0x0f, 10, 64 }, { MBId, 0xc8, 12, 128 }, { MBId, 0xc9, 12, 192 }, { MBId, 0x5b, 12, 256 }, { MBId, 0x33, 12, 320 }, { MBId, 0x34, 12, 384 }, { MBId, 0x35, 12, 448 }, { MBId, 0x6c, 13, 512 }, { MBId, 0x6d, 13, 576 }, { MBId, 0x4a, 13, 640 }, { MBId, 0x4b, 13, 704 }, { MBId, 0x4c, 13, 768 }, { MBId, 0x4d, 13, 832 }, { MBId, 0x72, 13, 896 }, { MBId, 0x73, 13, 960 }, { MBId, 0x74, 13, 1024 }, { MBId, 0x75, 13, 1088 }, { MBId, 0x76, 13, 1152 }, { MBId, 0x77, 13, 1216 }, { MBId, 0x52, 13, 1280 }, { MBId, 0x53, 13, 1344 }, { MBId, 0x54, 13, 1408 }, { MBId, 0x55, 13, 1472 }, { MBId, 0x5a, 13, 1536 }, { MBId, 0x5b, 13, 1600 }, { MBId, 0x64, 13, 1664 }, { MBId, 0x65, 13, 1728 }, { MBId, 0x00, 0, 0 } }; static const HuffmanTable EXTable[]= { { EXId, 0x08, 11, 1792 }, { EXId, 0x0c, 11, 1856 }, { EXId, 0x0d, 11, 1920 }, { EXId, 0x12, 12, 1984 }, { EXId, 0x13, 12, 2048 }, { EXId, 0x14, 12, 2112 }, { EXId, 0x15, 12, 2176 }, { EXId, 0x16, 12, 2240 }, { EXId, 0x17, 12, 2304 }, { EXId, 0x1c, 12, 2368 }, { EXId, 0x1d, 12, 2432 }, { EXId, 0x1e, 12, 2496 }, { EXId, 0x1f, 12, 2560 }, { EXId, 0x00, 0, 0 } }; static const HuffmanTable MWTable[]= { { MWId, 0x1b, 5, 64 }, { MWId, 0x12, 5, 128 }, { MWId, 0x17, 6, 192 }, { MWId, 0x37, 7, 256 }, { MWId, 0x36, 8, 320 }, { MWId, 0x37, 8, 384 }, { MWId, 0x64, 8, 448 }, { MWId, 0x65, 8, 512 }, { MWId, 0x68, 8, 576 }, { MWId, 0x67, 8, 640 }, { MWId, 0xcc, 9, 704 }, { MWId, 0xcd, 9, 768 }, { MWId, 0xd2, 9, 832 }, { MWId, 0xd3, 9, 896 }, { MWId, 0xd4, 9, 960 }, { MWId, 0xd5, 9, 1024 }, { MWId, 0xd6, 9, 1088 }, { MWId, 0xd7, 9, 1152 }, { MWId, 0xd8, 9, 1216 }, { MWId, 0xd9, 9, 1280 }, { MWId, 0xda, 9, 1344 }, { MWId, 0xdb, 9, 1408 }, { MWId, 0x98, 9, 1472 }, { MWId, 0x99, 9, 1536 }, { MWId, 0x9a, 9, 1600 }, { MWId, 0x18, 6, 1664 }, { MWId, 0x9b, 9, 1728 }, { MWId, 0x00, 0, 0 } }; static const HuffmanTable TBTable[]= { { TBId, 0x37, 10, 0 }, { TBId, 0x02, 3, 1 }, { TBId, 0x03, 2, 2 }, { TBId, 0x02, 2, 3 }, { TBId, 0x03, 3, 4 }, { TBId, 0x03, 4, 5 }, { TBId, 0x02, 4, 6 }, { TBId, 0x03, 5, 7 }, { TBId, 0x05, 6, 8 }, { TBId, 0x04, 6, 9 }, { TBId, 0x04, 7, 10 }, { TBId, 0x05, 7, 11 }, { TBId, 0x07, 7, 12 }, { TBId, 0x04, 8, 13 }, { TBId, 0x07, 8, 14 }, { TBId, 0x18, 9, 15 }, { TBId, 0x17, 10, 16 }, { TBId, 0x18, 10, 17 }, { TBId, 0x08, 10, 18 }, { TBId, 0x67, 11, 19 }, { TBId, 0x68, 11, 20 }, { TBId, 0x6c, 11, 21 }, { TBId, 0x37, 11, 22 }, { TBId, 0x28, 11, 23 }, { TBId, 0x17, 11, 24 }, { TBId, 0x18, 11, 25 }, { TBId, 0xca, 12, 26 }, { TBId, 0xcb, 12, 27 }, { TBId, 0xcc, 12, 28 }, { TBId, 0xcd, 12, 29 }, { TBId, 0x68, 12, 30 }, { TBId, 0x69, 12, 31 }, { TBId, 0x6a, 12, 32 }, { TBId, 0x6b, 12, 33 }, { TBId, 0xd2, 12, 34 }, { TBId, 0xd3, 12, 35 }, { TBId, 0xd4, 12, 36 }, { TBId, 0xd5, 12, 37 }, { TBId, 0xd6, 12, 38 }, { TBId, 0xd7, 12, 39 }, { TBId, 0x6c, 12, 40 }, { TBId, 0x6d, 12, 41 }, { TBId, 0xda, 12, 42 }, { TBId, 0xdb, 12, 43 }, { TBId, 0x54, 12, 44 }, { TBId, 0x55, 12, 45 }, { TBId, 0x56, 12, 46 }, { TBId, 0x57, 12, 47 }, { TBId, 0x64, 12, 48 }, { TBId, 0x65, 12, 49 }, { TBId, 0x52, 12, 50 }, { TBId, 0x53, 12, 51 }, { TBId, 0x24, 12, 52 }, { TBId, 0x37, 12, 53 }, { TBId, 0x38, 12, 54 }, { TBId, 0x27, 12, 55 }, { TBId, 0x28, 12, 56 }, { TBId, 0x58, 12, 57 }, { TBId, 0x59, 12, 58 }, { TBId, 0x2b, 12, 59 }, { TBId, 0x2c, 12, 60 }, { TBId, 0x5a, 12, 61 }, { TBId, 0x66, 12, 62 }, { TBId, 0x67, 12, 63 }, { TBId, 0x00, 0, 0 } }; static const HuffmanTable TWTable[]= { { TWId, 0x35, 8, 0 }, { TWId, 0x07, 6, 1 }, { TWId, 0x07, 4, 2 }, { TWId, 0x08, 4, 3 }, { TWId, 0x0b, 4, 4 }, { TWId, 0x0c, 4, 5 }, { TWId, 0x0e, 4, 6 }, { TWId, 0x0f, 4, 7 }, { TWId, 0x13, 5, 8 }, { TWId, 0x14, 5, 9 }, { TWId, 0x07, 5, 10 }, { TWId, 0x08, 5, 11 }, { TWId, 0x08, 6, 12 }, { TWId, 0x03, 6, 13 }, { TWId, 0x34, 6, 14 }, { TWId, 0x35, 6, 15 }, { TWId, 0x2a, 6, 16 }, { TWId, 0x2b, 6, 17 }, { TWId, 0x27, 7, 18 }, { TWId, 0x0c, 7, 19 }, { TWId, 0x08, 7, 20 }, { TWId, 0x17, 7, 21 }, { TWId, 0x03, 7, 22 }, { TWId, 0x04, 7, 23 }, { TWId, 0x28, 7, 24 }, { TWId, 0x2b, 7, 25 }, { TWId, 0x13, 7, 26 }, { TWId, 0x24, 7, 27 }, { TWId, 0x18, 7, 28 }, { TWId, 0x02, 8, 29 }, { TWId, 0x03, 8, 30 }, { TWId, 0x1a, 8, 31 }, { TWId, 0x1b, 8, 32 }, { TWId, 0x12, 8, 33 }, { TWId, 0x13, 8, 34 }, { TWId, 0x14, 8, 35 }, { TWId, 0x15, 8, 36 }, { TWId, 0x16, 8, 37 }, { TWId, 0x17, 8, 38 }, { TWId, 0x28, 8, 39 }, { TWId, 0x29, 8, 40 }, { TWId, 0x2a, 8, 41 }, { TWId, 0x2b, 8, 42 }, { TWId, 0x2c, 8, 43 }, { TWId, 0x2d, 8, 44 }, { TWId, 0x04, 8, 45 }, { TWId, 0x05, 8, 46 }, { TWId, 0x0a, 8, 47 }, { TWId, 0x0b, 8, 48 }, { TWId, 0x52, 8, 49 }, { TWId, 0x53, 8, 50 }, { TWId, 0x54, 8, 51 }, { TWId, 0x55, 8, 52 }, { TWId, 0x24, 8, 53 }, { TWId, 0x25, 8, 54 }, { TWId, 0x58, 8, 55 }, { TWId, 0x59, 8, 56 }, { TWId, 0x5a, 8, 57 }, { TWId, 0x5b, 8, 58 }, { TWId, 0x4a, 8, 59 }, { TWId, 0x4b, 8, 60 }, { TWId, 0x32, 8, 61 }, { TWId, 0x33, 8, 62 }, { TWId, 0x34, 8, 63 }, { TWId, 0x00, 0, 0 } }; /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % A S C I I 8 5 E n c o d e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ASCII85Encode() encodes data in ASCII base-85 format. ASCII base-85 % encoding produces five ASCII printing characters from every four bytes of % binary data. % % The format of the ASCII85Encode method is: % % void Ascii85Encode(Image *image,const size_t code) % % A description of each parameter follows: % % o code: a binary unsigned char to encode to ASCII 85. % % o file: write the encoded ASCII character to this file. % % */ #define MaxLineExtent 36 static char *Ascii85Tuple(unsigned char *data) { static char tuple[6]; register ssize_t i, x; size_t code, quantum; code=((((size_t) data[0] << 8) | (size_t) data[1]) << 16) | ((size_t) data[2] << 8) | (size_t) data[3]; if (code == 0L) { tuple[0]='z'; tuple[1]='\0'; return(tuple); } quantum=85UL*85UL*85UL*85UL; for (i=0; i < 4; i++) { x=(ssize_t) (code/quantum); code-=quantum*x; tuple[i]=(char) (x+(int) '!'); quantum/=85L; } tuple[4]=(char) ((code % 85L)+(int) '!'); tuple[5]='\0'; return(tuple); } MagickExport void Ascii85Initialize(Image *image) { /* Allocate image structure. */ if (image->ascii85 == (Ascii85Info *) NULL) image->ascii85=(Ascii85Info *) AcquireMagickMemory(sizeof(*image->ascii85)); if (image->ascii85 == (Ascii85Info *) NULL) ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed"); (void) ResetMagickMemory(image->ascii85,0,sizeof(*image->ascii85)); image->ascii85->line_break=MaxLineExtent << 1; image->ascii85->offset=0; } MagickExport void Ascii85Flush(Image *image) { register char *tuple; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(image->ascii85 != (Ascii85Info *) NULL); if (image->ascii85->offset > 0) { image->ascii85->buffer[image->ascii85->offset]='\0'; image->ascii85->buffer[image->ascii85->offset+1]='\0'; image->ascii85->buffer[image->ascii85->offset+2]='\0'; tuple=Ascii85Tuple(image->ascii85->buffer); (void) WriteBlob(image,(size_t) image->ascii85->offset+1, (const unsigned char *) (*tuple == 'z' ? "!!!!" : tuple)); } (void) WriteBlobByte(image,'~'); (void) WriteBlobByte(image,'>'); (void) WriteBlobByte(image,'\n'); } MagickExport void Ascii85Encode(Image *image,const unsigned char code) { register char *q; register unsigned char *p; ssize_t n; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); assert(image->ascii85 != (Ascii85Info *) NULL); image->ascii85->buffer[image->ascii85->offset]=code; image->ascii85->offset++; if (image->ascii85->offset < 4) return; p=image->ascii85->buffer; for (n=image->ascii85->offset; n >= 4; n-=4) { for (q=Ascii85Tuple(p); *q != '\0'; q++) { image->ascii85->line_break--; if ((image->ascii85->line_break < 0) && (*q != '%')) { (void) WriteBlobByte(image,'\n'); image->ascii85->line_break=2*MaxLineExtent; } (void) WriteBlobByte(image,(unsigned char) *q); } p+=8; } image->ascii85->offset=n; p-=4; for (n=0; n < 4; n++) image->ascii85->buffer[n]=(*p++); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % H u f f m a n D e c o d e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % HuffmanDecodeImage() uncompresses an image via Huffman-coding. % % The format of the HuffmanDecodeImage method is: % % MagickBooleanType HuffmanDecodeImage(Image *image, % ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType HuffmanDecodeImage(Image *image, ExceptionInfo *exception) { #define HashSize 1021 #define MBHashA 293 #define MBHashB 2695 #define MWHashA 3510 #define MWHashB 1178 #define InitializeHashTable(hash,table,a,b) \ { \ entry=table; \ while (entry->code != 0) \ { \ hash[((entry->length+a)*(entry->code+b)) % HashSize]=(HuffmanTable *) entry; \ entry++; \ } \ } #define InputBit(bit) \ { \ if ((mask & 0xff) == 0) \ { \ byte=ReadBlobByte(image); \ if (byte == EOF) \ break; \ mask=0x80; \ } \ runlength++; \ bit=(size_t) ((byte & mask) != 0 ? 0x01 : 0x00); \ mask>>=1; \ if (bit != 0) \ runlength=0; \ } CacheView *image_view; const HuffmanTable *entry; HuffmanTable **mb_hash, **mw_hash; int byte; MagickBooleanType proceed; Quantum index; register ssize_t i; register unsigned char *p; size_t bit, code, mask, length, null_lines, runlength; ssize_t count, y; unsigned char *scanline; unsigned int bail, color; /* Allocate buffers. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); mb_hash=(HuffmanTable **) AcquireQuantumMemory(HashSize,sizeof(*mb_hash)); mw_hash=(HuffmanTable **) AcquireQuantumMemory(HashSize,sizeof(*mw_hash)); scanline=(unsigned char *) AcquireQuantumMemory((size_t) image->columns, sizeof(*scanline)); if ((mb_hash == (HuffmanTable **) NULL) || (mw_hash == (HuffmanTable **) NULL) || (scanline == (unsigned char *) NULL)) ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); /* Initialize Huffman tables. */ for (i=0; i < HashSize; i++) { mb_hash[i]=(HuffmanTable *) NULL; mw_hash[i]=(HuffmanTable *) NULL; } InitializeHashTable(mw_hash,TWTable,MWHashA,MWHashB); InitializeHashTable(mw_hash,MWTable,MWHashA,MWHashB); InitializeHashTable(mw_hash,EXTable,MWHashA,MWHashB); InitializeHashTable(mb_hash,TBTable,MBHashA,MBHashB); InitializeHashTable(mb_hash,MBTable,MBHashA,MBHashB); InitializeHashTable(mb_hash,EXTable,MBHashA,MBHashB); /* Uncompress 1D Huffman to runlength encoded pixels. */ byte=0; mask=0; null_lines=0; runlength=0; while (runlength < 11) InputBit(bit); do { InputBit(bit); } while ((int) bit == 0); image->resolution.x=204.0; image->resolution.y=196.0; image->units=PixelsPerInchResolution; image_view=AcquireAuthenticCacheView(image,exception); for (y=0; ((y < (ssize_t) image->rows) && (null_lines < 3)); ) { register Quantum *magick_restrict q; register ssize_t x; /* Initialize scanline to white. */ ResetMagickMemory(scanline,0,sizeof(*scanline)*image->columns); /* Decode Huffman encoded scanline. */ color=MagickTrue; code=0; count=0; length=0; runlength=0; x=0; for ( ; ; ) { if (byte == EOF) break; if (x >= (ssize_t) image->columns) { while (runlength < 11) InputBit(bit); do { InputBit(bit); } while ((int) bit == 0); break; } bail=MagickFalse; do { if (runlength < 11) InputBit(bit) else { InputBit(bit); if ((int) bit != 0) { null_lines++; if (x != 0) null_lines=0; bail=MagickTrue; break; } } code=(code << 1)+(size_t) bit; length++; } while (code == 0); if (bail != MagickFalse) break; if (length > 13) { while (runlength < 11) InputBit(bit); do { InputBit(bit); } while ((int) bit == 0); break; } if (color != MagickFalse) { if (length < 4) continue; entry=mw_hash[((length+MWHashA)*(code+MWHashB)) % HashSize]; } else { if (length < 2) continue; entry=mb_hash[((length+MBHashA)*(code+MBHashB)) % HashSize]; } if (entry == (const HuffmanTable *) NULL) continue; if ((entry->length != length) || (entry->code != code)) continue; switch (entry->id) { case TWId: case TBId: { count+=(ssize_t) entry->count; if ((x+count) > (ssize_t) image->columns) count=(ssize_t) image->columns-x; if (count > 0) { if (color != MagickFalse) { x+=count; count=0; } else for ( ; count > 0; count--) scanline[x++]=(unsigned char) 1; } color=(unsigned int) ((color == MagickFalse) ? MagickTrue : MagickFalse); break; } case MWId: case MBId: case EXId: { count+=(ssize_t) entry->count; break; } default: break; } code=0; length=0; } /* Transfer scanline to image pixels. */ p=scanline; q=QueueCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { index=(Quantum) (*p++); SetPixelIndex(image,index,q); SetPixelViaPixelInfo(image,image->colormap+(ssize_t) index,q); q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) break; proceed=SetImageProgress(image,LoadImageTag,y,image->rows); if (proceed == MagickFalse) break; y++; } image_view=DestroyCacheView(image_view); image->rows=(size_t) MagickMax((size_t) y-3,1); image->compression=FaxCompression; /* Free decoder memory. */ mw_hash=(HuffmanTable **) RelinquishMagickMemory(mw_hash); mb_hash=(HuffmanTable **) RelinquishMagickMemory(mb_hash); scanline=(unsigned char *) RelinquishMagickMemory(scanline); return(MagickTrue); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % H u f f m a n E n c o d e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % HuffmanEncodeImage() compresses an image via Huffman-coding. % % The format of the HuffmanEncodeImage method is: % % MagickBooleanType HuffmanEncodeImage(const ImageInfo *image_info, % Image *image,Image *inject_image,ExceptionInfo *exception) % % A description of each parameter follows: % % o image_info: the image info.. % % o image: the image. % % o inject_image: inject into the image stream. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType HuffmanEncodeImage(const ImageInfo *image_info, Image *image,Image *inject_image,ExceptionInfo *exception) { #define HuffmanOutputCode(entry) \ { \ mask=one << (entry->length-1); \ while (mask != 0) \ { \ OutputBit(((entry->code & mask) != 0 ? 1 : 0)); \ mask>>=1; \ } \ } #define OutputBit(count) \ { \ DisableMSCWarning(4127) \ if (count > 0) \ byte=byte | bit; \ RestoreMSCWarning \ bit>>=1; \ if ((int) (bit & 0xff) == 0) \ { \ if (LocaleCompare(image_info->magick,"FAX") == 0) \ (void) WriteBlobByte(image,(unsigned char) byte); \ else \ Ascii85Encode(image,byte); \ byte='\0'; \ bit=(unsigned char) 0x80; \ } \ } const HuffmanTable *entry; int k, runlength; Image *huffman_image; MagickBooleanType proceed; register ssize_t i, x; register const Quantum *p; register unsigned char *q; size_t mask, one, width; ssize_t n, y; unsigned char byte, bit, *scanline; /* Allocate scanline buffer. */ assert(image_info != (ImageInfo *) NULL); assert(image_info->signature == MagickCoreSignature); assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(inject_image != (Image *) NULL); assert(inject_image->signature == MagickCoreSignature); one=1; width=inject_image->columns; if (LocaleCompare(image_info->magick,"FAX") == 0) width=(size_t) MagickMax(inject_image->columns,1728); scanline=(unsigned char *) AcquireQuantumMemory((size_t) width+1UL, sizeof(*scanline)); if (scanline == (unsigned char *) NULL) ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", inject_image->filename); (void) ResetMagickMemory(scanline,0,width*sizeof(*scanline)); huffman_image=CloneImage(inject_image,0,0,MagickTrue,exception); if (huffman_image == (Image *) NULL) { scanline=(unsigned char *) RelinquishMagickMemory(scanline); return(MagickFalse); } (void) SetImageType(huffman_image,BilevelType,exception); byte='\0'; bit=(unsigned char) 0x80; if (LocaleCompare(image_info->magick,"FAX") != 0) Ascii85Initialize(image); else { /* End of line. */ for (k=0; k < 11; k++) OutputBit(0); OutputBit(1); } /* Compress to 1D Huffman pixels. */ q=scanline; for (y=0; y < (ssize_t) huffman_image->rows; y++) { p=GetVirtualPixels(huffman_image,0,y,huffman_image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) huffman_image->columns; x++) { *q++=(unsigned char) (GetPixelIntensity(huffman_image,p) >= ((double) QuantumRange/2.0) ? 0 : 1); p+=GetPixelChannels(huffman_image); } /* Huffman encode scanline. */ q=scanline; for (n=(ssize_t) width; n > 0; ) { /* Output white run. */ for (runlength=0; ((n > 0) && (*q == 0)); n--) { q++; runlength++; } if (runlength >= 64) { if (runlength < 1792) entry=MWTable+((runlength/64)-1); else entry=EXTable+(MagickMin((size_t) runlength,2560)-1792)/64; runlength-=(long) entry->count; HuffmanOutputCode(entry); } entry=TWTable+MagickMin((size_t) runlength,63); HuffmanOutputCode(entry); if (n != 0) { /* Output black run. */ for (runlength=0; ((*q != 0) && (n > 0)); n--) { q++; runlength++; } if (runlength >= 64) { entry=MBTable+((runlength/64)-1); if (runlength >= 1792) entry=EXTable+(MagickMin((size_t) runlength,2560)-1792)/64; runlength-=(long) entry->count; HuffmanOutputCode(entry); } entry=TBTable+MagickMin((size_t) runlength,63); HuffmanOutputCode(entry); } } /* End of line. */ for (k=0; k < 11; k++) OutputBit(0); OutputBit(1); q=scanline; if (GetPreviousImageInList(huffman_image) == (Image *) NULL) { proceed=SetImageProgress(huffman_image,LoadImageTag,y, huffman_image->rows); if (proceed == MagickFalse) break; } } /* End of page. */ for (i=0; i < 6; i++) { for (k=0; k < 11; k++) OutputBit(0); OutputBit(1); } /* Flush bits. */ if (((int) bit != 0x80) != 0) { if (LocaleCompare(image_info->magick,"FAX") == 0) (void) WriteBlobByte(image,byte); else Ascii85Encode(image,byte); } if (LocaleCompare(image_info->magick,"FAX") != 0) Ascii85Flush(image); huffman_image=DestroyImage(huffman_image); scanline=(unsigned char *) RelinquishMagickMemory(scanline); return(MagickTrue); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % L Z W E n c o d e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % LZWEncodeImage() compresses an image via LZW-coding specific to Postscript % Level II or Portable Document Format. % % The format of the LZWEncodeImage method is: % % MagickBooleanType LZWEncodeImage(Image *image,const size_t length, % unsigned char *magick_restrict pixels,ExceptionInfo *exception) % % A description of each parameter follows: % % o image: the image. % % o length: A value that specifies the number of pixels to compress. % % o pixels: the address of an unsigned array of characters containing the % pixels to compress. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType LZWEncodeImage(Image *image,const size_t length, unsigned char *magick_restrict pixels,ExceptionInfo *exception) { #define LZWClr 256UL /* Clear Table Marker */ #define LZWEod 257UL /* End of Data marker */ #define OutputCode(code) \ { \ accumulator+=code << (32-code_width-number_bits); \ number_bits+=code_width; \ while (number_bits >= 8) \ { \ (void) WriteBlobByte(image,(unsigned char) (accumulator >> 24)); \ accumulator=accumulator << 8; \ number_bits-=8; \ } \ } typedef struct _TableType { ssize_t prefix, suffix, next; } TableType; register ssize_t i; size_t accumulator, number_bits, code_width, last_code, next_index; ssize_t index; TableType *table; /* Allocate string table. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(pixels != (unsigned char *) NULL); assert(exception != (ExceptionInfo *) NULL); assert(exception->signature == MagickCoreSignature); table=(TableType *) AcquireQuantumMemory(1UL << 12,sizeof(*table)); if (table == (TableType *) NULL) return(MagickFalse); /* Initialize variables. */ accumulator=0; code_width=9; number_bits=0; last_code=0; OutputCode(LZWClr); for (index=0; index < 256; index++) { table[index].prefix=(-1); table[index].suffix=(short) index; table[index].next=(-1); } next_index=LZWEod+1; code_width=9; last_code=(size_t) pixels[0]; for (i=1; i < (ssize_t) length; i++) { /* Find string. */ index=(ssize_t) last_code; while (index != -1) if ((table[index].prefix != (ssize_t) last_code) || (table[index].suffix != (ssize_t) pixels[i])) index=table[index].next; else { last_code=(size_t) index; break; } if (last_code != (size_t) index) { /* Add string. */ OutputCode(last_code); table[next_index].prefix=(ssize_t) last_code; table[next_index].suffix=(short) pixels[i]; table[next_index].next=table[last_code].next; table[last_code].next=(ssize_t) next_index; next_index++; /* Did we just move up to next bit width? */ if ((next_index >> code_width) != 0) { code_width++; if (code_width > 12) { /* Did we overflow the max bit width? */ code_width--; OutputCode(LZWClr); for (index=0; index < 256; index++) { table[index].prefix=(-1); table[index].suffix=index; table[index].next=(-1); } next_index=LZWEod+1; code_width=9; } } last_code=(size_t) pixels[i]; } } /* Flush tables. */ OutputCode(last_code); OutputCode(LZWEod); if (number_bits != 0) (void) WriteBlobByte(image,(unsigned char) (accumulator >> 24)); table=(TableType *) RelinquishMagickMemory(table); return(MagickTrue); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % P a c k b i t s E n c o d e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % PackbitsEncodeImage() compresses an image via Macintosh Packbits encoding % specific to Postscript Level II or Portable Document Format. To ensure % portability, the binary Packbits bytes are encoded as ASCII Base-85. % % The format of the PackbitsEncodeImage method is: % % MagickBooleanType PackbitsEncodeImage(Image *image,const size_t length, % unsigned char *magick_restrict pixels) % % A description of each parameter follows: % % o image: the image. % % o length: A value that specifies the number of pixels to compress. % % o pixels: the address of an unsigned array of characters containing the % pixels to compress. % */ MagickExport MagickBooleanType PackbitsEncodeImage(Image *image, const size_t length,unsigned char *magick_restrict pixels, ExceptionInfo *exception) { int count; register ssize_t i, j; unsigned char *packbits; /* Compress pixels with Packbits encoding. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); assert(pixels != (unsigned char *) NULL); packbits=(unsigned char *) AcquireQuantumMemory(128UL,sizeof(*packbits)); if (packbits == (unsigned char *) NULL) ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); for (i=(ssize_t) length; i != 0; ) { switch (i) { case 1: { i--; (void) WriteBlobByte(image,(unsigned char) 0); (void) WriteBlobByte(image,*pixels); break; } case 2: { i-=2; (void) WriteBlobByte(image,(unsigned char) 1); (void) WriteBlobByte(image,*pixels); (void) WriteBlobByte(image,pixels[1]); break; } case 3: { i-=3; if ((*pixels == *(pixels+1)) && (*(pixels+1) == *(pixels+2))) { (void) WriteBlobByte(image,(unsigned char) ((256-3)+1)); (void) WriteBlobByte(image,*pixels); break; } (void) WriteBlobByte(image,(unsigned char) 2); (void) WriteBlobByte(image,*pixels); (void) WriteBlobByte(image,pixels[1]); (void) WriteBlobByte(image,pixels[2]); break; } default: { if ((*pixels == *(pixels+1)) && (*(pixels+1) == *(pixels+2))) { /* Packed run. */ count=3; while (((ssize_t) count < i) && (*pixels == *(pixels+count))) { count++; if (count >= 127) break; } i-=count; (void) WriteBlobByte(image,(unsigned char) ((256-count)+1)); (void) WriteBlobByte(image,*pixels); pixels+=count; break; } /* Literal run. */ count=0; while ((*(pixels+count) != *(pixels+count+1)) || (*(pixels+count+1) != *(pixels+count+2))) { packbits[count+1]=pixels[count]; count++; if (((ssize_t) count >= (i-3)) || (count >= 127)) break; } i-=count; *packbits=(unsigned char) (count-1); for (j=0; j <= (ssize_t) count; j++) (void) WriteBlobByte(image,packbits[j]); pixels+=count; break; } } } (void) WriteBlobByte(image,(unsigned char) 128); /* EOD marker */ packbits=(unsigned char *) RelinquishMagickMemory(packbits); return(MagickTrue); } #if defined(MAGICKCORE_ZLIB_DELEGATE) /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % Z L I B E n c o d e I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ZLIBEncodeImage compresses an image via ZLIB-coding specific to % Postscript Level II or Portable Document Format. % % The format of the ZLIBEncodeImage method is: % % MagickBooleanType ZLIBEncodeImage(Image *image,const size_t length, % unsigned char *magick_restrict pixels,ExceptionInfo *exception) % % A description of each parameter follows: % % o file: the address of a structure of type FILE. ZLIB encoded pixels % are written to this file. % % o length: A value that specifies the number of pixels to compress. % % o pixels: the address of an unsigned array of characters containing the % pixels to compress. % % o exception: return any errors or warnings in this structure. % */ static voidpf AcquireZIPMemory(voidpf context,unsigned int items, unsigned int size) { (void) context; return((voidpf) AcquireQuantumMemory(items,size)); } static void RelinquishZIPMemory(voidpf context,voidpf memory) { (void) context; memory=RelinquishMagickMemory(memory); } MagickExport MagickBooleanType ZLIBEncodeImage(Image *image,const size_t length, unsigned char *magick_restrict pixels,ExceptionInfo *exception) { int status; register ssize_t i; size_t compress_packets; unsigned char *compress_pixels; z_stream stream; assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); compress_packets=(size_t) (1.001*length+12); compress_pixels=(unsigned char *) AcquireQuantumMemory(compress_packets, sizeof(*compress_pixels)); if (compress_pixels == (unsigned char *) NULL) ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); stream.next_in=pixels; stream.avail_in=(unsigned int) length; stream.next_out=compress_pixels; stream.avail_out=(unsigned int) compress_packets; stream.zalloc=AcquireZIPMemory; stream.zfree=RelinquishZIPMemory; stream.opaque=(voidpf) NULL; status=deflateInit(&stream,(int) (image->quality == UndefinedCompressionQuality ? 7 : MagickMin(image->quality/10,9))); if (status == Z_OK) { status=deflate(&stream,Z_FINISH); if (status == Z_STREAM_END) status=deflateEnd(&stream); else (void) deflateEnd(&stream); compress_packets=(size_t) stream.total_out; } if (status != Z_OK) ThrowBinaryException(CoderError,"UnableToZipCompressImage",image->filename) for (i=0; i < (ssize_t) compress_packets; i++) (void) WriteBlobByte(image,compress_pixels[i]); compress_pixels=(unsigned char *) RelinquishMagickMemory(compress_pixels); return(MagickTrue); } #else MagickExport MagickBooleanType ZLIBEncodeImage(Image *image, const size_t magick_unused(length),unsigned char *magick_unused(pixels), ExceptionInfo *exception) { assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); (void) ThrowMagickException(exception,GetMagickModule(),MissingDelegateError, "DelegateLibrarySupportNotBuiltIn","'%s' (ZIP)",image->filename); return(MagickFalse); } #endif