/* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % SSSSS EEEEE GGGG M M EEEEE N N TTTTT % % SS E G MM MM E NN N T % % SSS EEE G GGG M M M EEE N N N T % % SS E G G M M E N NN T % % SSSSS EEEEE GGGG M M EEEEE N N T % % % % % % MagickCore Methods to Segment an Image with Thresholding Fuzzy c-Means % % % % Software Design % % Cristy % % April 1993 % % % % % % Copyright 1999-2016 ImageMagick Studio LLC, a non-profit organization % % dedicated to making software imaging solutions freely available. % % % % You may not use this file except in compliance with the License. You may % % obtain a copy of the License at % % % % http://www.imagemagick.org/script/license.php % % % % Unless required by applicable law or agreed to in writing, software % % distributed under the License is distributed on an "AS IS" BASIS, % % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % % See the License for the specific language governing permissions and % % limitations under the License. % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Segment segments an image by analyzing the histograms of the color % components and identifying units that are homogeneous with the fuzzy % c-means technique. The scale-space filter analyzes the histograms of % the three color components of the image and identifies a set of % classes. The extents of each class is used to coarsely segment the % image with thresholding. The color associated with each class is % determined by the mean color of all pixels within the extents of a % particular class. Finally, any unclassified pixels are assigned to % the closest class with the fuzzy c-means technique. % % The fuzzy c-Means algorithm can be summarized as follows: % % o Build a histogram, one for each color component of the image. % % o For each histogram, successively apply the scale-space filter and % build an interval tree of zero crossings in the second derivative % at each scale. Analyze this scale-space ''fingerprint'' to % determine which peaks and valleys in the histogram are most % predominant. % % o The fingerprint defines intervals on the axis of the histogram. % Each interval contains either a minima or a maxima in the original % signal. If each color component lies within the maxima interval, % that pixel is considered ''classified'' and is assigned an unique % class number. % % o Any pixel that fails to be classified in the above thresholding % pass is classified using the fuzzy c-Means technique. It is % assigned to one of the classes discovered in the histogram analysis % phase. % % The fuzzy c-Means technique attempts to cluster a pixel by finding % the local minima of the generalized within group sum of squared error % objective function. A pixel is assigned to the closest class of % which the fuzzy membership has a maximum value. % % Segment is strongly based on software written by Andy Gallo, % University of Delaware. % % The following reference was used in creating this program: % % Young Won Lim, Sang Uk Lee, "On The Color Image Segmentation % Algorithm Based on the Thresholding and the Fuzzy c-Means % Techniques", Pattern Recognition, Volume 23, Number 9, pages % 935-952, 1990. % % */ #include "MagickCore/studio.h" #include "MagickCore/cache.h" #include "MagickCore/color.h" #include "MagickCore/colormap.h" #include "MagickCore/colorspace.h" #include "MagickCore/colorspace-private.h" #include "MagickCore/exception.h" #include "MagickCore/exception-private.h" #include "MagickCore/image.h" #include "MagickCore/image-private.h" #include "MagickCore/memory_.h" #include "MagickCore/monitor.h" #include "MagickCore/monitor-private.h" #include "MagickCore/pixel-accessor.h" #include "MagickCore/pixel-private.h" #include "MagickCore/quantize.h" #include "MagickCore/quantum.h" #include "MagickCore/quantum-private.h" #include "MagickCore/resource_.h" #include "MagickCore/segment.h" #include "MagickCore/string_.h" #include "MagickCore/thread-private.h" /* Define declarations. */ #define MaxDimension 3 #define DeltaTau 0.5f #if defined(FastClassify) #define WeightingExponent 2.0 #define SegmentPower(ratio) (ratio) #else #define WeightingExponent 2.5 #define SegmentPower(ratio) pow(ratio,(double) (1.0/(weighting_exponent-1.0))); #endif #define Tau 5.2f /* Typedef declarations. */ typedef struct _ExtentPacket { double center; ssize_t index, left, right; } ExtentPacket; typedef struct _Cluster { struct _Cluster *next; ExtentPacket red, green, blue; ssize_t count, id; } Cluster; typedef struct _IntervalTree { double tau; ssize_t left, right; double mean_stability, stability; struct _IntervalTree *sibling, *child; } IntervalTree; typedef struct _ZeroCrossing { double tau, histogram[256]; short crossings[256]; } ZeroCrossing; /* Constant declarations. */ static const int Blue = 2, Green = 1, Red = 0, SafeMargin = 3, TreeLength = 600; /* Method prototypes. */ static double OptimalTau(const ssize_t *,const double,const double,const double, const double,short *); static ssize_t DefineRegion(const short *,ExtentPacket *); static void InitializeHistogram(const Image *,ssize_t **,ExceptionInfo *), ScaleSpace(const ssize_t *,const double,double *), ZeroCrossHistogram(double *,const double,short *); /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + C l a s s i f y % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Classify() defines one or more classes. Each pixel is thresholded to % determine which class it belongs to. If the class is not identified it is % assigned to the closest class based on the fuzzy c-Means technique. % % The format of the Classify method is: % % MagickBooleanType Classify(Image *image,short **extrema, % const double cluster_threshold, % const double weighting_exponent, % const MagickBooleanType verbose,ExceptionInfo *exception) % % A description of each parameter follows. % % o image: the image. % % o extrema: Specifies a pointer to an array of integers. They % represent the peaks and valleys of the histogram for each color % component. % % o cluster_threshold: This double represents the minimum number of % pixels contained in a hexahedra before it can be considered valid % (expressed as a percentage). % % o weighting_exponent: Specifies the membership weighting exponent. % % o verbose: A value greater than zero prints detailed information about % the identified classes. % % o exception: return any errors or warnings in this structure. % */ static MagickBooleanType Classify(Image *image,short **extrema, const double cluster_threshold, const double weighting_exponent,const MagickBooleanType verbose, ExceptionInfo *exception) { #define SegmentImageTag "Segment/Image" CacheView *image_view; Cluster *cluster, *head, *last_cluster, *next_cluster; ExtentPacket blue, green, red; MagickOffsetType progress; double *free_squares; MagickStatusType status; register ssize_t i; register double *squares; size_t number_clusters; ssize_t count, y; /* Form clusters. */ cluster=(Cluster *) NULL; head=(Cluster *) NULL; (void) ResetMagickMemory(&red,0,sizeof(red)); (void) ResetMagickMemory(&green,0,sizeof(green)); (void) ResetMagickMemory(&blue,0,sizeof(blue)); while (DefineRegion(extrema[Red],&red) != 0) { green.index=0; while (DefineRegion(extrema[Green],&green) != 0) { blue.index=0; while (DefineRegion(extrema[Blue],&blue) != 0) { /* Allocate a new class. */ if (head != (Cluster *) NULL) { cluster->next=(Cluster *) AcquireMagickMemory( sizeof(*cluster->next)); cluster=cluster->next; } else { cluster=(Cluster *) AcquireMagickMemory(sizeof(*cluster)); head=cluster; } if (cluster == (Cluster *) NULL) ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); /* Initialize a new class. */ cluster->count=0; cluster->red=red; cluster->green=green; cluster->blue=blue; cluster->next=(Cluster *) NULL; } } } if (head == (Cluster *) NULL) { /* No classes were identified-- create one. */ cluster=(Cluster *) AcquireMagickMemory(sizeof(*cluster)); if (cluster == (Cluster *) NULL) ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); /* Initialize a new class. */ cluster->count=0; cluster->red=red; cluster->green=green; cluster->blue=blue; cluster->next=(Cluster *) NULL; head=cluster; } /* Count the pixels for each cluster. */ status=MagickTrue; count=0; progress=0; image_view=AcquireVirtualCacheView(image,exception); for (y=0; y < (ssize_t) image->rows; y++) { register const Quantum *p; register ssize_t x; p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) if (((ssize_t) ScaleQuantumToChar(GetPixelRed(image,p)) >= (cluster->red.left-SafeMargin)) && ((ssize_t) ScaleQuantumToChar(GetPixelRed(image,p)) <= (cluster->red.right+SafeMargin)) && ((ssize_t) ScaleQuantumToChar(GetPixelGreen(image,p)) >= (cluster->green.left-SafeMargin)) && ((ssize_t) ScaleQuantumToChar(GetPixelGreen(image,p)) <= (cluster->green.right+SafeMargin)) && ((ssize_t) ScaleQuantumToChar(GetPixelBlue(image,p)) >= (cluster->blue.left-SafeMargin)) && ((ssize_t) ScaleQuantumToChar(GetPixelBlue(image,p)) <= (cluster->blue.right+SafeMargin))) { /* Count this pixel. */ count++; cluster->red.center+=(double) ScaleQuantumToChar( GetPixelRed(image,p)); cluster->green.center+=(double) ScaleQuantumToChar( GetPixelGreen(image,p)); cluster->blue.center+=(double) ScaleQuantumToChar( GetPixelBlue(image,p)); cluster->count++; break; } p+=GetPixelChannels(image); } if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_Classify) #endif proceed=SetImageProgress(image,SegmentImageTag,progress++,2* image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); /* Remove clusters that do not meet minimum cluster threshold. */ count=0; last_cluster=head; next_cluster=head; for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster) { next_cluster=cluster->next; if ((cluster->count > 0) && (cluster->count >= (count*cluster_threshold/100.0))) { /* Initialize cluster. */ cluster->id=count; cluster->red.center/=cluster->count; cluster->green.center/=cluster->count; cluster->blue.center/=cluster->count; count++; last_cluster=cluster; continue; } /* Delete cluster. */ if (cluster == head) head=next_cluster; else last_cluster->next=next_cluster; cluster=(Cluster *) RelinquishMagickMemory(cluster); } number_clusters=(size_t) count; if (verbose != MagickFalse) { /* Print cluster statistics. */ (void) FormatLocaleFile(stdout,"Fuzzy C-means Statistics\n"); (void) FormatLocaleFile(stdout,"===================\n\n"); (void) FormatLocaleFile(stdout,"\tCluster Threshold = %g\n",(double) cluster_threshold); (void) FormatLocaleFile(stdout,"\tWeighting Exponent = %g\n",(double) weighting_exponent); (void) FormatLocaleFile(stdout,"\tTotal Number of Clusters = %.20g\n\n", (double) number_clusters); /* Print the total number of points per cluster. */ (void) FormatLocaleFile(stdout,"\n\nNumber of Vectors Per Cluster\n"); (void) FormatLocaleFile(stdout,"=============================\n\n"); for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) (void) FormatLocaleFile(stdout,"Cluster #%.20g = %.20g\n",(double) cluster->id,(double) cluster->count); /* Print the cluster extents. */ (void) FormatLocaleFile(stdout, "\n\n\nCluster Extents: (Vector Size: %d)\n",MaxDimension); (void) FormatLocaleFile(stdout,"================"); for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) { (void) FormatLocaleFile(stdout,"\n\nCluster #%.20g\n\n",(double) cluster->id); (void) FormatLocaleFile(stdout, "%.20g-%.20g %.20g-%.20g %.20g-%.20g\n",(double) cluster->red.left,(double) cluster->red.right,(double) cluster->green.left,(double) cluster->green.right,(double) cluster->blue.left,(double) cluster->blue.right); } /* Print the cluster center values. */ (void) FormatLocaleFile(stdout, "\n\n\nCluster Center Values: (Vector Size: %d)\n",MaxDimension); (void) FormatLocaleFile(stdout,"====================="); for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) { (void) FormatLocaleFile(stdout,"\n\nCluster #%.20g\n\n",(double) cluster->id); (void) FormatLocaleFile(stdout,"%g %g %g\n",(double) cluster->red.center,(double) cluster->green.center,(double) cluster->blue.center); } (void) FormatLocaleFile(stdout,"\n"); } if (number_clusters > 256) ThrowBinaryException(ImageError,"TooManyClusters",image->filename); /* Speed up distance calculations. */ squares=(double *) AcquireQuantumMemory(513UL,sizeof(*squares)); if (squares == (double *) NULL) ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); squares+=255; for (i=(-255); i <= 255; i++) squares[i]=(double) i*(double) i; /* Allocate image colormap. */ if (AcquireImageColormap(image,number_clusters,exception) == MagickFalse) ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename); i=0; for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) { image->colormap[i].red=(double) ScaleCharToQuantum((unsigned char) (cluster->red.center+0.5)); image->colormap[i].green=(double) ScaleCharToQuantum((unsigned char) (cluster->green.center+0.5)); image->colormap[i].blue=(double) ScaleCharToQuantum((unsigned char) (cluster->blue.center+0.5)); i++; } /* Do course grain classes. */ image_view=AcquireAuthenticCacheView(image,exception); #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp parallel for schedule(static,4) shared(progress,status) \ magick_threads(image,image,image->rows,1) #endif for (y=0; y < (ssize_t) image->rows; y++) { Cluster *cluster; register const PixelInfo *magick_restrict p; register ssize_t x; register Quantum *magick_restrict q; if (status == MagickFalse) continue; q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); if (q == (Quantum *) NULL) { status=MagickFalse; continue; } for (x=0; x < (ssize_t) image->columns; x++) { SetPixelIndex(image,0,q); for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) { if (((ssize_t) ScaleQuantumToChar(GetPixelRed(image,q)) >= (cluster->red.left-SafeMargin)) && ((ssize_t) ScaleQuantumToChar(GetPixelRed(image,q)) <= (cluster->red.right+SafeMargin)) && ((ssize_t) ScaleQuantumToChar(GetPixelGreen(image,q)) >= (cluster->green.left-SafeMargin)) && ((ssize_t) ScaleQuantumToChar(GetPixelGreen(image,q)) <= (cluster->green.right+SafeMargin)) && ((ssize_t) ScaleQuantumToChar(GetPixelBlue(image,q)) >= (cluster->blue.left-SafeMargin)) && ((ssize_t) ScaleQuantumToChar(GetPixelBlue(image,q)) <= (cluster->blue.right+SafeMargin))) { /* Classify this pixel. */ SetPixelIndex(image,(Quantum) cluster->id,q); break; } } if (cluster == (Cluster *) NULL) { double distance_squared, local_minima, numerator, ratio, sum; register ssize_t j, k; /* Compute fuzzy membership. */ local_minima=0.0; for (j=0; j < (ssize_t) image->colors; j++) { sum=0.0; p=image->colormap+j; distance_squared=squares[(ssize_t) ScaleQuantumToChar( GetPixelRed(image,q))-(ssize_t) ScaleQuantumToChar(ClampToQuantum(p->red))]+squares[(ssize_t) ScaleQuantumToChar(GetPixelGreen(image,q))-(ssize_t) ScaleQuantumToChar(ClampToQuantum(p->green))]+squares[(ssize_t) ScaleQuantumToChar(GetPixelBlue(image,q))-(ssize_t) ScaleQuantumToChar(ClampToQuantum(p->blue))]; numerator=distance_squared; for (k=0; k < (ssize_t) image->colors; k++) { p=image->colormap+k; distance_squared=squares[(ssize_t) ScaleQuantumToChar( GetPixelRed(image,q))-(ssize_t) ScaleQuantumToChar(ClampToQuantum(p->red))]+squares[ (ssize_t) ScaleQuantumToChar(GetPixelGreen(image,q))-(ssize_t) ScaleQuantumToChar(ClampToQuantum(p->green))]+squares[ (ssize_t) ScaleQuantumToChar(GetPixelBlue(image,q))-(ssize_t) ScaleQuantumToChar(ClampToQuantum(p->blue))]; ratio=numerator/distance_squared; sum+=SegmentPower(ratio); } if ((sum != 0.0) && ((1.0/sum) > local_minima)) { /* Classify this pixel. */ local_minima=1.0/sum; SetPixelIndex(image,(Quantum) j,q); } } } q+=GetPixelChannels(image); } if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) status=MagickFalse; if (image->progress_monitor != (MagickProgressMonitor) NULL) { MagickBooleanType proceed; #if defined(MAGICKCORE_OPENMP_SUPPORT) #pragma omp critical (MagickCore_Classify) #endif proceed=SetImageProgress(image,SegmentImageTag,progress++, 2*image->rows); if (proceed == MagickFalse) status=MagickFalse; } } image_view=DestroyCacheView(image_view); status&=SyncImage(image,exception); /* Relinquish resources. */ for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster) { next_cluster=cluster->next; cluster=(Cluster *) RelinquishMagickMemory(cluster); } squares-=255; free_squares=squares; free_squares=(double *) RelinquishMagickMemory(free_squares); return(MagickTrue); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + C o n s o l i d a t e C r o s s i n g s % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ConsolidateCrossings() guarantees that an even number of zero crossings % always lie between two crossings. % % The format of the ConsolidateCrossings method is: % % ConsolidateCrossings(ZeroCrossing *zero_crossing, % const size_t number_crossings) % % A description of each parameter follows. % % o zero_crossing: Specifies an array of structures of type ZeroCrossing. % % o number_crossings: This size_t specifies the number of elements % in the zero_crossing array. % */ static void ConsolidateCrossings(ZeroCrossing *zero_crossing, const size_t number_crossings) { register ssize_t i, j, k, l; ssize_t center, correct, count, left, right; /* Consolidate zero crossings. */ for (i=(ssize_t) number_crossings-1; i >= 0; i--) for (j=0; j <= 255; j++) { if (zero_crossing[i].crossings[j] == 0) continue; /* Find the entry that is closest to j and still preserves the property that there are an even number of crossings between intervals. */ for (k=j-1; k > 0; k--) if (zero_crossing[i+1].crossings[k] != 0) break; left=MagickMax(k,0); center=j; for (k=j+1; k < 255; k++) if (zero_crossing[i+1].crossings[k] != 0) break; right=MagickMin(k,255); /* K is the zero crossing just left of j. */ for (k=j-1; k > 0; k--) if (zero_crossing[i].crossings[k] != 0) break; if (k < 0) k=0; /* Check center for an even number of crossings between k and j. */ correct=(-1); if (zero_crossing[i+1].crossings[j] != 0) { count=0; for (l=k+1; l < center; l++) if (zero_crossing[i+1].crossings[l] != 0) count++; if (((count % 2) == 0) && (center != k)) correct=center; } /* Check left for an even number of crossings between k and j. */ if (correct == -1) { count=0; for (l=k+1; l < left; l++) if (zero_crossing[i+1].crossings[l] != 0) count++; if (((count % 2) == 0) && (left != k)) correct=left; } /* Check right for an even number of crossings between k and j. */ if (correct == -1) { count=0; for (l=k+1; l < right; l++) if (zero_crossing[i+1].crossings[l] != 0) count++; if (((count % 2) == 0) && (right != k)) correct=right; } l=(ssize_t) zero_crossing[i].crossings[j]; zero_crossing[i].crossings[j]=0; if (correct != -1) zero_crossing[i].crossings[correct]=(short) l; } } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + D e f i n e R e g i o n % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DefineRegion() defines the left and right boundaries of a peak region. % % The format of the DefineRegion method is: % % ssize_t DefineRegion(const short *extrema,ExtentPacket *extents) % % A description of each parameter follows. % % o extrema: Specifies a pointer to an array of integers. They % represent the peaks and valleys of the histogram for each color % component. % % o extents: This pointer to an ExtentPacket represent the extends % of a particular peak or valley of a color component. % */ static ssize_t DefineRegion(const short *extrema,ExtentPacket *extents) { /* Initialize to default values. */ extents->left=0; extents->center=0.0; extents->right=255; /* Find the left side (maxima). */ for ( ; extents->index <= 255; extents->index++) if (extrema[extents->index] > 0) break; if (extents->index > 255) return(MagickFalse); /* no left side - no region exists */ extents->left=extents->index; /* Find the right side (minima). */ for ( ; extents->index <= 255; extents->index++) if (extrema[extents->index] < 0) break; extents->right=extents->index-1; return(MagickTrue); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + D e r i v a t i v e H i s t o g r a m % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % DerivativeHistogram() determines the derivative of the histogram using % central differencing. % % The format of the DerivativeHistogram method is: % % DerivativeHistogram(const double *histogram, % double *derivative) % % A description of each parameter follows. % % o histogram: Specifies an array of doubles representing the number % of pixels for each intensity of a particular color component. % % o derivative: This array of doubles is initialized by % DerivativeHistogram to the derivative of the histogram using central % differencing. % */ static void DerivativeHistogram(const double *histogram, double *derivative) { register ssize_t i, n; /* Compute endpoints using second order polynomial interpolation. */ n=255; derivative[0]=(-1.5*histogram[0]+2.0*histogram[1]-0.5*histogram[2]); derivative[n]=(0.5*histogram[n-2]-2.0*histogram[n-1]+1.5*histogram[n]); /* Compute derivative using central differencing. */ for (i=1; i < n; i++) derivative[i]=(histogram[i+1]-histogram[i-1])/2.0; return; } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + G e t I m a g e D y n a m i c T h r e s h o l d % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % GetImageDynamicThreshold() returns the dynamic threshold for an image. % % The format of the GetImageDynamicThreshold method is: % % MagickBooleanType GetImageDynamicThreshold(const Image *image, % const double cluster_threshold,const double smooth_threshold, % PixelInfo *pixel,ExceptionInfo *exception) % % A description of each parameter follows. % % o image: the image. % % o cluster_threshold: This double represents the minimum number of % pixels contained in a hexahedra before it can be considered valid % (expressed as a percentage). % % o smooth_threshold: the smoothing threshold eliminates noise in the second % derivative of the histogram. As the value is increased, you can expect a % smoother second derivative. % % o pixel: return the dynamic threshold here. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType GetImageDynamicThreshold(const Image *image, const double cluster_threshold,const double smooth_threshold, PixelInfo *pixel,ExceptionInfo *exception) { Cluster *background, *cluster, *object, *head, *last_cluster, *next_cluster; ExtentPacket blue, green, red; MagickBooleanType proceed; double threshold; register const Quantum *p; register ssize_t i, x; short *extrema[MaxDimension]; ssize_t count, *histogram[MaxDimension], y; /* Allocate histogram and extrema. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); GetPixelInfo(image,pixel); for (i=0; i < MaxDimension; i++) { histogram[i]=(ssize_t *) AcquireQuantumMemory(256UL,sizeof(**histogram)); extrema[i]=(short *) AcquireQuantumMemory(256UL,sizeof(**histogram)); if ((histogram[i] == (ssize_t *) NULL) || (extrema[i] == (short *) NULL)) { for (i-- ; i >= 0; i--) { extrema[i]=(short *) RelinquishMagickMemory(extrema[i]); histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]); } (void) ThrowMagickException(exception,GetMagickModule(), ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); return(MagickFalse); } } /* Initialize histogram. */ InitializeHistogram(image,histogram,exception); (void) OptimalTau(histogram[Red],Tau,0.2f,DeltaTau, (smooth_threshold == 0.0f ? 1.0f : smooth_threshold),extrema[Red]); (void) OptimalTau(histogram[Green],Tau,0.2f,DeltaTau, (smooth_threshold == 0.0f ? 1.0f : smooth_threshold),extrema[Green]); (void) OptimalTau(histogram[Blue],Tau,0.2f,DeltaTau, (smooth_threshold == 0.0f ? 1.0f : smooth_threshold),extrema[Blue]); /* Form clusters. */ cluster=(Cluster *) NULL; head=(Cluster *) NULL; (void) ResetMagickMemory(&red,0,sizeof(red)); (void) ResetMagickMemory(&green,0,sizeof(green)); (void) ResetMagickMemory(&blue,0,sizeof(blue)); while (DefineRegion(extrema[Red],&red) != 0) { green.index=0; while (DefineRegion(extrema[Green],&green) != 0) { blue.index=0; while (DefineRegion(extrema[Blue],&blue) != 0) { /* Allocate a new class. */ if (head != (Cluster *) NULL) { cluster->next=(Cluster *) AcquireMagickMemory( sizeof(*cluster->next)); cluster=cluster->next; } else { cluster=(Cluster *) AcquireMagickMemory(sizeof(*cluster)); head=cluster; } if (cluster == (Cluster *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(), ResourceLimitError,"MemoryAllocationFailed","`%s'", image->filename); return(MagickFalse); } /* Initialize a new class. */ cluster->count=0; cluster->red=red; cluster->green=green; cluster->blue=blue; cluster->next=(Cluster *) NULL; } } } if (head == (Cluster *) NULL) { /* No classes were identified-- create one. */ cluster=(Cluster *) AcquireMagickMemory(sizeof(*cluster)); if (cluster == (Cluster *) NULL) { (void) ThrowMagickException(exception,GetMagickModule(), ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); return(MagickFalse); } /* Initialize a new class. */ cluster->count=0; cluster->red=red; cluster->green=green; cluster->blue=blue; cluster->next=(Cluster *) NULL; head=cluster; } /* Count the pixels for each cluster. */ count=0; for (y=0; y < (ssize_t) image->rows; y++) { p=GetVirtualPixels(image,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) if (((ssize_t) ScaleQuantumToChar(GetPixelRed(image,p)) >= (cluster->red.left-SafeMargin)) && ((ssize_t) ScaleQuantumToChar(GetPixelRed(image,p)) <= (cluster->red.right+SafeMargin)) && ((ssize_t) ScaleQuantumToChar(GetPixelGreen(image,p)) >= (cluster->green.left-SafeMargin)) && ((ssize_t) ScaleQuantumToChar(GetPixelGreen(image,p)) <= (cluster->green.right+SafeMargin)) && ((ssize_t) ScaleQuantumToChar(GetPixelBlue(image,p)) >= (cluster->blue.left-SafeMargin)) && ((ssize_t) ScaleQuantumToChar(GetPixelBlue(image,p)) <= (cluster->blue.right+SafeMargin))) { /* Count this pixel. */ count++; cluster->red.center+=(double) ScaleQuantumToChar( GetPixelRed(image,p)); cluster->green.center+=(double) ScaleQuantumToChar( GetPixelGreen(image,p)); cluster->blue.center+=(double) ScaleQuantumToChar( GetPixelBlue(image,p)); cluster->count++; break; } p+=GetPixelChannels(image); } proceed=SetImageProgress(image,SegmentImageTag,(MagickOffsetType) y, 2*image->rows); if (proceed == MagickFalse) break; } /* Remove clusters that do not meet minimum cluster threshold. */ count=0; last_cluster=head; next_cluster=head; for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster) { next_cluster=cluster->next; if ((cluster->count > 0) && (cluster->count >= (count*cluster_threshold/100.0))) { /* Initialize cluster. */ cluster->id=count; cluster->red.center/=cluster->count; cluster->green.center/=cluster->count; cluster->blue.center/=cluster->count; count++; last_cluster=cluster; continue; } /* Delete cluster. */ if (cluster == head) head=next_cluster; else last_cluster->next=next_cluster; cluster=(Cluster *) RelinquishMagickMemory(cluster); } object=head; background=head; if (count > 1) { object=head->next; for (cluster=object; cluster->next != (Cluster *) NULL; ) { if (cluster->count < object->count) object=cluster; cluster=cluster->next; } background=head->next; for (cluster=background; cluster->next != (Cluster *) NULL; ) { if (cluster->count > background->count) background=cluster; cluster=cluster->next; } } if (background != (Cluster *) NULL) { threshold=(background->red.center+object->red.center)/2.0; pixel->red=(double) ScaleCharToQuantum((unsigned char) (threshold+0.5)); threshold=(background->green.center+object->green.center)/2.0; pixel->green=(double) ScaleCharToQuantum((unsigned char) (threshold+0.5)); threshold=(background->blue.center+object->blue.center)/2.0; pixel->blue=(double) ScaleCharToQuantum((unsigned char) (threshold+0.5)); } /* Relinquish resources. */ for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster) { next_cluster=cluster->next; cluster=(Cluster *) RelinquishMagickMemory(cluster); } for (i=0; i < MaxDimension; i++) { extrema[i]=(short *) RelinquishMagickMemory(extrema[i]); histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]); } return(MagickTrue); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + I n i t i a l i z e H i s t o g r a m % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % InitializeHistogram() computes the histogram for an image. % % The format of the InitializeHistogram method is: % % InitializeHistogram(const Image *image,ssize_t **histogram) % % A description of each parameter follows. % % o image: Specifies a pointer to an Image structure; returned from % ReadImage. % % o histogram: Specifies an array of integers representing the number % of pixels for each intensity of a particular color component. % */ static void InitializeHistogram(const Image *image,ssize_t **histogram, ExceptionInfo *exception) { register const Quantum *p; register ssize_t i, x; ssize_t y; /* Initialize histogram. */ for (i=0; i <= 255; i++) { histogram[Red][i]=0; histogram[Green][i]=0; histogram[Blue][i]=0; } for (y=0; y < (ssize_t) image->rows; y++) { p=GetVirtualPixels(image,0,y,image->columns,1,exception); if (p == (const Quantum *) NULL) break; for (x=0; x < (ssize_t) image->columns; x++) { histogram[Red][(ssize_t) ScaleQuantumToChar(GetPixelRed(image,p))]++; histogram[Green][(ssize_t) ScaleQuantumToChar(GetPixelGreen(image,p))]++; histogram[Blue][(ssize_t) ScaleQuantumToChar(GetPixelBlue(image,p))]++; p+=GetPixelChannels(image); } } } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + I n i t i a l i z e I n t e r v a l T r e e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % InitializeIntervalTree() initializes an interval tree from the lists of % zero crossings. % % The format of the InitializeIntervalTree method is: % % InitializeIntervalTree(IntervalTree **list,ssize_t *number_nodes, % IntervalTree *node) % % A description of each parameter follows. % % o zero_crossing: Specifies an array of structures of type ZeroCrossing. % % o number_crossings: This size_t specifies the number of elements % in the zero_crossing array. % */ static void InitializeList(IntervalTree **list,ssize_t *number_nodes, IntervalTree *node) { if (node == (IntervalTree *) NULL) return; if (node->child == (IntervalTree *) NULL) list[(*number_nodes)++]=node; InitializeList(list,number_nodes,node->sibling); InitializeList(list,number_nodes,node->child); } static void MeanStability(IntervalTree *node) { register IntervalTree *child; if (node == (IntervalTree *) NULL) return; node->mean_stability=0.0; child=node->child; if (child != (IntervalTree *) NULL) { register ssize_t count; register double sum; sum=0.0; count=0; for ( ; child != (IntervalTree *) NULL; child=child->sibling) { sum+=child->stability; count++; } node->mean_stability=sum/(double) count; } MeanStability(node->sibling); MeanStability(node->child); } static void Stability(IntervalTree *node) { if (node == (IntervalTree *) NULL) return; if (node->child == (IntervalTree *) NULL) node->stability=0.0; else node->stability=node->tau-(node->child)->tau; Stability(node->sibling); Stability(node->child); } static IntervalTree *InitializeIntervalTree(const ZeroCrossing *zero_crossing, const size_t number_crossings) { IntervalTree *head, **list, *node, *root; register ssize_t i; ssize_t j, k, left, number_nodes; /* Allocate interval tree. */ list=(IntervalTree **) AcquireQuantumMemory((size_t) TreeLength, sizeof(*list)); if (list == (IntervalTree **) NULL) return((IntervalTree *) NULL); /* The root is the entire histogram. */ root=(IntervalTree *) AcquireMagickMemory(sizeof(*root)); root->child=(IntervalTree *) NULL; root->sibling=(IntervalTree *) NULL; root->tau=0.0; root->left=0; root->right=255; for (i=(-1); i < (ssize_t) number_crossings; i++) { /* Initialize list with all nodes with no children. */ number_nodes=0; InitializeList(list,&number_nodes,root); /* Split list. */ for (j=0; j < number_nodes; j++) { head=list[j]; left=head->left; node=head; for (k=head->left+1; k < head->right; k++) { if (zero_crossing[i+1].crossings[k] != 0) { if (node == head) { node->child=(IntervalTree *) AcquireMagickMemory( sizeof(*node->child)); node=node->child; } else { node->sibling=(IntervalTree *) AcquireMagickMemory( sizeof(*node->sibling)); node=node->sibling; } node->tau=zero_crossing[i+1].tau; node->child=(IntervalTree *) NULL; node->sibling=(IntervalTree *) NULL; node->left=left; node->right=k; left=k; } } if (left != head->left) { node->sibling=(IntervalTree *) AcquireMagickMemory( sizeof(*node->sibling)); node=node->sibling; node->tau=zero_crossing[i+1].tau; node->child=(IntervalTree *) NULL; node->sibling=(IntervalTree *) NULL; node->left=left; node->right=head->right; } } } /* Determine the stability: difference between a nodes tau and its child. */ Stability(root->child); MeanStability(root->child); list=(IntervalTree **) RelinquishMagickMemory(list); return(root); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + O p t i m a l T a u % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % OptimalTau() finds the optimal tau for each band of the histogram. % % The format of the OptimalTau method is: % % double OptimalTau(const ssize_t *histogram,const double max_tau, % const double min_tau,const double delta_tau, % const double smooth_threshold,short *extrema) % % A description of each parameter follows. % % o histogram: Specifies an array of integers representing the number % of pixels for each intensity of a particular color component. % % o extrema: Specifies a pointer to an array of integers. They % represent the peaks and valleys of the histogram for each color % component. % */ static void ActiveNodes(IntervalTree **list,ssize_t *number_nodes, IntervalTree *node) { if (node == (IntervalTree *) NULL) return; if (node->stability >= node->mean_stability) { list[(*number_nodes)++]=node; ActiveNodes(list,number_nodes,node->sibling); } else { ActiveNodes(list,number_nodes,node->sibling); ActiveNodes(list,number_nodes,node->child); } } static void FreeNodes(IntervalTree *node) { if (node == (IntervalTree *) NULL) return; FreeNodes(node->sibling); FreeNodes(node->child); node=(IntervalTree *) RelinquishMagickMemory(node); } static double OptimalTau(const ssize_t *histogram,const double max_tau, const double min_tau,const double delta_tau,const double smooth_threshold, short *extrema) { IntervalTree **list, *node, *root; MagickBooleanType peak; double average_tau, *derivative, *second_derivative, tau, value; register ssize_t i, x; size_t count, number_crossings; ssize_t index, j, k, number_nodes; ZeroCrossing *zero_crossing; /* Allocate interval tree. */ list=(IntervalTree **) AcquireQuantumMemory((size_t) TreeLength, sizeof(*list)); if (list == (IntervalTree **) NULL) return(0.0); /* Allocate zero crossing list. */ count=(size_t) ((max_tau-min_tau)/delta_tau)+2; zero_crossing=(ZeroCrossing *) AcquireQuantumMemory((size_t) count, sizeof(*zero_crossing)); if (zero_crossing == (ZeroCrossing *) NULL) return(0.0); for (i=0; i < (ssize_t) count; i++) zero_crossing[i].tau=(-1.0); /* Initialize zero crossing list. */ derivative=(double *) AcquireQuantumMemory(256,sizeof(*derivative)); second_derivative=(double *) AcquireQuantumMemory(256, sizeof(*second_derivative)); if ((derivative == (double *) NULL) || (second_derivative == (double *) NULL)) ThrowFatalException(ResourceLimitFatalError, "UnableToAllocateDerivatives"); i=0; for (tau=max_tau; tau >= min_tau; tau-=delta_tau) { zero_crossing[i].tau=tau; ScaleSpace(histogram,tau,zero_crossing[i].histogram); DerivativeHistogram(zero_crossing[i].histogram,derivative); DerivativeHistogram(derivative,second_derivative); ZeroCrossHistogram(second_derivative,smooth_threshold, zero_crossing[i].crossings); i++; } /* Add an entry for the original histogram. */ zero_crossing[i].tau=0.0; for (j=0; j <= 255; j++) zero_crossing[i].histogram[j]=(double) histogram[j]; DerivativeHistogram(zero_crossing[i].histogram,derivative); DerivativeHistogram(derivative,second_derivative); ZeroCrossHistogram(second_derivative,smooth_threshold, zero_crossing[i].crossings); number_crossings=(size_t) i; derivative=(double *) RelinquishMagickMemory(derivative); second_derivative=(double *) RelinquishMagickMemory(second_derivative); /* Ensure the scale-space fingerprints form lines in scale-space, not loops. */ ConsolidateCrossings(zero_crossing,number_crossings); /* Force endpoints to be included in the interval. */ for (i=0; i <= (ssize_t) number_crossings; i++) { for (j=0; j < 255; j++) if (zero_crossing[i].crossings[j] != 0) break; zero_crossing[i].crossings[0]=(-zero_crossing[i].crossings[j]); for (j=255; j > 0; j--) if (zero_crossing[i].crossings[j] != 0) break; zero_crossing[i].crossings[255]=(-zero_crossing[i].crossings[j]); } /* Initialize interval tree. */ root=InitializeIntervalTree(zero_crossing,number_crossings); if (root == (IntervalTree *) NULL) return(0.0); /* Find active nodes: stability is greater (or equal) to the mean stability of its children. */ number_nodes=0; ActiveNodes(list,&number_nodes,root->child); /* Initialize extrema. */ for (i=0; i <= 255; i++) extrema[i]=0; for (i=0; i < number_nodes; i++) { /* Find this tau in zero crossings list. */ k=0; node=list[i]; for (j=0; j <= (ssize_t) number_crossings; j++) if (zero_crossing[j].tau == node->tau) k=j; /* Find the value of the peak. */ peak=zero_crossing[k].crossings[node->right] == -1 ? MagickTrue : MagickFalse; index=node->left; value=zero_crossing[k].histogram[index]; for (x=node->left; x <= node->right; x++) { if (peak != MagickFalse) { if (zero_crossing[k].histogram[x] > value) { value=zero_crossing[k].histogram[x]; index=x; } } else if (zero_crossing[k].histogram[x] < value) { value=zero_crossing[k].histogram[x]; index=x; } } for (x=node->left; x <= node->right; x++) { if (index == 0) index=256; if (peak != MagickFalse) extrema[x]=(short) index; else extrema[x]=(short) (-index); } } /* Determine the average tau. */ average_tau=0.0; for (i=0; i < number_nodes; i++) average_tau+=list[i]->tau; average_tau/=(double) number_nodes; /* Relinquish resources. */ FreeNodes(root); zero_crossing=(ZeroCrossing *) RelinquishMagickMemory(zero_crossing); list=(IntervalTree **) RelinquishMagickMemory(list); return(average_tau); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + S c a l e S p a c e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ScaleSpace() performs a scale-space filter on the 1D histogram. % % The format of the ScaleSpace method is: % % ScaleSpace(const ssize_t *histogram,const double tau, % double *scale_histogram) % % A description of each parameter follows. % % o histogram: Specifies an array of doubles representing the number % of pixels for each intensity of a particular color component. % */ static void ScaleSpace(const ssize_t *histogram,const double tau, double *scale_histogram) { double alpha, beta, *gamma, sum; register ssize_t u, x; gamma=(double *) AcquireQuantumMemory(256,sizeof(*gamma)); if (gamma == (double *) NULL) ThrowFatalException(ResourceLimitFatalError, "UnableToAllocateGammaMap"); alpha=PerceptibleReciprocal(tau*sqrt(2.0*MagickPI)); beta=(-1.0*PerceptibleReciprocal(2.0*tau*tau)); for (x=0; x <= 255; x++) gamma[x]=0.0; for (x=0; x <= 255; x++) { gamma[x]=exp((double) beta*x*x); if (gamma[x] < MagickEpsilon) break; } for (x=0; x <= 255; x++) { sum=0.0; for (u=0; u <= 255; u++) sum+=(double) histogram[u]*gamma[MagickAbsoluteValue(x-u)]; scale_histogram[x]=alpha*sum; } gamma=(double *) RelinquishMagickMemory(gamma); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % % S e g m e n t I m a g e % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % SegmentImage() segment an image by analyzing the histograms of the color % components and identifying units that are homogeneous with the fuzzy % C-means technique. % % The format of the SegmentImage method is: % % MagickBooleanType SegmentImage(Image *image, % const ColorspaceType colorspace,const MagickBooleanType verbose, % const double cluster_threshold,const double smooth_threshold, % ExceptionInfo *exception) % % A description of each parameter follows. % % o image: the image. % % o colorspace: Indicate the colorspace. % % o verbose: Set to MagickTrue to print detailed information about the % identified classes. % % o cluster_threshold: This represents the minimum number of pixels % contained in a hexahedra before it can be considered valid (expressed % as a percentage). % % o smooth_threshold: the smoothing threshold eliminates noise in the second % derivative of the histogram. As the value is increased, you can expect a % smoother second derivative. % % o exception: return any errors or warnings in this structure. % */ MagickExport MagickBooleanType SegmentImage(Image *image, const ColorspaceType colorspace,const MagickBooleanType verbose, const double cluster_threshold,const double smooth_threshold, ExceptionInfo *exception) { ColorspaceType previous_colorspace; MagickBooleanType status; register ssize_t i; short *extrema[MaxDimension]; ssize_t *histogram[MaxDimension]; /* Allocate histogram and extrema. */ assert(image != (Image *) NULL); assert(image->signature == MagickCoreSignature); if (image->debug != MagickFalse) (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); for (i=0; i < MaxDimension; i++) { histogram[i]=(ssize_t *) AcquireQuantumMemory(256,sizeof(**histogram)); extrema[i]=(short *) AcquireQuantumMemory(256,sizeof(**extrema)); if ((histogram[i] == (ssize_t *) NULL) || (extrema[i] == (short *) NULL)) { for (i-- ; i >= 0; i--) { extrema[i]=(short *) RelinquishMagickMemory(extrema[i]); histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]); } ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", image->filename) } } /* Initialize histogram. */ previous_colorspace=image->colorspace; (void) TransformImageColorspace(image,colorspace,exception); InitializeHistogram(image,histogram,exception); (void) OptimalTau(histogram[Red],Tau,0.2,DeltaTau, smooth_threshold == 0.0 ? 1.0 : smooth_threshold,extrema[Red]); (void) OptimalTau(histogram[Green],Tau,0.2,DeltaTau, smooth_threshold == 0.0 ? 1.0 : smooth_threshold,extrema[Green]); (void) OptimalTau(histogram[Blue],Tau,0.2,DeltaTau, smooth_threshold == 0.0 ? 1.0 : smooth_threshold,extrema[Blue]); /* Classify using the fuzzy c-Means technique. */ status=Classify(image,extrema,cluster_threshold,WeightingExponent,verbose, exception); (void) TransformImageColorspace(image,previous_colorspace,exception); /* Relinquish resources. */ for (i=0; i < MaxDimension; i++) { extrema[i]=(short *) RelinquishMagickMemory(extrema[i]); histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]); } return(status); } /* %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % % % % + Z e r o C r o s s H i s t o g r a m % % % % % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % ZeroCrossHistogram() find the zero crossings in a histogram and marks % directions as: 1 is negative to positive; 0 is zero crossing; and -1 % is positive to negative. % % The format of the ZeroCrossHistogram method is: % % ZeroCrossHistogram(double *second_derivative, % const double smooth_threshold,short *crossings) % % A description of each parameter follows. % % o second_derivative: Specifies an array of doubles representing the % second derivative of the histogram of a particular color component. % % o crossings: This array of integers is initialized with % -1, 0, or 1 representing the slope of the first derivative of the % of a particular color component. % */ static void ZeroCrossHistogram(double *second_derivative, const double smooth_threshold,short *crossings) { register ssize_t i; ssize_t parity; /* Merge low numbers to zero to help prevent noise. */ for (i=0; i <= 255; i++) if ((second_derivative[i] < smooth_threshold) && (second_derivative[i] >= -smooth_threshold)) second_derivative[i]=0.0; /* Mark zero crossings. */ parity=0; for (i=0; i <= 255; i++) { crossings[i]=0; if (second_derivative[i] < 0.0) { if (parity > 0) crossings[i]=(-1); parity=1; } else if (second_derivative[i] > 0.0) { if (parity < 0) crossings[i]=1; parity=(-1); } } }