/*------------------------------------------------------------------------- * drawElements Quality Program OpenGL ES 3.1 Module * ------------------------------------------------- * * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * *//*! * \file * \brief Texture format tests. *//*--------------------------------------------------------------------*/ #include "es31fTextureFormatTests.hpp" #include "gluContextInfo.hpp" #include "gluPixelTransfer.hpp" #include "gluStrUtil.hpp" #include "gluTexture.hpp" #include "gluTextureUtil.hpp" #include "glsTextureTestUtil.hpp" #include "tcuTextureUtil.hpp" #include "deStringUtil.hpp" #include "deRandom.hpp" #include "glwEnums.hpp" #include "glwFunctions.hpp" using std::vector; using std::string; using tcu::TestLog; namespace deqp { namespace gles31 { namespace Functional { using namespace deqp::gls; using namespace deqp::gls::TextureTestUtil; using namespace glu::TextureTestUtil; using tcu::Sampler; static tcu::CubeFace getCubeFaceFromNdx (int ndx) { switch (ndx) { case 0: return tcu::CUBEFACE_POSITIVE_X; case 1: return tcu::CUBEFACE_NEGATIVE_X; case 2: return tcu::CUBEFACE_POSITIVE_Y; case 3: return tcu::CUBEFACE_NEGATIVE_Y; case 4: return tcu::CUBEFACE_POSITIVE_Z; case 5: return tcu::CUBEFACE_NEGATIVE_Z; default: DE_ASSERT(false); return tcu::CUBEFACE_LAST; } } // TextureCubeArrayFormatCase class TextureCubeArrayFormatCase : public tcu::TestCase { public: TextureCubeArrayFormatCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& renderCtxInfo, const char* name, const char* description, deUint32 format, deUint32 dataType, int size, int depth); TextureCubeArrayFormatCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& renderCtxInfo, const char* name, const char* description, deUint32 internalFormat, int size, int depth); ~TextureCubeArrayFormatCase (void); void init (void); void deinit (void); IterateResult iterate (void); private: TextureCubeArrayFormatCase (const TextureCubeArrayFormatCase& other); TextureCubeArrayFormatCase& operator= (const TextureCubeArrayFormatCase& other); bool checkSupport (void); bool testLayerFace (int layerNdx); glu::RenderContext& m_renderCtx; const glu::ContextInfo& m_renderCtxInfo; const deUint32 m_format; const deUint32 m_dataType; const int m_size; const int m_depth; glu::TextureCubeArray* m_texture; TextureTestUtil::TextureRenderer m_renderer; int m_curLayerFace; }; TextureCubeArrayFormatCase::TextureCubeArrayFormatCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& renderCtxInfo, const char* name, const char* description, deUint32 format, deUint32 dataType, int size, int depth) : TestCase (testCtx, name, description) , m_renderCtx (renderCtx) , m_renderCtxInfo (renderCtxInfo) , m_format (format) , m_dataType (dataType) , m_size (size) , m_depth (depth) , m_texture (DE_NULL) , m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_310_ES, glu::PRECISION_HIGHP) , m_curLayerFace (0) { } TextureCubeArrayFormatCase::TextureCubeArrayFormatCase (tcu::TestContext& testCtx, glu::RenderContext& renderCtx, const glu::ContextInfo& renderCtxInfo, const char* name, const char* description, deUint32 internalFormat, int size, int depth) : TestCase (testCtx, name, description) , m_renderCtx (renderCtx) , m_renderCtxInfo (renderCtxInfo) , m_format (internalFormat) , m_dataType (GL_NONE) , m_size (size) , m_depth (depth) , m_texture (DE_NULL) , m_renderer (renderCtx, testCtx.getLog(), glu::GLSL_VERSION_310_ES, glu::PRECISION_HIGHP) , m_curLayerFace (0) { } TextureCubeArrayFormatCase::~TextureCubeArrayFormatCase (void) { deinit(); } void TextureCubeArrayFormatCase::init (void) { if (checkSupport()) { m_texture = m_dataType != GL_NONE ? new glu::TextureCubeArray(m_renderCtx, m_format, m_dataType, m_size, m_depth) // Implicit internal format. : new glu::TextureCubeArray(m_renderCtx, m_format, m_size, m_depth); // Explicit internal format. tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat()); // Fill level 0. m_texture->getRefTexture().allocLevel(0); tcu::fillWithComponentGradients(m_texture->getRefTexture().getLevel(0), spec.valueMin, spec.valueMax); // Initialize state. m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass"); m_curLayerFace = 0; } else { m_testCtx.setTestResult(QP_TEST_RESULT_NOT_SUPPORTED, "Cube map arrays not supported"); } } void TextureCubeArrayFormatCase::deinit (void) { delete m_texture; m_texture = DE_NULL; m_renderer.clear(); } bool TextureCubeArrayFormatCase::checkSupport (void) { return m_renderCtxInfo.isExtensionSupported("GL_EXT_texture_cube_map_array"); } bool TextureCubeArrayFormatCase::testLayerFace (int layerFaceNdx) { const glw::Functions& gl = m_renderCtx.getFunctions(); TestLog& log = m_testCtx.getLog(); RandomViewport viewport (m_renderCtx.getRenderTarget(), m_size, m_size, deStringHash(getName())); tcu::Surface renderedFrame (viewport.width, viewport.height); tcu::Surface referenceFrame (viewport.width, viewport.height); tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1,1,1,1); vector<float> texCoord; ReferenceParams renderParams (TEXTURETYPE_CUBE_ARRAY); tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(m_texture->getRefTexture().getFormat()); const int layerNdx = layerFaceNdx / 6; const tcu::CubeFace face = getCubeFaceFromNdx(layerFaceNdx % 6); renderParams.samplerType = getSamplerType(m_texture->getRefTexture().getFormat()); renderParams.sampler = Sampler(Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::CLAMP_TO_EDGE, Sampler::NEAREST, Sampler::NEAREST); renderParams.sampler.seamlessCubeMap = true; renderParams.colorScale = spec.lookupScale; renderParams.colorBias = spec.lookupBias; // Layer here specifies the cube slice computeQuadTexCoordCubeArray(texCoord, face, tcu::Vec2(0.0f, 0.0f), tcu::Vec2(1.0f, 1.0f), tcu::Vec2((float)layerNdx)); // Setup base viewport. gl.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT); gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height); // Upload texture data to GL. m_texture->upload(); // Bind to unit 0. gl.activeTexture(GL_TEXTURE0); gl.bindTexture(GL_TEXTURE_CUBE_MAP_ARRAY, m_texture->getGLTexture()); // Setup nearest neighbor filtering and clamp-to-edge. gl.texParameteri(GL_TEXTURE_CUBE_MAP_ARRAY, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); gl.texParameteri(GL_TEXTURE_CUBE_MAP_ARRAY, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); gl.texParameteri(GL_TEXTURE_CUBE_MAP_ARRAY, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl.texParameteri(GL_TEXTURE_CUBE_MAP_ARRAY, GL_TEXTURE_MAG_FILTER, GL_NEAREST); GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state"); // Draw. m_renderer.renderQuad(0, &texCoord[0], renderParams); glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess()); // Compute reference. sampleTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), m_texture->getRefTexture(), &texCoord[0], renderParams); // Compare and log. return compareImages(log, (string("LayerFace" + de::toString(layerFaceNdx))).c_str(), (string("Layer-face " + de::toString(layerFaceNdx))).c_str(), referenceFrame, renderedFrame, threshold); } TextureCubeArrayFormatCase::IterateResult TextureCubeArrayFormatCase::iterate (void) { if (m_testCtx.getTestResult() == QP_TEST_RESULT_NOT_SUPPORTED) return STOP; // Execute test for all layers. bool isOk = testLayerFace(m_curLayerFace); if (!isOk && m_testCtx.getTestResult() == QP_TEST_RESULT_PASS) m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Image comparison failed"); m_curLayerFace += 1; return m_curLayerFace < m_texture->getRefTexture().getDepth() ? CONTINUE : STOP; } // TextureBufferFormatCase class TextureBufferFormatCase : public TestCase { public: TextureBufferFormatCase (Context& ctx, glu::RenderContext& renderCtx, const char* name, const char* description, deUint32 internalFormat, int width); ~TextureBufferFormatCase (void); void init (void); void deinit (void); IterateResult iterate (void); private: TextureBufferFormatCase (const TextureBufferFormatCase& other); TextureBufferFormatCase& operator= (const TextureBufferFormatCase& other); glu::RenderContext& m_renderCtx; deUint32 m_format; int m_width; int m_maxTextureBufferSize; glu::TextureBuffer* m_texture; TextureRenderer m_renderer; }; TextureBufferFormatCase::TextureBufferFormatCase (Context& ctx, glu::RenderContext& renderCtx, const char* name, const char* description, deUint32 internalFormat, int width) : TestCase (ctx, name, description) , m_renderCtx (renderCtx) , m_format (internalFormat) , m_width (width) , m_maxTextureBufferSize (0) , m_texture (DE_NULL) , m_renderer (renderCtx, ctx.getTestContext().getLog(), glu::GLSL_VERSION_310_ES, glu::PRECISION_HIGHP) { } TextureBufferFormatCase::~TextureBufferFormatCase (void) { deinit(); } void TextureBufferFormatCase::init (void) { TestLog& log = m_testCtx.getLog(); tcu::TextureFormat fmt = glu::mapGLInternalFormat(m_format); tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(fmt); tcu::Vec4 colorA (spec.valueMin.x(), spec.valueMax.y(), spec.valueMin.z(), spec.valueMax.w()); tcu::Vec4 colorB (spec.valueMax.x(), spec.valueMin.y(), spec.valueMax.z(), spec.valueMin.w()); if (!m_context.getContextInfo().isExtensionSupported("GL_OES_texture_buffer") && !m_context.getContextInfo().isExtensionSupported("GL_EXT_texture_buffer")) { TCU_THROW(NotSupportedError, "Texture buffers not supported"); } m_maxTextureBufferSize = m_context.getContextInfo().getInt(GL_MAX_TEXTURE_BUFFER_SIZE); if (m_maxTextureBufferSize <= 0) TCU_THROW(NotSupportedError, "GL_MAX_TEXTURE_BUFFER_SIZE > 0 required"); log << TestLog::Message << "Buffer texture, " << glu::getTextureFormatStr(m_format) << ", " << m_width << ",\n fill with " << formatGradient(&colorA, &colorB) << " gradient" << TestLog::EndMessage; m_texture = new glu::TextureBuffer(m_renderCtx, m_format, m_width * fmt.getPixelSize()); // Fill level 0. tcu::fillWithComponentGradients(m_texture->getFullRefTexture(), colorA, colorB); } void TextureBufferFormatCase::deinit (void) { delete m_texture; m_texture = DE_NULL; m_renderer.clear(); } TextureBufferFormatCase::IterateResult TextureBufferFormatCase::iterate (void) { TestLog& log = m_testCtx.getLog(); const glw::Functions& gl = m_renderCtx.getFunctions(); RandomViewport viewport (m_renderCtx.getRenderTarget(), m_width, 1, deStringHash(getName())); tcu::Surface renderedFrame (viewport.width, viewport.height); tcu::Surface referenceFrame (viewport.width, viewport.height); tcu::RGBA threshold = m_renderCtx.getRenderTarget().getPixelFormat().getColorThreshold() + tcu::RGBA(1,1,1,1); vector<float> texCoord; RenderParams renderParams (TEXTURETYPE_BUFFER); const tcu::ConstPixelBufferAccess effectiveRefTexture = glu::getTextureBufferEffectiveRefTexture(*m_texture, m_maxTextureBufferSize); tcu::TextureFormatInfo spec = tcu::getTextureFormatInfo(effectiveRefTexture.getFormat()); renderParams.flags |= RenderParams::LOG_ALL; renderParams.samplerType = getFetchSamplerType(effectiveRefTexture.getFormat()); renderParams.colorScale = spec.lookupScale; renderParams.colorBias = spec.lookupBias; computeQuadTexCoord1D(texCoord, 0.0f, (float)(effectiveRefTexture.getWidth())); gl.clearColor(0.125f, 0.25f, 0.5f, 1.0f); gl.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT); // Setup base viewport. gl.clear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT); gl.viewport(viewport.x, viewport.y, viewport.width, viewport.height); // Upload texture data to GL. m_texture->upload(); // Bind to unit 0. gl.activeTexture(GL_TEXTURE0); gl.bindTexture(GL_TEXTURE_BUFFER, m_texture->getGLTexture()); GLU_EXPECT_NO_ERROR(gl.getError(), "Set texturing state"); // Draw. m_renderer.renderQuad(0, &texCoord[0], renderParams); glu::readPixels(m_renderCtx, viewport.x, viewport.y, renderedFrame.getAccess()); GLU_EXPECT_NO_ERROR(gl.getError(), "glReadPixels()"); // Compute reference. fetchTexture(tcu::SurfaceAccess(referenceFrame, m_renderCtx.getRenderTarget().getPixelFormat()), effectiveRefTexture, &texCoord[0], spec.lookupScale, spec.lookupBias); // Compare and log. bool isOk = compareImages(log, referenceFrame, renderedFrame, threshold); m_testCtx.setTestResult(isOk ? QP_TEST_RESULT_PASS : QP_TEST_RESULT_FAIL, isOk ? "Pass" : "Image comparison failed"); return STOP; } // TextureFormatTests TextureFormatTests::TextureFormatTests (Context& context) : TestCaseGroup(context, "format", "Texture Format Tests") { } TextureFormatTests::~TextureFormatTests (void) { } vector<string> toStringVector (const char* const* str, int numStr) { vector<string> v; v.resize(numStr); for (int i = 0; i < numStr; i++) v[i] = str[i]; return v; } void TextureFormatTests::init (void) { tcu::TestCaseGroup* unsizedGroup = DE_NULL; tcu::TestCaseGroup* sizedGroup = DE_NULL; tcu::TestCaseGroup* sizedBufferGroup = DE_NULL; addChild((unsizedGroup = new tcu::TestCaseGroup(m_testCtx, "unsized", "Unsized formats"))); addChild((sizedGroup = new tcu::TestCaseGroup(m_testCtx, "sized", "Sized formats"))); addChild((sizedBufferGroup = new tcu::TestCaseGroup(m_testCtx, "buffer", "Sized formats (Buffer)"))); tcu::TestCaseGroup* sizedCubeArrayGroup = DE_NULL; sizedGroup->addChild((sizedCubeArrayGroup = new tcu::TestCaseGroup(m_testCtx, "cube_array", "Sized formats (2D Array)"))); struct { const char* name; deUint32 format; deUint32 dataType; } texFormats[] = { { "alpha", GL_ALPHA, GL_UNSIGNED_BYTE }, { "luminance", GL_LUMINANCE, GL_UNSIGNED_BYTE }, { "luminance_alpha", GL_LUMINANCE_ALPHA, GL_UNSIGNED_BYTE }, { "rgb_unsigned_short_5_6_5", GL_RGB, GL_UNSIGNED_SHORT_5_6_5 }, { "rgb_unsigned_byte", GL_RGB, GL_UNSIGNED_BYTE }, { "rgba_unsigned_short_4_4_4_4", GL_RGBA, GL_UNSIGNED_SHORT_4_4_4_4 }, { "rgba_unsigned_short_5_5_5_1", GL_RGBA, GL_UNSIGNED_SHORT_5_5_5_1 }, { "rgba_unsigned_byte", GL_RGBA, GL_UNSIGNED_BYTE } }; for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(texFormats); formatNdx++) { deUint32 format = texFormats[formatNdx].format; deUint32 dataType = texFormats[formatNdx].dataType; string nameBase = texFormats[formatNdx].name; string descriptionBase = string(glu::getTextureFormatName(format)) + ", " + glu::getTypeName(dataType); unsizedGroup->addChild(new TextureCubeArrayFormatCase (m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), (nameBase + "_cube_array_pot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP_ARRAY").c_str(), format, dataType, 64, 12)); unsizedGroup->addChild(new TextureCubeArrayFormatCase (m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), (nameBase + "_cube_array_npot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP_ARRAY").c_str(), format, dataType, 64, 12)); } struct { const char* name; deUint32 internalFormat; } sizedColorFormats[] = { { "rgba32f", GL_RGBA32F, }, { "rgba32i", GL_RGBA32I, }, { "rgba32ui", GL_RGBA32UI, }, { "rgba16f", GL_RGBA16F, }, { "rgba16i", GL_RGBA16I, }, { "rgba16ui", GL_RGBA16UI, }, { "rgba8", GL_RGBA8, }, { "rgba8i", GL_RGBA8I, }, { "rgba8ui", GL_RGBA8UI, }, { "srgb8_alpha8", GL_SRGB8_ALPHA8, }, { "rgb10_a2", GL_RGB10_A2, }, { "rgb10_a2ui", GL_RGB10_A2UI, }, { "rgba4", GL_RGBA4, }, { "rgb5_a1", GL_RGB5_A1, }, { "rgba8_snorm", GL_RGBA8_SNORM, }, { "rgb8", GL_RGB8, }, { "rgb565", GL_RGB565, }, { "r11f_g11f_b10f", GL_R11F_G11F_B10F, }, { "rgb32f", GL_RGB32F, }, { "rgb32i", GL_RGB32I, }, { "rgb32ui", GL_RGB32UI, }, { "rgb16f", GL_RGB16F, }, { "rgb16i", GL_RGB16I, }, { "rgb16ui", GL_RGB16UI, }, { "rgb8_snorm", GL_RGB8_SNORM, }, { "rgb8i", GL_RGB8I, }, { "rgb8ui", GL_RGB8UI, }, { "srgb8", GL_SRGB8, }, { "rgb9_e5", GL_RGB9_E5, }, { "rg32f", GL_RG32F, }, { "rg32i", GL_RG32I, }, { "rg32ui", GL_RG32UI, }, { "rg16f", GL_RG16F, }, { "rg16i", GL_RG16I, }, { "rg16ui", GL_RG16UI, }, { "rg8", GL_RG8, }, { "rg8i", GL_RG8I, }, { "rg8ui", GL_RG8UI, }, { "rg8_snorm", GL_RG8_SNORM, }, { "r32f", GL_R32F, }, { "r32i", GL_R32I, }, { "r32ui", GL_R32UI, }, { "r16f", GL_R16F, }, { "r16i", GL_R16I, }, { "r16ui", GL_R16UI, }, { "r8", GL_R8, }, { "r8i", GL_R8I, }, { "r8ui", GL_R8UI, }, { "r8_snorm", GL_R8_SNORM, } }; struct { const char* name; deUint32 internalFormat; } sizedDepthStencilFormats[] = { // Depth and stencil formats { "depth_component32f", GL_DEPTH_COMPONENT32F }, { "depth_component24", GL_DEPTH_COMPONENT24 }, { "depth_component16", GL_DEPTH_COMPONENT16 }, { "depth32f_stencil8", GL_DEPTH32F_STENCIL8 }, { "depth24_stencil8", GL_DEPTH24_STENCIL8 } }; for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(sizedColorFormats); formatNdx++) { deUint32 internalFormat = sizedColorFormats[formatNdx].internalFormat; string nameBase = sizedColorFormats[formatNdx].name; string descriptionBase = glu::getTextureFormatName(internalFormat); sizedCubeArrayGroup->addChild(new TextureCubeArrayFormatCase (m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), (nameBase + "_pot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP_ARRAY").c_str(), internalFormat, 64, 12)); sizedCubeArrayGroup->addChild(new TextureCubeArrayFormatCase (m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), (nameBase + "_npot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP_ARRAY").c_str(), internalFormat, 64, 12)); } for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(sizedDepthStencilFormats); formatNdx++) { deUint32 internalFormat = sizedDepthStencilFormats[formatNdx].internalFormat; string nameBase = sizedDepthStencilFormats[formatNdx].name; string descriptionBase = glu::getTextureFormatName(internalFormat); sizedCubeArrayGroup->addChild(new TextureCubeArrayFormatCase (m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), (nameBase + "_pot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP_ARRAY").c_str(), internalFormat, 64, 12)); sizedCubeArrayGroup->addChild(new TextureCubeArrayFormatCase (m_testCtx, m_context.getRenderContext(), m_context.getContextInfo(), (nameBase + "_npot").c_str(), (descriptionBase + ", GL_TEXTURE_CUBE_MAP_ARRAY").c_str(), internalFormat, 64, 12)); } // \todo Check struct { const char* name; deUint32 internalFormat; } bufferColorFormats[] = { { "r8", GL_R8, }, { "r16f", GL_R16F, }, { "r32f", GL_R32F, }, { "r8i", GL_R8I, }, { "r16i", GL_R16I, }, { "r32i", GL_R32I, }, { "r8ui", GL_R8UI, }, { "r16ui", GL_R16UI, }, { "r32ui", GL_R32UI, }, { "rg8", GL_RG8, }, { "rg16f", GL_RG16F, }, { "rg32f", GL_RG32F, }, { "rg8i", GL_RG8I, }, { "rg16i", GL_RG16I, }, { "rg32i", GL_RG32I, }, { "rg8ui", GL_RG8UI, }, { "rg16ui", GL_RG16UI, }, { "rg32ui", GL_RG32UI, }, { "rgba8", GL_RGBA8, }, { "rgba16f", GL_RGBA16F, }, { "rgba32f", GL_RGBA32F, }, { "rgba8i", GL_RGBA8I, }, { "rgba16i", GL_RGBA16I, }, { "rgba32i", GL_RGBA32I, }, { "rgba8ui", GL_RGBA8UI, }, { "rgba16ui", GL_RGBA16UI, }, { "rgba32ui", GL_RGBA32UI, } }; for (int formatNdx = 0; formatNdx < DE_LENGTH_OF_ARRAY(bufferColorFormats); formatNdx++) { deUint32 internalFormat = bufferColorFormats[formatNdx].internalFormat; string nameBase = bufferColorFormats[formatNdx].name; string descriptionBase = glu::getTextureFormatName(internalFormat); sizedBufferGroup->addChild (new TextureBufferFormatCase (m_context, m_context.getRenderContext(), (nameBase + "_pot").c_str(), (descriptionBase + ", GL_TEXTURE_BUFFER").c_str(), internalFormat, 64)); sizedBufferGroup->addChild (new TextureBufferFormatCase (m_context, m_context.getRenderContext(), (nameBase + "_npot").c_str(), (descriptionBase + ", GL_TEXTURE_BUFFER").c_str(), internalFormat, 112)); } } } // Functional } // gles31 } // deqp